
Theorem (Granville, Schinzel, F.): An
algorithm exists for determining if a
given nonreciprocal polynomial f(x) �
Z[x] is irreducible and that runs in time

Or,H
�
log n (log log n)2| log log log n|

⇥
.



Theorem (Granville, Schinzel, F.): An
algorithm exists for determining if a
given nonreciprocal polynomial f(x) �
Z[x] is irreducible and that runs in time

Or,H
�
log n (log log n)2| log log log n|

⇥
.

f(x) ⇥= ± xdeg ff(1/x)

f(x) is reciprocal means that

if f(�) = 0, then � ⇥= 0 and f(1/�) = 0



Theorem (Granville, Schinzel, F.): An
algorithm exists for determining if a
given nonreciprocal polynomial f(x) �
Z[x] is irreducible and that runs in time

Or,H
�
log n (log log n)2| log log log n|

⇥
.



Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.



Theorem (Granville, Schinzel, F.): There
is an algorithm that has the following
property: given f(x) =

⇤r
j=0 ajx

dj �
Z[x] of degree n > 1 and with r + 1
terms, the algorithm determines if f(x)
has a cyclotomic factor in running time

Or,H
�
log n (log log n)2| log log log n|

⇥
.

Furthermore, in the same running time,
if f(x) is divisible by a cyclotomic poly-
nomial, then the algorithm outputs an
m for which �m(x) divides f(x).

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .



We Show:

There is a cyclotomic factor of f(x) =⇤r
j=0 ajx

dj if and only if ⌅ a partition

{0, 1, . . . , r} = J1⇧̇J2⇧̇ · · · ⇧̇Js

such that if, for 1 ⇥ i ⇥ s,
⌅

j⇤Ji

ajx
dj = xbigi(x

ei), Mi = · · ·

then there are mi ⇤ Mi for which

m0 =
⇧

p|m1···ms

max
1⇥i⇥s

�
pk : pk miei

⇥

satisfies

m0 = mi gcd(m0, ei), i ⇤ {1, 2, . . . , s}.



Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

We’ll come back to this.



f has no reciprocal factor

f(x) =
r�

j=0

ajx
dj

f is reducible if and only if the non-
reciprocal part of f is reducible

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

f has no reciprocal factor

(other than constants)

f has no reciprocal factors

(other than constants)



• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

f has no reciprocal factor

f(x) =
r�

j=0

ajx
dj

f is reducible if and only if the non-
reciprocal part of f is reducible

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r�t

⇤

⇧
v1
...
vt

⌅

⌃
⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj

(mij) will come from a finite set
depending only on F

vj � Z show exist for some (mij)

(mij) will come from a finite set
depending only on F

vj � Z show exist for some (mij)

(mij) will come from a finite set
depending only on F

vj � Z show exist for some (mij)



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )
F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t )

yj = xvj, 1 ⇥ j ⇥ t

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ⇥ j ⇥ t

F
�
xd1, xd2, . . . , xdr

⇥
= f(x)

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ⇥ j ⇥ t

F
�
xd1, xd2, . . . , xdr

⇥
= f(x)

Thought: A factorization in Z[y1, . . . , yt]
implies a factorization of f(x) in Z[x].

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )
F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t )

yj = xvj, 1 ⇥ j ⇥ t

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ⇥ j ⇥ t

F
�
xd1, xd2, . . . , xdr

⇥
= f(x)

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ⇥ j ⇥ t

F
�
xd1, xd2, . . . , xdr

⇥
= f(x)

Counter-Thought: We want mij and vj
in Z, but not necessarily positive.

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)(3) f(x) =

s�

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r⇥t

⇤

⇧
v1
...
vt

⌅

⌃

(1) di = mi1v1+ ···+mitvt, 1 ⇤ i ⇤ r

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

Question: Does (1) hold?

Question: In regards to (3), so what?

Question: Is (3) a partial factorization?

Question: Are s � 1 of the factors 1?

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

Question: Does (1) hold?

Question: In regards to (3), so what?

Question: Is (3) a partial factorization?

Question: Are s � 1 of the factors 1?

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

Question: Does (1) hold?

Question: In regards to (3), so what?

Question: Is (3) a partial factorization?

Question: Are s � 1 of the factors 1?

(3) f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

Question: Does (1) hold?

Question: In regards to (3), so what?

Question: Is (3) a partial factorization?

Question: Are s � 1 of the factors 1?

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
�
xd1, xd2, . . . , xdr

⇥

f(x) =
r⇤

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r⇤

j=1

ajxj



Theorem (A. Schinzel, 1969): Fix

F = arxr + · · · + a1x1 + a0,

with aj nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F , with the following property:

Suppose the vector
�⇤
d = ⇧d1, d2, . . . , dr⌃ ⌅ Zr,

with dr > · · · > d1 > 0, is such that

f(x) = F (xd1, xd2, . . . , xdr)

has no non-constant reciprocal factor.



Then ⌥ r⇤t matrix M = (mij) ⌃ S of
rank t ⌅ r and a vector

�⇧v = �v1, v2, . . . , vt ⌃ Zt

such that �

⇤
d1
...

dr

⇥

⌅ = M

�

⇤
v1
...
vt

⇥

⌅

holds and the factorization given by

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

in Z[y1, . . . , yt] into irreducibles implies



f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

as a product of polynomials in Z[x] each
of which is either irreducible over Q or
a constant.



Theorem (A. Schinzel, 1969): Fix

F = arxr + · · · + a1x1 + a0,

with aj nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F , with the following property:

Suppose the vector
�⇤
d = ⇧d1, d2, . . . , dr⌃ ⌅ Zr,

with dr > · · · > d1 > 0, is such that

f(x) = F (xd1, xd2, . . . , xdr)

has no non-constant reciprocal factor.



Then ⌥ r⇤t matrix M = (mij) ⌃ S of
rank t ⌅ r and a vector

�⇧v = �v1, v2, . . . , vt ⌃ Zt

such that �

⇤
d1
...

dr

⇥

⌅ = M

�

⇤
v1
...
vt

⇥

⌅

holds and the factorization given by

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

in Z[y1, . . . , yt] into irreducibles implies



f(x) =
s�

i=1

xwiFi(x
v1, . . . , xvt)

as a product of polynomials in Z[x] each
of which is either irreducible over Q or
a constant.



Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).



Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

Suppose w(x) is a reciprocal factor.

w(�) = 0 =� � ⇥= 0 and w(1/�) = 0

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

Suppose w(x) is a reciprocal factor.

w(�) = 0 =� � ⇥= 0 and w(1/�) = 0

=� f(�) = 0 and g(�) = 0,

where g(x) = xdeg ff(1/x)

=� f(�) = 0 and g(�) = 0,

where g(x) = xdeg ff(1/x)

=� f(�) = 0 and g(�) = 0,

where g(x) = xdeg ff(1/x)

⇥= f(x)

=� f(�) = 0 and g(�) = 0,

where g(x) = xdeg ff(1/x)

⇥= f(x)

We want to compute gcd(f, g).



In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g)?

Then one needs to deal with computing
gcd(f, g), which we address later.

Next, we illustrate how to obtain g.



In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g)?

Then one needs to deal with computing
gcd(f, g), which we address later.

Next, we illustrate how to obtain g.



This all works for “some” (mij) ⇥ S.

The set of matrices depends on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

We are interested in the case that both
f and g do not have a cyclotomic factor.

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

� The Euclidean algorithm will run in
time that is polynomial in n, not log n.

� Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

Plaisted’s takes f and g to be divisors of
xN � 1 where N is a product of small
primes.

We are interested in the case that f and
g = f̃ do not have cyclotomic factors.

So at least all is not hopeless.



Problem: Find an algorithm which takes
given sparse polynomials

f(x) =
k�

j=1

ajx
dj, g(x) =

k�

j=1

bjx
dj,

in Z[x] having no cyclotomic factors,
with

d1 = 0 < d2 < · · · < dk,

and computes gcd(f, g) in time that is
polynomial in log dk.



Theorem(Granville, Schinzel, F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Z[x],
each of degree � n and height � H
and having � r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gcdZ(f(x), g(x)) and runs in
time Or,H

�
log n

⇥
.



Corollary: If f(x), g(x) � Z[x] with
f(x) or g(x) not divisible by a cyclo-
tomic polynomial, then gcdZ(f(x), g(x))
has Or,H(1) terms.



Note that if a and b are relatively prime
positive integers, then

gcd
�
xab � 1, (xa � 1)(xb � 1)

⇥

=
(xa � 1)(xb � 1)

x � 1
,

which can have arbitrarily many terms.

Corollary: If f(x), g(x) � Z[x] with
f(x) or g(x) not divisible by a cyclo-
tomic polynomial, then gcdZ(f(x), g(x))
has Or,H(1) terms.



f(x)=
k�

j=1

ajx
dj � F1(x)=

k�

j=1

ajxj

g(x)=
k�

j=1

bjx
dj � F2(x)=

k�

j=1

bjxj

f(x)=
k�

j=1

ajx
dj � F1(x)=

k�

j=1

ajxj

g(x)=
k�

j=1

bjx
dj � F2(x)=

k�

j=1

bjxj

Theorem(Granville, Schinzel, F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Z[x],
each of degree � n and height � H
and having � r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gcdZ(f(x), g(x)) and runs in
time Or,H

�
log n

⇥
.



Lemma (Bombieri and Zannier): Let

F1, F2 ⇤ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If �⇥u = ⇧u1, . . . , uk⌃ ⇤ Zk,
� ⌅= 0 is algebraic and

F1(�
u1, . . . , �uk) = F2(�

u1, . . . , �uk) = 0,

then either � is a root of unity or there
exists a non-zero vector �⇥v ⇤ Zk having
length at most c1 and orthogonal to �⇥u .



Lemma (Bombieri and Zannier): Let

F1, F2 ⇤ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If �⇥u = ⇧u1, . . . , uk⌃ ⇤ Zk,
� ⌅= 0 is algebraic and

F1(�
u1, . . . , �uk) = F2(�

u1, . . . , �uk) = 0,

then either � is a root of unity or there
exists a non-zero vector �⇥v ⇤ Zk having
length at most c1 and orthogonal to �⇥u .

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

c1(
�⇥a,

�⇥
b, k)



Lemma (Bombieri and Zannier): Let

F1, F2 ⇤ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If �⇥u = ⇧u1, . . . , uk⌃ ⇤ Zk,
� ⌅= 0 is algebraic and

F1(�
u1, . . . , �uk) = F2(�

u1, . . . , �uk) = 0,

then either � is a root of unity or there
exists a non-zero vector �⇥v ⇤ Zk having
length at most c1 and orthogonal to �⇥u .

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

⇥d1, . . . , dk⇤
d1 dk

f(�) = g(�) = 0

c1(
�⇥a,

�⇥
b, k)



Lemma (Bombieri and Zannier): Let

F1, F2 ⇤ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If f(�) = g(�) = 0, then there
exists a non-zero vector �⇥v ⇤ Zk having
length at most c1 and orthogonal to �⇥u .

f(x)=
kX

j=1

ajx
dj � F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj � F2(x)=

kX

j=1

bjxj

f(x)=
kX

j=1

ajx
dj ⇥ F1(x)=

kX

j=1

ajxj

g(x)=
kX

j=1

bjx
dj ⇥ F2(x)=

kX

j=1

bjxj

�⇥u = ⇤d1, . . . , dk⌅
d1 dk

f(�) = g(�) = 0 c1(f, g)

c1(
�⇥a,

�⇥
b, k)

Note: It is important that c1 is computable.



Idea: The lattice of vectors orthogonal
to �⇤v is (k�1)-dimensional so that there
exists a vector ⇧e1, . . . , ek�1⌃ and a ma-
trix M in Zk�1 satisfying

�

⇧⇧⇤

d1
d2
...

dk

⇥

⌃⌃⌅ = M ·

�

⇧⇧⇤

e1
e2
...

ek�1

⇥

⌃⌃⌅ .

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij



Idea: The lattice of vectors orthogonal
to �⇤v is (k�1)-dimensional so that there
exists a vector ⇧e1, . . . , ek�1⌃ and a ma-
trix M in Zk�1 satisfying

�

⇧⇧⇤

d1
d2
...

dk

⇥

⌃⌃⌅ = M ·

�

⇧⇧⇤

e1
e2
...

ek�1

⇥

⌃⌃⌅ .

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij



So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij



F
(2)
1 (y1, . . . , yk�1) =

k�

i=1

ai

k�1⇥

j=1

y
mij
j

=⇥

F
(k)
1 (xsome exponent) = f(x)

F
(k)
2 (xsame exponent) = g(x)

Induction

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

i=1

aix
di =

k⇤

i=1

ai

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdj =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

j=1

ajx
dj =

k⇤

j=1

aj

k�1⌅

j=1

�
xej

⇥mij

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j



F
(2)
1 (y1, . . . , yk�1) =

k�

i=1

ai

k�1⇥

j=1

y
mij
j

=⇥

F
(k)
1 (xsome exponent) = f(x)

F
(k)
2 (xsame exponent) = g(x)

Induction

So

di =
k�1⇤

j=1

mijej,

with the mij ⇥ Z bounded.

xdi =
k�1⌅

j=1

�
xej

⇥mij

f(x) =
k⇤

i=1

aix
di =

k⇤

i=1

ai

k�1⌅

j=1

�
xej

⇥mij

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j



F
(2)
1 (y1, . . . , yk�1) =

k�

i=1

ai

k�1⇥

j=1

y
mij
j

=⇥

F
(k)
1 (xsome exponent) = f(x)

F
(k)
2 (xsame exponent) = g(x)

Induction

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j



F
(2)
1 (y1, . . . , yk�1) =

k�

i=1

ai

k�1⇥

j=1

y
mij
j

=⇥

F
(k)
1 (xsome exponent) = f(x)

F
(k)
2 (xsame exponent) = g(x)

Induction

Note: It is important that c1 is computable.

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j



Note: It is important that c1 is computable.

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

f(x)=
k�

j=1

ajx
dj � F1(x)=

k�

j=1

ajxj

g(x)=
k�

j=1

bjx
dj � F2(x)=

k�

j=1

bjxj

f(x)=
k�

j=1

ajx
dj � F1(x)=

k�

j=1

ajxj

g(x)=
k�

j=1

bjx
dj � F2(x)=

k�

j=1

bjxj
Note: It is important that c1 is computable.

F1
�
xd1, . . . , xdk

�
= f(x)

F2
�
xd1, . . . , xdk

�
= g(x)

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j

Note: It is important that c1 is computable.

F1
�
xd1, . . . , xdk

�
= f(x)

F2
�
xd1, . . . , xdk

�
= g(x)

F
(2)
1

�
xe1, . . . , xek�1

�
= f(x)

F
(2)
2

�
xe1, . . . , xek�1

�
= g(x)

g(x) =
kX

i=1

bix
di =

kX

i=1

bi

k�1Y

j=1

�
xej

�mij

F
(2)
2 (y1, . . . , yk�1) =

kX

i=1

bi

k�1Y

j=1

y
mij
j


