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Lemma 9.1.1. Let f(x) be an arbitrary polynomial in Z[x].
If the non-reciprocal part of f(x) is reducible, then there
exist polynomials u(x) and v(x) in Z[x] satisfying u(x)
and v(x) are both non-reciprocal and f(x) = u(x)v(x).

Lemma 9.1.2. Let f(x) 2 Z[x] with f(0) 6= 0, and suppose
f(x) = u(x)v(x) where each of u(x) and v(x) is non-
reciprocal. Then the polynomial w(x) = u(x)ṽ(x) has
the following properties:

(i) w(x) 6= ±f(x) and w(x) 6= ±f̃(x).

(ii) w(x) ew(x) = f(x)f̃(x).

(iii) w(1)2 = f(1)2.

(iv) kwk = kfk.

Lemma 9.1.3. Suppose f(x) is a 0, 1-polynomial with
f(0) 6= 0 and f(x) = u(x)v(x) where each of u(x) and
v(x) is non-reciprocal and each of u(x) and v(x) has a
positive leading coe�cient. Then the polynomial w(x) =
u(x)ṽ(x) also has the following properties:

(v) w(x) is a 0, 1-polynomial with the same number of
non-zero terms as f(x).

(vi) w(1) = f(1).
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Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?
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§ Introduction

Suppose we want to check the primality
of

N = 230402457 � 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.
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The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
it can be done in polynomial time.

A computation can be done in polyno-
mial time if the number of binary op-
erations needed for the computation is
bounded by a polynomial in the length
of the input.
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The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
it can be done in polynomial time.

A computation can be done in polyno-
mial time if the number of binary op-
erations needed for the computation is
bounded by a polynomial in the length
of the input.

The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
it can be done in polynomial time.

Determining if N is prime in 304024572

steps would be good.
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But this is a talk about polynomials

f(x) ⇥ Z[x].

Suppose f has � r non-zero terms, height
� H and degree n.

Lenstra, Lenstra and Lovasz
showed that one can factor f
in time that is polynomial in
n and log H.

But we might expect that an algorithm
exists that runs in time that is polyno-
mial in log n, r and log H except that
the factors might well take time that is
polynomial in n and log H to output.
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Suppose f has degree n, height � H and
� r non-zero terms.

Lenstra, Lenstra and Lovasz
showed that one can factor f
in time that is polynomial in
n and log H.

But we might expect that an algorithm
exists that runs in time that is polyno-
mial in log n, r and log H except that
the factors might well take time that is
polynomial in n and log H to output.

Traditionally, f(x) has n +1 coe�cients
and each coe�cient can have “length”
on the order of log H so that the total
length of the input is of order n log H.
Actually, I should say n

�
log H + log n

⇥
.
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f(x) ⇥ Z[x].

Suppose f has degree n, height � H and
� r non-zero terms.

Lenstra, Lenstra and
Lovasz showed that
one can factor f in
time that is polyno-
mial in n and log H.

We might expect an algorithm exists that
runs in time that is polynomial in log n,
r and log H except that the factors might
well take time that is polynomial in n
and log H to output.



Example: Factor

x101 + x77 � x76 � x13 + x12 � 1.

The answer is

(x � 1)
�
x100 + x99 + x98 + x97

+ x96 + x95 + x94 + x93 + x92

+ x91 + x90 + x89 + x88 + x87

+ x86 + x85 + x84 + x83 + x82

+ x81 + x80 + x79 + x78 + x77

+ 2x76 + x75 + x74 + x73 + x72

+ x71 + x70 + x69 + x68 + x67

+ x66 + x65 + x64 + x63 + x62

+ x61 + x60 + x59 + x58 + x57

+ x56 + x55 + x54 + x53 + x52



(x � 1)
�
x100 + x99 + x98 + x97

+ x66 + x65 + x64 + x63 + x62

+ x61 + x60 + x59 + x58 + x57

+ x56 + x55 + x54 + x53 + x52

+ x51 + x50 + x49 + x48 + x47

+ x46 + x45 + x44 + x43 + x42

+ x41 + x40 + x39 + x38 + x37

+ x36 + x35 + x34 + x33 + x32

+ x31 + x30 + x29 + x28 + x27

+ x26 + x25 + x24 + x23 + x22

+ x21 + x20 + x19 + x18 + x17



(x � 1)
�
x100 + x99 + x98 + x97

+ x16 + x15 + x14 + x13 + x11

+ x10 + x9 + x8 + x7 + x6 + x5

+ x4 + x3 + x2 + x + 1
⇥



But this is a talk about irreducibility
testing of polynomials

f(x) � Z[x].

Here, it is more reasonable to expect an
algorithm to run in time that is polyno-
mial in log n, r and log H.

But we won’t do that.
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Theorem (Granville, Schinzel, F.): An
algorithm exists for determining if a
given nonreciprocal polynomial f(x) �
Z[x] is irreducible and that runs in time

Or,H
�
log n (log log n)2| log log log n|

⇥
.

f(x) ⇥= ± xdeg ff(1/x)

f(x) is reciprocal means that

if f(�) = 0, then � ⇥= 0 and f(1/�) = 0
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Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...
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Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

Remark: If the polynomial is reducible,
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trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

Comment: It is not even obvious that
such output can be given in time that is
less than polynomial in deg f .

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.
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Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

The algorithm does these in the order
listed.



Corollary: If f(x) ⇥ Z[x] is nonrecipro-
cal and reducible, then f(x) has a non-
trivial factor in Z[x] which contains �
c(r, H) terms.



Theorem (Granville, Schinzel, F.): An
algorithm exists for determining if a
given nonreciprocal polynomial f(x) �
Z[x] is irreducible and that runs in time

Or,H
�
log n (log log n)2| log log log n|

⇥
.

Open Vague Problem: Is there a sparse
nonreciprocal polynomial that behaves
like

1 + x + x2 + · · · + xn�1 ?



Theorem (Granville, Schinzel, F.): There
is an algorithm that has the following
property: given f(x) =

⇤r
j=0 ajx

dj �
Z[x] of degree n > 1 and with r + 1
terms, the algorithm determines if f(x)
has a cyclotomic factor in running time

Or,H
�
log n (log log n)2| log log log n|

⇥
.

Furthermore, in the same running time,
if f(x) is divisible by a cyclotomic poly-
nomial, then the algorithm outputs an
m for which �m(x) divides f(x).

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .
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Rough Thought: Find an approach for
determing if f(x) has a cyclotomic factor
that only makes use of basic arithmetic
operations on the exponents of f(x).
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We Show:

There is a cyclotomic factor of f(x) =⇤r
j=0 ajx

dj if and only if ⌅ a partition

{0, 1, . . . , r} = J1⇧̇J2⇧̇ · · · ⇧̇Js

such that if, for 1 ⇥ i ⇥ s,
⌅

j⇤Ji

ajx
dj = xbigi(x

ei), Mi = · · ·

then there are mi ⇤ Mi for which

m0 =
⇧

p|m1···ms

max
1⇥i⇥s

�
pk : pk miei

⇥

satisfies

m0 = mi gcd(m0, ei), i ⇤ {1, 2, . . . , s}.



Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ⇥ Z+ with �m(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

We’ll come back to this.



f has no reciprocal factor

f(x) =
r�
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f is reducible if and only if the non-
reciprocal part of f is reducible

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

f has no reciprocal factor

(other than constants)

f has no reciprocal factors
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⇤

⇧
d1
...

dr

⌅

⌃ =
�
mij

⇥
r�t
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vt

⌅

⌃
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...
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⇥
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F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ⇥ j ⇥ t

F
�
xd1, xd2, . . . , xdr

⇥
= f(x)

Thought: A factorization in Z[y1, . . . , yt]
implies a factorization of f(x) in Z[x].
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ajx
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