Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r,H}(\log n (\log \log n)^2 |\log \log \log n|).$ Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r,H}(\log (\log n)^2 |\log \log \log n|).$

 $f(x)
eq \pm x^{\deg f} f(1/x)$

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r,H}(\log n (\log \log n)^2 |\log \log \log n|).$

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^+$ with $\Phi_m(x)$ a factor.
- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of f(x) into irreducible polynomials over \mathbb{Q} .

• If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^+$ with $\Phi_m(x)$ a factor.

Theorem (Granville, Schinzel, F.): There is an algorithm that has the following property: given $f(x) = \sum_{j=0}^{r} a_j x^{d_j} \in$ $\mathbb{Z}[x]$ of degree n > 1 and with r + 1terms, the algorithm determines if f(x)has a cyclotomic factor in running time $O_{r,H}(\log n (\log \log n)^2 |\log \log \log n|).$

There is a cyclotomic factor of f(x) = $\sum_{j=0}^{r} a_j x^{d_j}$ if and only if \exists a partition $\{0, 1, \ldots, r\} = J_1 \dot{\cup} J_2 \dot{\cup} \cdots \dot{\cup} J_s$ such that if, for $1 \leq i \leq s$, $\sum a_i x^{d_j} = x^{b_i} g_i(x^{e_i}), \quad M_i = \cdots$ $j \in J_i$

then there are $m_i \in M_i$ for which

 $m_0 = \prod_{\substack{p \mid m_1 \cdots m_s}} \max_{1 \leq i \leq s} \left\{ p^k : p^k \| m_i e_i
ight\}$

satisfies

 $m_0 = m_i \operatorname{gcd}(m_0, e_i), \ i \in \{1, 2, \dots, s\}.$

We'll come back to this.

• Otherwise, the algorithm outputs the complete factorization of f(x) into irreducible polynomials over \mathbb{Q} .

$$f(x) = \sum_{j=0}^{r} a_j x^{d_j}$$

f has no reciprocal factors
 (other than constants)

• Otherwise, the algorithm outputs the complete factorization of f(x) into irreducible polynomials over \mathbb{Q} .

$$f(x) = \sum_{j=0}^r a_j x^{d_j}$$

$$egin{aligned} F &= F(x_1, x_2, \dots, x_r) \ &= a_r x_r + \dots + a_1 x_1 + a_0, \end{aligned}$$

$$f(x) = F(x^{d_1}, x^{d_2}, \dots, x^{d_r})$$

$$f(x) = \sum_{j=0}^{r} a_j x^{d_j}, \quad F(x_1, \dots, x_r) = a_0 + \sum_{j=1}^{r} a_j x_j$$

$$egin{pmatrix} d_1\ ec{s}\ d_r \end{pmatrix} = (m_{ij})_{r imes t} egin{pmatrix} v_1\ ec{s}\ v_t \end{pmatrix}$$

(1)

 $d_i=m_{i1}v_1+\cdots+m_{it}v_t,\ 1\leq i\leq r$

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

 $(1) \quad d_{i} = m_{i1}v_{1} + \dots + m_{it}v_{t}, \ 1 \leq i \leq r$

(m_{ij}) will come from a finite set depending only on F

 $v_j \in \mathbb{Z}$ show exist for some (m_{ij})

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

$$egin{aligned} F(y_1^{m_{11}} & \cdots & y_t^{m_{1t}}, & \dots, & y_1^{m_{r1}} & \cdots & y_t^{m_{rt}}) \ & y_j &= x^{v_j}, & 1 \leq j \leq t \ & F(x^{d_1}, x^{d_2}, & \dots, & x^{d_r}) = f(x) \end{aligned}$$

Thought: A factorization in $\mathbb{Z}[y_1, \ldots, y_t]$ implies a factorization of f(x) in $\mathbb{Z}[x]$.

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

$$egin{aligned} F(y_1^{m_{11}} & \cdots & y_t^{m_{1t}}, & \dots, & y_1^{m_{r1}} & \cdots & y_t^{m_{rt}}) \ & y_j &= x^{v_j}, & 1 \leq j \leq t \ & F(x^{d_1}, x^{d_2}, & \dots, & x^{d_r}) = f(x) \end{aligned}$$

Counter-Thought: We want m_{ij} and v_j in \mathbb{Z} , but not necessarily positive.

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

$$\begin{array}{c} \int F(y_1^{m_{11}}\cdots y_t^{m_{1t}},...,y_1^{m_{r1}}\cdots y_t^{m_{rt}}) \\ \text{Do what you have to do to make} \\ \text{this in } \mathbb{Z}[y_1,y_2,\ldots,y_t]. \end{array}$$

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

$$\begin{split} & \begin{pmatrix} J \ F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}}) \\ & \\ & \\ y_1^{u_1} \cdots y_t^{u_t} F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}}) \end{pmatrix} \end{split}$$

Recall: Factor and substitute $y_j = x^{v_j}$.

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

(1)
$$d_i = m_{i1}v_1 + \dots + m_{it}v_t, \ 1 \le i \le r$$

(2)
$$y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} F(y_{1}^{m_{11}} \cdots y_{t}^{m_{1t}}, ..., y_{1}^{m_{r1}} \cdots y_{t}^{m_{rt}})$$
$$= F_{1}(y_{1}, ..., y_{t}) \cdots F_{s}(y_{1}, ..., y_{t})$$
(2)
$$f(x) = \prod_{i=1}^{s} x_{i}^{w_{i}} F_{i}(x_{1}^{v_{1}} \cdots x_{t}^{v_{t}})$$

(3)
$$f(x) = \prod_{i=1}^{\infty} x^{\omega_i} F_i(x^{\upsilon_1}, \dots, x^{\upsilon_t})$$

Recall: Factor and substitute $y_j = x^{v_j}$.

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

(1)
$$d_i = m_{i1}v_1 + \dots + m_{it}v_t, \ 1 \le i \le r$$

(2)
$$y_1^{u_1} \cdots y_t^{u_t} F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}}) = F_1(y_1, \dots, y_t) \cdots F_s(y_1, \dots, y_t)$$

(3)
$$f(x) = \prod_{i=1}^{s} x^{w_i} F_i(x^{v_1}, \dots, x^{v_t})$$

Conclusion: (1) and (2) imply (3)

$$f(x) = \sum_{j=0}^r a_j x^{d_j}, \quad F(x_1,\ldots,x_r) = a_0 + \sum_{j=1}^r a_j x_j$$

(1)
$$d_i = m_{i1}v_1 + \dots + m_{it}v_t, \ 1 \le i \le r$$

(2)
$$y_1^{u_1} \cdots y_t^{u_t} F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}}) = F_1(y_1, \dots, y_t) \cdots F_s(y_1, \dots, y_t)$$

(3)
$$f(x) = \prod_{i=1}^{s} x^{w_i} F_i(x^{v_1}, \dots, x^{v_t})$$

Question: Are s - 1 of the factors 1?

Theorem (A. Schinzel, 1969): Fix $F = a_r x_r + \cdots + a_1 x_1 + a_0,$

with a_j nonzero integers. There exists a finite computable set of matrices Swith integer entries, depending only on F, with the following property:

Suppose the vector

$$\overrightarrow{d} = \langle d_1, d_2, \dots, d_r
angle \in \mathbb{Z}^r,$$

with $d_r > \cdots > d_1 > 0,$ is such that $f(x) = F(x^{d_1}, x^{d_2}, \ldots, x^{d_r})$

has no non-constant reciprocal factor.

Then $\exists r \times t \text{ matrix } M = (m_{ij}) \in S$ of rank $t \leq r$ and a vector

$$\overrightarrow{v} = \langle v_1, v_2, \dots, v_t
angle \in \mathbb{Z}^t$$

such that

$$egin{pmatrix} d_1\ ec s\ d_1\ ec s\ d_r \end{pmatrix} = M egin{pmatrix} v_1\ ec s\ v_t\ ec v_t \end{pmatrix}$$

holds and the factorization given by

$$y_1^{u_1} \cdots y_t^{u_t} F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}})$$

= $F_1(y_1, ..., y_t) \cdots F_s(y_1, ..., y_t)$

in $\mathbb{Z}[y_1, \ldots, y_t]$ into irreducibles implies

$$f(x) = \prod_{i=1}^s x^{w_i} F_i(x^{v_1}, \ldots, x^{v_t})$$

as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

Theorem (A. Schinzel, 1969): Fix $F = a_r x_r + \cdots + a_1 x_1 + a_0,$

with a_j nonzero integers. There exists a finite computable set of matrices Swith integer entries, depending only on F, with the following property:

Suppose the vector

$$\overrightarrow{d} = \langle d_1, d_2, \dots, d_r
angle \in \mathbb{Z}^r,$$

with $d_r > \cdots > d_1 > 0,$ is such that $f(x) = F(x^{d_1}, x^{d_2}, \ldots, x^{d_r})$

has no non-constant reciprocal factor.

Then $\exists r \times t \text{ matrix } M = (m_{ij}) \in S$ of rank $t \leq r$ and a vector

$$\overrightarrow{v} = \langle v_1, v_2, \dots, v_t
angle \in \mathbb{Z}^t$$

such that

$$egin{pmatrix} d_1\ ec s\ d_1\ ec s\ d_r \end{pmatrix} = M egin{pmatrix} v_1\ ec s\ v_t\ ec v_t \end{pmatrix}$$

holds and the factorization given by

$$y_1^{u_1} \cdots y_t^{u_t} F(y_1^{m_{11}} \cdots y_t^{m_{1t}}, ..., y_1^{m_{r1}} \cdots y_t^{m_{rt}})$$

= $F_1(y_1, ..., y_t) \cdots F_s(y_1, ..., y_t)$

in $\mathbb{Z}[y_1, \ldots, y_t]$ into irreducibles implies

$$f(x) = \prod_{i=1}^s x^{w_i} F_i(x^{v_1}, \ldots, x^{v_t})$$

as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

We've checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

Does f have a reciprocal factor? Suppose w(x) is a reciprocal factor. $w(\alpha) = 0 \implies \alpha \neq 0 \text{ and } w(1/\alpha) = 0$ $\implies f(\alpha) = 0 \text{ and } g(\alpha) = 0,$ where $g(x) = x^{\deg f} f(1/x) \neq f(x)$ We want to compute gcd(f, g).

In general, if f and g are sparse polynomials around degree n in $\mathbb{Z}[x]$, how does one compute gcd(f,g)?

Some items to keep in mind:

 \rightarrow The Euclidean algorithm will run in time that is polynomial in n, not log n.

In general, if f and g are sparse polynomials around degree n in $\mathbb{Z}[x]$, how does one compute gcd(f,g)?

Some items to keep in mind:

 \rightarrow Plaisted (1977) has shown that this problem is at least as hard as any problem in NP.

- \rightarrow Plaisted (1977) has shown that this problem is at least as hard as any problem in NP.
- Plaisted's takes f and g to be divisors of $x^N 1$ where N is a product of small primes.
- We are interested in the case that both f and g do not have a cyclotomic factor.

Problem: Find an algorithm which takes given sparse polynomials

$$f(x)=\sum_{j=1}^ka_jx^{d_j},\quad g(x)=\sum_{j=1}^kb_jx^{d_j},$$

in $\mathbb{Z}[x]$ having no cyclotomic factors, with

$$d_1 = 0 < d_2 < \cdots < d_k,$$

and computes gcd(f,g) in time that is polynomial in $\log d_k$.

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials f(x) and g(x) in $\mathbb{Z}[x]$, each of degree < n and height < Hand having < r+1 nonzero terms, with at least one of f(x) and g(x) free of any cyclotomic factors, and outputs the value of $gcd_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r,H}(\log n)$.

Corollary: If $f(x), g(x) \in \mathbb{Z}[x]$ with f(x) or g(x) not divisible by a cyclotomic polynomial, then $gcd_{\mathbb{Z}}(f(x), g(x))$ has $O_{r,H}(1)$ terms.

Note that if *a* and *b* are relatively prime positive integers, then

$$egin{aligned} \gcd\left(x^{ab}-1,(x^a-1)(x^b-1)
ight)\ &=rac{(x^a-1)(x^b-1)}{x-1}, \end{aligned}$$

which can have arbitrarily many terms.

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials f(x) and g(x) in $\mathbb{Z}[x]$, each of degree < n and height < Hand having < r+1 nonzero terms, with at least one of f(x) and g(x) free of any cyclotomic factors, and outputs the value of $gcd_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r,H}(\log n)$.

Lemma (Bombieri and Zannier): Let $F_1, F_2 \in \mathbb{Q}[x_1, \ldots, x_k]$ be coprime polynomials. There exists a number $c_1(F_1, F_2)$ with the following property. If $\overrightarrow{u} = \langle u_1, \ldots, u_k \rangle \in \mathbb{Z}^k$, $\xi \neq 0$ is algebraic and $F_1(\xi^{u_1},\ldots,\xi^{u_k})=F_2(\xi^{u_1},\ldots,\xi^{u_k})=0,$ then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$egin{array}{lll} f(x) = \sum\limits_{j=1}^k a_j x^{d_j} &
ightarrow F_1(ec x) = \sum\limits_{j=1}^k a_j x_j \ g(x) = \sum\limits_{j=1}^k b_j x^{d_j} &
ightarrow F_2(ec x) = \sum\limits_{j=1}^k b_j x_j \end{array}$$

There exists a number $c_1(\overrightarrow{a}, \overrightarrow{b}, k)$ with the following property. If $\overrightarrow{u} = \langle d_1, \dots, d_k \rangle \in \mathbb{Z}^k$, $\xi \neq 0$ is algebraic and

 $F_1(\xi^{d_1},\ldots,\xi^{d_k})=F_2(\xi^{d_1},\ldots,\xi^{d_k})=0,$

then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

There exists a number $c_1(\overrightarrow{a}, \overrightarrow{b}, k)$ with the following property. If $\overrightarrow{u} = \langle d_1, \dots, d_k \rangle \in \mathbb{Z}^k$, $\xi \neq 0$ is algebraic and

$$f(\xi) = g(\xi) = 0$$

then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$egin{array}{lll} f(x) = \sum\limits_{j=1}^k a_j x^{d_j} &
ightarrow F_1(ec x) = \sum\limits_{j=1}^k a_j x_j \ g(x) = \sum\limits_{j=1}^k b_j x^{d_j} &
ightarrow F_2(ec x) = \sum\limits_{j=1}^k b_j x_j \end{array}$$

There exists a number $c_1(\overrightarrow{a}, \overrightarrow{b}, k)$ with the following property. If $f(\xi) = g(\xi) = 0$, then there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$\overrightarrow{u} = \langle d_1, \ldots, d_k
angle$$

Note: It is important that c_1 is computable.

Idea: The lattice of vectors orthogonal to \overrightarrow{v} is (k-1)-dimensional so that there exists a vector $\langle e_1, \ldots, e_{k-1} \rangle$ and a matrix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$egin{pmatrix} d_1 \ d_2 \ centcolor{l} & ee \mathcal{M} & ee \mathbf{M} & ee \mathbf{h} &$$

Idea: The lattice of vectors orthogonal to \overrightarrow{v} is (k-1)-dimensional so that there exists a vector $\langle e_1, \ldots, e_{k-1} \rangle$ and a matrix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$egin{pmatrix} d_1\ d_2\ centcolor \ ec d_k \end{pmatrix} = \mathcal{M} \cdot egin{pmatrix} e_1\ e_2\ centcolor \ ec e_k - 1 \end{pmatrix}$$

So

 $d_i = \sum_{j=1}^{k-1} m_{ij} e_j,$ with the $m_{ij} \in \mathbb{Z}$ bounded.

$$egin{aligned} & k = 1 \ & k = 1 \ & j = 1 \end{aligned} egin{aligned} & k = 1 \ & j = 1 \end{aligned} & egin{aligned} & k = 1 \ & x^{d_i} = \prod_{j = 1}^{k-1} (x^{e_j})^{m_{ij}} \end{aligned}$$

$$egin{aligned} & d_i = \sum_{j=1}^{k-1} m_{ij} e_j & x^{d_i} = \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}} \ & f(x) = \sum_{i=1}^k a_i x^{d_i} = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}} \end{aligned}$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$g(x) = \sum_{i=1}^k b_i x^{d_i} = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$f(x) = \sum_{i=1}^{k} a_i x^{d_i} = \sum_{i=1}^{k} a_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$g(x) = \sum_{i=1}^{k} b_i x^{d_i} = \sum_{i=1}^{k} b_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$F_2^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$g(x) = \sum_{i=1}^{k} b_i x^{d_i} = \sum_{i=1}^{k} b_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$F_2^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$F_2^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

