Theorem (Granville, Schinzel, F.): An

algorithm exists for determining if a
given nonreciprocal polynomial f(x) €
Z|x| 1s irreducible and that runs in time

Or,H( log n (log log n)2| log log log n\) :



Theorem (Granville, Schinzel, F.): An

algorithm exists for determining if a
given nonreciprocal polynomial f(x) €
Z|x| 1s irredficible and that runs in time

O, f (log @ log n)?| log log log n|).

f(x) # £ zd8 7 f(1/x) |




Theorem (Granville, Schinzel, F.): An

algorithm exists for determining if a
given nonreciprocal polynomial f(x) €
Z|x| 1s irreducible and that runs in time

Or,H( log n (log log n)2| log log log n\) :



e If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € ZT with ®,,(x) a factor.

e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

e Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q).



e If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € ZT with ®,,(x) a factor.

Theorem (Granville, Schinzel, F.): There

1s an algorithm that has the following

property: given f(x) = Z§:0 ajmdj e

Z|lx| of degree n > 1 and with r + 1
terms, the algorithm determines if f(x)
has a cyclotomic factor in running time

O, 1 (log n (log log n)?| log log log n|).



There is a cyclotomic factor of f(x) =

> % _gajz® if and only if 3 a partition

(0,1,...,7} = JyUJoU -« - U,
such that if, for 1 < 1 < s,

S a0t — abig(a®), M, -
J€J;
then there are m; € M, for which

_ k. k.o
mo=[[ max {p¥:p"(lmie]

p‘mloooms

satisfies

mo = My ng(m()a ei)a S {17 2,000, S}'



e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

We’ll come back to this.



e Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q).

f has no reciprocal factors

(other than constants)



e Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q).

7=0

F =F(x1,x2y...,Tp)

QrXTy + ¢+ + 11 + ag,

f(x) = F(mdl, i wd”'“)



d; = m;1v1+--+myuvg, 1 <t S



(1) dj =mjvit--+myvg, 1 <1 <7

(m;;) will come from a finite set
depending only on F

v; € Z show exist for some (mm)



(1) dj =mjvit--+myvg, 1 <1 <7

F(ymll yt 7 205 yﬁinrl"'y;ﬁm/rt)
Yy, — & jv 1<j)<t
F(a:dl,mdz,...,:vd"“) = f(x)

Thought: A factorization in Z|yq, ..., y¢]
implies a factorization of f(x) in Z|x]|.



(1) dj =mjvit--+myvg, 1 <1 <7

F(ymll yt 7 ocg yﬁinrl"'y;ﬁm/rt)
Yy, — & jv 1<j)<t
F(a:dl,mdz,...,:vd"“) = f(x)

Counter-Thought: We want m;; and v,
in Z, but not necessarily positive.



(1) dj =mjvit--+myvg, 1 <1 <7

T F(y'inll . ygnlt’ s y'inrl . y;n'rt)

Qi

Do what you have to do to make
this in Z[y1,y2,. .., yt].



(1) dj =mjvit--+myvg, 1 <1 <7

T F(y'inll . ygnlt’ s y'inrl . y;n'rt)

Qi

yriﬁl . yftF(yTll . yt'rnlt’ s yinrl . ylnrt)

Recall: Factor and substitute y; = x"7.



(1) dj =mjvit--+myvg, 1 <1 <7

Y1ty T (yy ey, My ey,
:Fl(ylv'ﬂvyt)"'FS(yh"'?yt)

(2)

(3) @) = [[=“iFE",. .. 2%
1=1

Recall: Factor and substitute y; = x"7.



(1) dj =mjvit--+myvg, 1 <1 <7

(2) yr Yy F(yy ey ey ey )
:Fl(ylv'ﬂvyt)"'FS(yh"'?yt)

(3) @) = [[=“iFE",. .. 2%
1=1

Conclusion: (1) and (2) imply (3)



(1) dj =mjvit--+myvg, 1 <1 <7

Y1ty T (yy ey, My ey,
:Fl(ylv'ﬂvyt)"'FS(yh"'?yt)

(2)
3)  f(=) =[] z“iFi(x",... ")
i=1

Question: Are s — 1 of the factors 17



Theorem (A. Schinzel, 1969): Fix

F =arzy +---+ a1 + ap,

with a; nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F', with the following property:

Suppose the vector
%

d — <d1,d2,...,dr> 6 Z’T’,
with dpr > -+ > dqy > 0, 1s such that
f(z) = F(z™, 2%, ..., z%)

has no non-constant reciprocal factor.



Then 3 r Xt matric M = (m;;) € S of
rank t < r and a vector

v = (V1,025 ...,Vt) € A
such that
dq V]
: = M
dy Ut

yribl' yzljtF(ymll yt 7 a0g y’inrl.“y;nrt)
:Fl(y17°°°7yt)"'Fs(yb"'?yt)

i Z|Yyi,...,Yyt| into irreducibles implies



f(x) =] =ViF;(z",..., ")
1—=1

as a product of polynomazials in Z|x| each
of which 1s either irreducible over () or
a constant.
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e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?



e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

Does f have a reciprocal factor?

Suppose w(x) is a reciprocal factor.

w(a) =0 — a#0 and w(l/a) =0
—> f(a) =0 and g(a) = 0,

where g(z) = z4°87 f(1/z) # f(x)

We want to compute ged( f, g).



e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

In general, if f and g are sparse polyno-
mials around degree n in Z|x|, how does
one compute gcd(f,g)?

Some items to keep in mind:

— The Euclidean algorithm will run in
time that is polynomial in nn, not log n.
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— Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.



e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

— Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem 1in NP.

Plaisted’s takes f and g to be divisors of
™V — 1 where N is a product of small

primes.

We are interested in the case that both
f and g do not have a cyclotomic factor.



Problem: Find an algorithm which takes
given sparse polynomaials

k k
f@) =) ajz%, g(x)=)> bjz%,
j=1 j=1

in Z|x| having no cyclotomic factors,
with

di =0<dos < .-+ < dg,
and computes gcd(f,g) in time that is
polynomaial 1n log d;..



Theorem (Granville, Schinzel, F.): There
1s an algorithm which takes as wnput
two polynomsials f(x) and g(x) in Z|x],
each of degree < m and height < H
and having < r+ 1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the

value of gcdz(f(x),g(x)) and runs in
time O H( log n)



Corollary:  If f(x),g(x) € Z|x| with
f(x) or g(x) not divisible by a cyclo-
tomaic polynomzal, then gcdy(f(x),g(x))
has O, (1) terms.



Corollary:  If f(x),g(x) € Z|x| with
f(x) or g(x) not divisible by a cyclo-
tomaic polynomzal, then gcdy(f(x),g(x))
has O, (1) terms.

Note that if a and b are relatively prime
positive integers, then

gcd (a:ab — 1, (z® — 1)(z’ — 1))
_ (@ = 1)(=" - 1)

r — 1

Y,

which can have arbitrarily many terms.



Theorem (Granville, Schinzel, F.): There
1s an algorithm which takes as input
two polynomsials f(x) and g(x) in Z|x]|,
each of degree < m and height < H
and having < r+ 1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the

value of gcdy(f(x),g(x)) and runs in
time O H( log n)

k k
@)=Y bjzti — F@)=)_ bjm;
=1 1=1



Lemma (Bombieri and Zannier): Let
Fy, Fy € Q[xy, ..., x]

be coprime polynomaals. There exists
a number ci(Fy1, Fp) with the following
property. If w = (uy,...,u;) € ZF,
& + 0 1s algebraic and

F1(€u19 >0 7£uk) — FZ(‘SUJI, > o 9€uk) = 0,

then either & 1s a root of unity or there
erists a non-zero vector v € 7F having

length at most c1|and orthogonal to u .



k k
f(a;-) — Z a,jajdj e Fl(i‘)) — Z a ;I
j=1 j=1

k k
g(z)= Z bjmdj — Fy(T) = Z bix;
j=1 j=1

. There exists
a number c1(a,b, k) with the following
property. If W = {(di,...,dy) € ZF,
& + 0 1s algebraic and

Fl(gdlv >0 9£dk) — FZ(‘Sdlv > o 9€dk) = 0,

then either & 1s a root of unity or there
erists a non-zero vector v € 7F having
length at most ¢1 and orthogonal to u .



k k
f(aj) = Z a,jajdj — Fl(i)) — Z a ;T
j=1 j=1

k k
g(z)= Z bjmdj — Fy(T) = Z bix;
j=1 j=1

There exists
a number c1(a. a, b, k) with the following

property. If W (di,...,d) € 7ZF,
& #+ 0 1s algebraic and

f (f) =g(§) =0
then ” PSS S e - R T D S A ~'a;’7,' e

erists a non-zero vector v € 7F hamng
length at most ¢1 and orthogonal to u .



k k
f(a;-) — Z a,jajdj e Fl(i‘)) — Z a ;I
j=1 j=1

k k
g(z)= Z bjmdj — Fy(T) = Z bix;
j=1 j=1

. There exists
a number c1('a,b, k) with the following

property. If f(&) = g(&) = 0, then there

. —_— o
erists a non-zero vector v € 7F having

length at most ¢1 and orthogonal to u .

Uu = (d1,...,dg)

Note: It 1s important that ¢; 1s computable.



Idea: The lattice of vectors orthogonal
to v is (k—1)-dimensional so that there

exists a vector (e{,...,€e;_1) and a ma-
trix M in ZF—1 satisfying



Idea: The lattice of vectors orthogonal

to v is (k—1)-dimensional so that there
exists a vector (e{,...,€e;_1) and a ma-
trix M in ZF—1 satisfying
dy el
d e
:2 — M. 32
dy; eL—1

So
k—1
di = ) mijej,
j=1

with the m;; € Z bounded.





















