Theorem (Granville, Schinzel, F.): $\boldsymbol{A n}$ algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.

Theorem (Granville, Schinzel, F.): $A n$ algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irred/acible and that runs in time $O_{r, H}\left(\log \left((\log \log n)^{2}|\log \log \log n|\right)\right.$.

$$
f(x) \neq \pm x^{\operatorname{deg} f} f(1 / x)
$$

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.
- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

Theorem (Granville, Schinzel, F.): There is an algorithm that has the following property: given $f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}} \in$ $\mathbb{Z}[x]$ of degree $n>1$ and with $r+1$ terms, the algorithm determines if $f(x)$ has a cyclotomic factor in running time

$$
O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)
$$

There is a cyclotomic factor of $f(x)=$ $\sum_{j=0}^{r} a_{j} x^{d_{j}}$ if and only if \exists a partition

$$
\{0,1, \ldots, r\}=J_{1} \dot{\cup} J_{2} \dot{\cup} \cdots \dot{\cup} J_{s}
$$

such that if, for $1 \leq i \leq s$,

$$
\sum_{j \in J_{i}} a_{j} x^{d_{j}}=x^{b_{i}} g_{i}\left(x^{e_{i}}\right), \quad M_{i}=\cdots
$$

then there are $m_{i} \in M_{i}$ for which

$$
m_{0}=\prod_{p \mid m_{1} \cdots m_{s}} \max _{1 \leq i \leq s}\left\{p^{k}: p^{k} \| m_{i} e_{i}\right\}
$$

satisfies

$$
m_{0}=m_{i} \operatorname{gcd}\left(m_{0}, e_{i}\right), \quad i \in\{1,2, \ldots, s\}
$$

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

We'll come back to this.

- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}
$$

f has no reciprocal factors
(other than constants)

- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

$$
\begin{gathered}
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}} \\
F=F\left(x_{1}, x_{2}, \ldots, x_{r}\right) \\
=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0} \\
f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)
\end{gathered}
$$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1)

$$
\begin{array}{r}
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=\left(m_{i j}\right)_{r \times t}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right) \\
d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r
\end{array}
$$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
($m_{i j}$) will come from a finite set depending only on \boldsymbol{F}
$v_{j} \in \mathbb{Z}$ show exist for some $\left(m_{i j}\right)$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$

$$
\begin{gathered}
F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right) \\
y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t \\
F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)=f(x)
\end{gathered}
$$

Thought: A factorization in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ implies a factorization of $f(x)$ in $\mathbb{Z}[x]$.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$

$$
\begin{gathered}
F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right) \\
y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t \\
F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)=f(x)
\end{gathered}
$$

Counter-Thought: We want $m_{i j}$ and v_{j} in \mathbb{Z}, but not necessarily positive.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
$C_{C} J\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$
Do what you have to do to make this in $\mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{t}\right]$.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$

Recall: Factor and substitute $y_{j}=x^{v_{j}}$.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
(2) $y_{1}^{u_{1}} \ldots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \ldots y_{t}^{m_{r t}}\right)$ $=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)$

Recall: Factor and substitute $y_{j}=x^{v_{j}}$.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
(2) $y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \ldots y_{t}^{m_{r t}}\right)$

$$
=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
$$

(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

Conclusion: (1) and (2) imply (3)

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
(2) $y_{1}^{u_{1}} \ldots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \ldots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \ldots y_{t}^{m_{r t}}\right)$

$$
=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
$$

(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

Question: Are $s-1$ of the factors 1?

Theorem (A. Schinzel, 1969): Fix

$$
F=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

with a_{j} nonzero integers. There exists a finite computable set of matrices S with integer entries, depending only on F, with the following property:
Suppose the vector

$$
\vec{d}=\left\langle d_{1}, d_{2}, \ldots, d_{r}\right\rangle \in \mathbb{Z}^{r}
$$

with $d_{r}>\cdots>d_{1}>0$, is such that

$$
f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)
$$

has no non-constant reciprocal factor.

Then $\exists r \times t$ matrix $M=\left(m_{i j}\right) \in S$ of rank $t \leq r$ and a vector

$$
\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle \in \mathbb{Z}^{t}
$$

such that

$$
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right)
$$

holds and the factorization given by

$$
\begin{aligned}
& y_{1}^{u_{1}} \ldots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \ldots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \ldots y_{t}^{m_{r t}}\right) \\
& =F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
\end{aligned}
$$

in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ into irreducibles implies

$$
f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)
$$

as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

Theorem (A. Schinzel, 1969): Fix

$$
F=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

with a_{j} nonzero integers. There exists a finite computable set of matrices S with integer entries, depending only on F, with the following property:
Suppose the vector

$$
\vec{d}=\left\langle d_{1}, d_{2}, \ldots, d_{r}\right\rangle \in \mathbb{Z}^{r}
$$

with $d_{r}>\cdots>d_{1}>0$, is such that

$$
f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)
$$

has no non-constant reciprocal factor.

Then $\exists r \times t$ matrix $M=\left(m_{i j}\right) \in S$ of rank $t \leq r$ and a vector

$$
\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle \in \mathbb{Z}^{t}
$$

such that

$$
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right)
$$

holds and the factorization given by

$$
\begin{aligned}
& y_{1}^{u_{1}} \ldots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \ldots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \ldots y_{t}^{m_{r t}}\right) \\
& =F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
\end{aligned}
$$

in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ into irreducibles implies

$$
f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)
$$

as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

We've checked:
f does not have a cyclotomic factor.

We want to know:
Does f have a reciprocal factor?

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

Does f have a reciprocal factor?
Suppose $\boldsymbol{w}(x)$ is a reciprocal factor.
$w(\alpha)=0 \Longrightarrow \alpha \neq 0$ and $w(1 / \alpha)=0$ $\Longrightarrow f(\alpha)=0$ and $g(\alpha)=0$,
where $g(x)=x^{\operatorname{deg} f} f(1 / x) \neq f(x)$
We want to compute $\operatorname{gcd}(f, g)$.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

In general, if f and g are sparse polynomials around degree n in $\mathbb{Z}[x]$, how does one compute $\operatorname{gcd}(f, g)$?

Some items to keep in mind:
\rightarrow The Euclidean algorithm will run in time that is polynomial in $n, \operatorname{not} \log n$.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

In general, if f and g are sparse polynomials around degree n in $\mathbb{Z}[x]$, how does one compute $\operatorname{gcd}(f, g)$?

Some items to keep in mind:
\rightarrow Plaisted (1977) has shown that this problem is at least as hard as any problem in NP.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
\rightarrow Plaisted (1977) has shown that this problem is at least as hard as any problem in NP.

Plaisted's takes f and g to be divisors of $x^{N}-1$ where N is a product of small primes.
We are interested in the case that both f and g do not have a cyclotomic factor.

Problem: Find an algorithm which takes given sparse polynomials

$$
f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}}, \quad g(x)=\sum_{j=1}^{k} b_{j} x^{d_{j}}
$$

in $\mathbb{Z}[x]$ having no cyclotomic factors, with

$$
d_{1}=0<d_{2}<\cdots<d_{k}
$$

and computes $\operatorname{gcd}(f, g)$ in time that is polynomial in $\log d_{k}$.

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}[x]$, each of degree $\leq n$ and height $\leq \boldsymbol{H}$ and having $\leq r+1$ nonzero terms, with at least one of $f(x)$ and $g(x)$ free of any cyclotomic factors, and outputs the value of $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r, H}(\log n)$.

Corollary: If $f(x), g(x) \in \mathbb{Z}[x]$ with $f(x)$ or $g(x)$ not divisible by a cyclotomic polynomial, then $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ has $O_{r, H}(1)$ terms.

Corollary: If $f(x), g(x) \in \mathbb{Z}[x]$ with $f(x)$ or $g(x)$ not divisible by a cyclotomic polynomial, then $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ has $O_{r, H}(1)$ terms.

Note that if a and b are relatively prime positive integers, then

$$
\begin{gathered}
\operatorname{gcd}\left(x^{a b}-1,\left(x^{a}-1\right)\left(x^{b}-1\right)\right) \\
=\frac{\left(x^{a}-1\right)\left(x^{b}-1\right)}{x-1},
\end{gathered}
$$

which can have arbitrarily many terms.

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}[x]$, each of degree $\leq n$ and height $\leq \boldsymbol{H}$ and having $\leq r+1$ nonzero terms, with at least one of $f(x)$ and $g(x)$ free of any cyclotomic factors, and outputs the value of $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r, H}(\log n)$.

$$
f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \Longrightarrow F_{\underline{2}}(\vec{x}) \equiv \sum_{j=1}^{k} b_{j} x^{x} \dot{j}
$$

Lemma (Bombieri and Zannier): Let

$$
F_{1}, F_{2} \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]
$$

be coprime polynomials. There exists a number $c_{1}\left(F_{1}, F_{2}\right)$ with the following property. If $\vec{u}=\left\langle u_{1}, \ldots, u_{k}\right\rangle \in \mathbb{Z}^{k}$, $\xi \neq 0$ is algebraic and
$F_{1}\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=F_{2}\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=0$,
then either ξ is a root of unity or there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}.

$$
\begin{aligned}
& f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(\vec{x})=\sum_{j=1}^{k} a_{j} x_{j} \\
& g(x)=\sum_{j=1}^{k} b_{j} x^{d_{j}} \rightarrow F_{2}(\vec{x})=\sum_{j=1}^{k} b_{j} x_{j}
\end{aligned}
$$

There exists
a number $c_{1}(\vec{a}, \vec{b}, k)$ with the following property. If $\vec{u}=\left\langle d_{1}, \ldots, d_{k}\right\rangle \in \mathbb{Z}^{k}$, $\xi \neq 0$ is algebraic and
$\boldsymbol{F}_{1}\left(\xi^{d_{1}}, \ldots, \xi^{d_{k}}\right)=\boldsymbol{F}_{2}\left(\xi^{d_{1}}, \ldots, \xi^{d_{k}}\right)=0$,
then either ξ is a root of unity or there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}.

$$
\begin{aligned}
& f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(\vec{x})=\sum_{j=1}^{k} a_{j} x_{j} \\
& g(x)=\sum_{j=1}^{k} b_{j} x^{d_{j}} \rightarrow F_{2}(\vec{x})=\sum_{j=1}^{k} b_{j} x_{j}
\end{aligned}
$$

There exists
a number $c_{1}(\vec{a}, \vec{b}, k)$ with the following property. If $\vec{u}=\left\langle d_{1}, \ldots, d_{k}\right\rangle \in \mathbb{Z}^{k}$, $\xi \neq 0$ is algebraic and

$$
f(\xi)=g(\xi)=0
$$

then there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}.

$$
\begin{aligned}
& f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(\vec{x})=\sum_{j=1}^{k} a_{j} x_{j} \\
& g(x)=\sum_{j=1}^{k} b_{j} x^{d_{j}} \rightarrow F_{2}(\vec{x})=\sum_{j=1}^{k} b_{j} x_{j}
\end{aligned}
$$

There exists
a number $c_{1}(\vec{a}, \vec{b}, k)$ with the following property. If $f(\xi)=g(\xi)=0$, then there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}.

$$
\vec{u}=\left\langle d_{1}, \ldots, d_{k}\right\rangle
$$

Note: It is important that c_{1} is computable.

Idea: The lattice of vectors orthogonal to \vec{v} is $(k-1)$-dimensional so that there exists a vector $\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$ and a matrix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{k}
\end{array}\right)=\mathcal{M} \cdot\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{k-1}
\end{array}\right)
$$

Idea: The lattice of vectors orthogonal to \vec{v} is $(k-1)$-dimensional so that there exists a vector $\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$ and a matrix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{k}
\end{array}\right)=\mathcal{M} \cdot\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{k-1}
\end{array}\right)
$$

So

$$
d_{i}=\sum_{j=1}^{k-1} m_{i j} e_{j}
$$

with the $m_{i j} \in \mathbb{Z}$ bounded.

$$
\begin{gathered}
d_{i}=\sum_{j=1}^{k-1} m_{i j} e_{j} \\
x^{d_{i}}=\prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}}
\end{gathered}
$$

$$
\begin{aligned}
& d_{i}=\sum_{j=1}^{k-1} m_{i j} e_{j} x^{d_{i}}=\prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}} \\
& f(x)=\sum_{i=1}^{k} a_{i} x^{d_{i}}=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}} \\
& F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
& g(x)=\sum_{i=1}^{k} b_{i} x^{d_{i}}=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{k} a_{i} x^{d_{i}}=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}} \\
& F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
& g(x)=\sum_{i=1}^{k} b_{i} x^{d_{i}}=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}} \\
& F_{2}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
\end{aligned}
$$

$$
\begin{gathered}
F_{1}^{(2)}\left(x^{e_{1}}, \ldots, x^{e_{k-1}}\right)=f(x) \\
F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
g(x)=\sum_{i=1}^{k} b_{i} x^{d_{i}}=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}} \\
F_{2}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
\end{gathered}
$$

$$
\begin{gathered}
F_{1}^{(2)}\left(x^{e_{1}}, \ldots, x^{e_{k-1}}\right)=f(x) \\
F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
F_{2}^{(2)}\left(x^{e_{1}}, \ldots, x^{e_{k-1}}\right)=g(x) \\
F_{2}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
\end{gathered}
$$

$$
\begin{aligned}
& F_{1}^{(2)}\left(x^{e_{1}}, \ldots, x x^{k-1}\right)=f(x) \\
& F_{2}^{(2)}\left(x^{e_{1}}, \ldots, x \text { (k-1)}\right)=g(x) \\
& f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(\vec{x})=\sum_{j=1}^{k} a_{j} x_{j} \\
& g(x)=\sum_{j=1}^{k} b_{j} x^{d_{j}} \rightarrow F_{2}(\vec{x})=\sum_{j=1}^{k} b_{j} x_{j} \\
& \begin{array}{l}
F_{1}\left(x^{d_{1}}, \ldots, x^{d_{k}}=f(x)\right. \\
F_{2}\left(x^{d_{1}}, \ldots, x\right)=g(x)
\end{array}
\end{aligned}
$$

