Office Hours This Week: M 3:00-4:00 p.m. W 2:15-3:15 p.m. R 12:00-1:00 p.m.

Lemma 9.1.1. Let $f(x)$ be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of $f(x)$ is reducible, then there exist polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ satisfying $u(x)$ and $v(x)$ are both non-reciprocal and $f(x)=u(x) v(x)$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.
(vi) $w(1)=f(1)$.

Examples of questions we would like to answer:

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
2. Let $f_{0}(x)=1$. For $k \geq 1$, define $f_{k}(x)$ to be the reducible polynomial of the form $f_{k-1}(x)+x^{n}$ with n as small as possible and $n>\operatorname{deg} f_{k-1}$.

$$
F(x)=x^{n}+x^{35}+x^{34}+x^{33}+x^{32}+x^{16}+x^{15}+x^{3}+1
$$

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.

What if such a $w(x)$ exists?
(Maple Time)

Irreducibility and GCD Algorithms for Sparse Polynomials joint work with Andrew Granville
 Andrzej Schinzel

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it?

If the number of binary operations for a computation is bounded by a polynomial in the length of the input, then we say it can be done in polynomial time.

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it? What is the length of the input? The number N contains 30402457 bits. Determining if N is prime in 30402457^{2} steps would be good.

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it? What is the length of the input?
To clarify, typing

$$
2 \wedge 30402457-1
$$

takes 12 keystrokes.

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq H$ and $\leq r$ Inoro terms.

maximum coefficient in absolute value

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq H$ and $\leq r$ non-zero terms.

Traditionally, $f(x)$ has $n+1$ coefficients and each coefficient can have "length" on the order of $\log H$ so that the total length of the input is of order $n \log H$. Actually, I should say $n(\log H+\log n)$.

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq H$ and $\leq r$ non-zero terms.

Lenstra, Lenstra and Lovasz showed that one can factor f in time that is polynomial in n and $\log \boldsymbol{H}$.

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq H$ and $\leq r$ non-zero terms.

We might expect an algorithm exists that runs in time that is polynomial in $\log n$, r and $\log H$

Example:
$+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}$ $+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}$ $+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}$ $+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}$ $+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}$ $+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}$ $+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}$ $+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}$ $+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}$ $+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}$

$$
\begin{aligned}
& +x^{16}+x^{15}+x^{14}+x^{13}+x^{11} \\
& +x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5} \\
& \left.+x^{4}+x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

But this is a talk about irreducibility testing of polynomials

$$
f(x) \in \mathbb{Z}[x]
$$

Here, it is more reasonable to expect an algorithm to run in time that is polynomial in $\log n, r$ and $\log H$.

But we won't do that.

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.
$f(x)$ is reciprocal means that
if $f(\alpha)=0$, then $\alpha \neq 0$ and $f(1 / \alpha)=0$

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.
$f(x)$ is reciprocal means that $f(x)= \pm x^{\operatorname{deg} f} f(1 / x)$

Theorem (Granville, Schinzel, F.): $A n$ algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irred/acible and that runs in time $O_{r, H}\left(\log \left((\log \log n)^{2}|\log \log \log n|\right)\right.$.

$$
f(x) \neq \pm x^{\operatorname{deg} f} f(1 / x)
$$

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.

Remark: If the polynomial is reducible, then it is possible to determine a nontrivial factor in the same time but ...

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

Comment: It is not even obvious that such output can be given in time that is less than polynomial in $\operatorname{deg} f$.

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

The algorithm does these in the order listed.

Corollary: If $f(x) \in \mathbb{Z}[x]$ is nonreciprocal and reducible, then $f(x)$ has a nontrivial factor in $\mathbb{Z}[x]$ which contains \leq $c(r, H)$ terms.

Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in$ $\mathbb{Z}[x]$ is irreducible and that runs in time $O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)$.

Open Vague Problem: Is there a sparse nonreciprocal polynomial that behaves like

$$
1+x+x^{2}+\cdots+x^{n-1} ?
$$

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

Theorem (Granville, Schinzel, F.): There is an algorithm that has the following property: given $f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}} \in$ $\mathbb{Z}[x]$ of degree $n>1$ and with $r+1$ terms, the algorithm determines if $f(x)$ has a cyclotomic factor in running time

$$
O_{r, H}\left(\log n(\log \log n)^{2}|\log \log \log n|\right)
$$

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

Rough Thought: Find an approach for determing if $f(x)$ has a cyclotomic factor that only makes use of basic arithmetic operations on the exponents of $f(x)$.

And that approach is

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

Rough Thought: Find an approach for determing if $f(x)$ has a cyclotomic factor that only makes use of basic arithmetic operations on the exponents of $f(x)$.

And that approach is (... drum roll ...)

There is a cyclotomic factor of $f(x)=$ $\sum_{j=0}^{r} a_{j} x^{d_{j}}$ if and only if \exists a partition

$$
\{0,1, \ldots, r\}=J_{1} \dot{\cup} J_{2} \dot{\cup} \cdots \dot{\cup} J_{s}
$$

such that if, for $1 \leq i \leq s$,

$$
\sum_{j \in J_{i}} a_{j} x^{d_{j}}=x^{b_{i}} g_{i}\left(x^{e_{i}}\right), \quad M_{i}=\cdots
$$

then there are $m_{i} \in M_{i}$ for which

$$
m_{0}=\prod_{p \mid m_{1} \cdots m_{s}} \max _{1 \leq i \leq s}\left\{p^{k}: p^{k} \| m_{i} e_{i}\right\}
$$

satisfies

$$
m_{0}=m_{i} \operatorname{gcd}\left(m_{0}, e_{i}\right), \quad i \in\{1,2, \ldots, s\}
$$

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

We'll come back to this.

- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}
$$

f has no reciprocal factors
(other than constants)

- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

$$
\begin{gathered}
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}} \\
F=F\left(x_{1}, x_{2}, \ldots, x_{r}\right) \\
=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0} \\
f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)
\end{gathered}
$$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1)

$$
\begin{array}{r}
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=\left(m_{i j}\right)_{r \times t}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right) \\
d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r
\end{array}
$$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$
($m_{i j}$) will come from a finite set depending only on \boldsymbol{F}
$v_{j} \in \mathbb{Z}$ show exist for some $\left(m_{i j}\right)$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$

$$
\begin{gathered}
F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right) \\
y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t \\
F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)=f(x)
\end{gathered}
$$

Thought: A factorization in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ implies a factorization of $f(x)$ in $\mathbb{Z}[x]$.

