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Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .
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Theorem (Granville, Schinzel, F.): There
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⇤r
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Furthermore, in the same running time,
if f(x) is divisible by a cyclotomic poly-
nomial, then the algorithm outputs an
m for which �m(x) divides f(x).
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We Show:

There is a cyclotomic factor of f(x) =⇤r
j=0 ajx

dj if and only if ⌅ a partition

{0, 1, . . . , r} = J1⇧̇J2⇧̇ · · · ⇧̇Js

such that if, for 1 ⇥ i ⇥ s,
⌅

j⇤Ji

ajx
dj = xbigi(x

ei), Mi = · · ·

then there are mi ⇤ Mi for which

m0 =
⇧

p|m1···ms

max
1⇥i⇥s

�
pk : pk miei

⇥

satisfies

m0 = mi gcd(m0, ei), i ⇤ {1, 2, . . . , s}.
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then it is possible to determine a non-
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algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.
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We’ll come back to this.
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Thought: A factorization in Z[y1, . . . , yt]
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Counter-Thought: We want mij and vj
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Theorem (A. Schinzel, 1969): Fix

F = arxr + · · · + a1x1 + a0,

with aj nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F , with the following property:

Suppose the vector
�⇤
d = ⇧d1, d2, . . . , dr⌃ ⌅ Zr,

with dr > · · · > d1 > 0, is such that

f(x) = F (xd1, xd2, . . . , xdr)

has no non-constant reciprocal factor.



Then ⌥ r⇤t matrix M = (mij) ⌃ S of
rank t ⌅ r and a vector
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f(x) =
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xwiFi(x
v1, . . . , xvt)

as a product of polynomials in Z[x] each
of which is either irreducible over Q or
a constant.
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Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...
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Does f have a reciprocal factor?
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In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.
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Next, we illustrate how to obtain g.
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Problem: Find an algorithm which takes
given sparse polynomials

f(x) =
k�

j=1

ajx
dj, g(x) =

k�

j=1

bjx
dj,

in Z[x] having no cyclotomic factors,
with

d1 = 0 < d2 < · · · < dk,

and computes gcd(f, g) in time that is
polynomial in log dk.



Theorem(Granville, Schinzel, F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Z[x],
each of degree � n and height � H
and having � r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gcdZ(f(x), g(x)) and runs in
time Or,H

�
log n

⇥
.



Corollary: If f(x), g(x) � Z[x] with
f(x) or g(x) not divisible by a cyclo-
tomic polynomial, then gcdZ(f(x), g(x))
has Or,H(1) terms.
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Lemma (Bombieri and Zannier): Let

F1, F2 ⇤ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If �⇥u = ⇧u1, . . . , uk⌃ ⇤ Zk,
� ⌅= 0 is algebraic and

F1(�
u1, . . . , �uk) = F2(�

u1, . . . , �uk) = 0,

then either � is a root of unity or there
exists a non-zero vector �⇥v ⇤ Zk having
length at most c1 and orthogonal to �⇥u .
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Note: It is important that c1 is computable.



Idea: The lattice of vectors orthogonal
to �⇤v is (k�1)-dimensional so that there
exists a vector ⇧e1, . . . , ek�1⌃ and a ma-
trix M in Zk�1 satisfying
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d1
d2
...

dk

⇥

⌃⌃⌅ = M ·

�
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...

ek�1
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⌃⌃⌅ .

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.
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�
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k�1⌅

j=1

�
xej

⇥mij
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F
(k)
1 (xsome exponent) = f(x)
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Induction

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

i=1

aix
di =

k⇤

i=1

ai

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij
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