(HW grade) $\cdot 0.5+($ Test grade $) \cdot 0.2$
 0.7

0,1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16} \\
f_{4}(x)=1+x^{3}+x^{15}+x^{16}+x^{32} \\
f_{5}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33} \\
f_{6}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34} \\
f_{7}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
\end{gathered}
$$

Problem: Prove the diequence is infinite.

Definitions and Notations: Let $f(x) \in \mathbb{C}[x]$ with $f(x) \not \equiv 0$. Define $\tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)$. The polynomial \tilde{f} is called the reciprocal of $f(x)$. The constant term of \tilde{f} is always non-zero. If the constant term of f is non-zero, then $\operatorname{deg} \tilde{f}=\operatorname{deg} f$ and the reciprocal of \tilde{f} is f. If $\alpha \neq 0$ is a root of f, then $1 / \alpha$ is a root of \tilde{f}. If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{C}[x]$, then $\tilde{f}=\tilde{g} \tilde{h}$. If $f= \pm \tilde{f}$, then f is called reciprocal. If f is not reciprocal, we say that f is non-reciprocal. If f is reciprocal and α is a root of f, then $1 / \alpha$ is a root of f. The product of reciprocal polynomials is reciprocal so that a non-reciprocal polynomial must have a non-reciprocal irreducible factor. For $f(x) \in \mathbb{Z}[x]$, we refer to the non-reciprocal part of $f(x)$ as the polynomial $f(x)$ removed of its irreducible reciprocal factors having a positive leading coefficient. For example, the non-reciprocal part of $3(-x+1) x\left(x^{2}+2\right)$ is $-x\left(x^{2}+2\right)$ (the irreducible reciprocal factors 3 and $x-1$ have been removed from the polynomial $\left.3(-x+1) x\left(x^{2}+2\right)\right)$.

Lemma 9.1.1. Let $f(x)$ be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of $f(x)$ is reducible, then there exist polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ satisfying $u(x)$ and $v(x)$ are both non-reciprocal and $f(x)=u(x) v(x)$.

Lemma 9.1.2. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$, and suppose $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is nonreciprocal. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
$(i v)\|w\|=\|f\|$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.
(vi) $w(1)=f(1)$.

$$
\begin{gathered}
F(x)=u(x) v(x), \quad w(x)=u(x) \tilde{v}(x) \\
u(x) \text { and } v(x) \text { are non-reciprocal }
\end{gathered}
$$

(v) if F is a 0 , 1-polynomial, then w is also and with the same number of non-zero terms as \boldsymbol{F}

$$
\begin{array}{r}
\boldsymbol{F}(x)=\sum_{j=1}^{r} a_{j} x^{d_{j}}, \quad w(x)=\sum_{j=1}^{s} b_{j} x^{e_{j}} \\
\left(\sum_{j=1}^{s} b_{j}\right)^{2} \leq\left(\sum_{j=1}^{s} b_{j}^{2}\right)^{2}=\left(\sum_{j=1}^{s} a_{j}^{2}\right)^{2} \\
=\left(\sum_{j=1}^{s} a_{j}\right)^{2}=\left(\sum_{j=1}^{s} b_{j}\right)^{2}
\end{array}
$$

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.
(vi) $w(1)=f(1)$.

Examples of questions we would like to answer:

1. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
2. Let $f_{0}(x)=1$. For $k \geq 1$, define $f_{k}(x)$ to be the reducible polynomial of the form $f_{k-1}(x)+x^{n}$ with n as small as possible and $n>\operatorname{deg} f_{k-1}$.

$$
F(x)=x^{n}+x^{35}+x^{34}+x^{33}+x^{32}+x^{16}+x^{15}+x^{3}+1
$$

2. Let $f_{0}(x)=1$. For $k \geq 1$, define $f_{k}(x)$ to be the reducible polynomial of the form $f_{k-1}(x)+x^{n}$ with n as small as possible and $n>\operatorname{deg} f_{k-1}$.

1

$$
\begin{aligned}
& 1+x^{3} \quad \text { Why is } x^{n}+f_{7}(x) \text { irr } \\
& 1+x^{3}+x^{15} \quad \text { for all } n \geq 36 \\
& 1+x^{3}+x^{15}+x^{16} \\
& 1+x^{3}+x^{15}+x^{16}+x^{32} \\
& 1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33} \\
& 1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34} \\
& 1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
\end{aligned}
$$

Is the sequence $\left\{f_{k}(x)\right\}$ an infinite sequence?

$$
\text { Why is } x^{n}+f_{7}(x) \text { irreducible for all } n \geq 36 ?
$$

Two Steps:

1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is only one).

Step 1: Handle Reciprocal Factors

Let

$$
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35} .
$$

If f is an irreducible reciprocal factor of

$$
F(x)=x^{n}+g(x),
$$

then it divides

$$
\widetilde{\boldsymbol{F}}(x)=\tilde{g}(x) x^{n-35}+1 .
$$

So f divides

$$
\tilde{g}(x) F(x)-x^{35} \widetilde{F}(x)=g(x) \tilde{g}(x)-x^{35}
$$

f divides $g(x) \tilde{g}(x)-x^{35}$

$$
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
$$

$$
f \text { divides } g(x) \tilde{g}(x)-x^{35}
$$

Therefore, f is either

$$
x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

or

$$
\begin{gathered}
x^{64}+x^{61}-x^{60}+x^{54}-\cdots-x^{43}+2 x^{42} \\
+x^{41}-\cdots+x^{10}-x^{4}+x^{3}+1
\end{gathered}
$$

Recall f divides $F(x)=x^{n}+g(x)$.

If

$$
f=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

then f also divides $x^{7}-1$.

$$
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
$$

$$
f \text { divides } g(x) \tilde{g}(x)-x^{35}
$$

$$
\text { Recall } f \text { divides } F(x)=x^{n}+g(x)
$$

If

$$
f=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

then f also divides $x^{7}-1$.
If $n \geq 7$, then f must divide $x^{n-7}+g(x)$.
If $n \geq 14$, then f must divide $x^{n-14}+g(x)$.

If $n \equiv r(\bmod 7)$, then f must divide $x^{r}+g(x)$.
Test if $f=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ divides $x^{r}+g(x)$ for $r \in\{0,1,2,3,4,6\}$. It doesn't.

$$
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
$$

$$
f \text { divides } g(x) \tilde{g}(x)-x^{35}
$$

$$
\text { Recall } f \text { divides } F(x)=x^{n}+g(x)
$$

If

$$
f=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

then f also divides $x^{7}-1$.
Conclusion: The polynomial $F(x)=x^{n}+g(x)$ is not divisible by $f=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ for any n.

If f is an irreducible reciprocal factor of F, then

$$
\begin{aligned}
f(x)= & x^{64}+x^{61}-x^{60}+x^{54}-\cdots-x^{43}+2 x^{42} \\
& +x^{41}-\cdots+x^{10}-x^{4}+x^{3}+1
\end{aligned}
$$

$$
\begin{aligned}
g(x)= & 1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35} \\
f(x)= & x^{64}+x^{61}-x^{60}+x^{54}-\cdots-x^{43}+2 x^{42} \\
& +x^{41}-\cdots+x^{10}-x^{4}+x^{3}+1
\end{aligned}
$$

$$
\text { Recall } f \text { divides } F(x)=x^{n}+g(x)
$$

Compute the roots of f. In particular, f has a root $\alpha \approx 0.58124854-0.96349774 \mathrm{i}$
with

$$
\begin{gathered}
1.125<|\alpha|<1.126 \\
|g(\alpha)|<g(1.126)<231<1.125^{47}<|\alpha|^{47} \\
|F(\alpha)| \geq|\alpha|^{n}-|g(\alpha)|>0 \text { for } n \geq 47 \\
f \text { does not divide } F \text { for any } n \geq 0
\end{gathered}
$$

$$
\text { Why is } x^{n}+f_{7}(x) \text { irreducible for all } n \geq 36 ?
$$

Two Steps:

1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is only one).

Step 2: Handle Non-Reciprocal Factors

$$
\begin{gathered}
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35} \\
F(x)=x^{n}+g(x)
\end{gathered}
$$

Lemma 2. Suppose the non-reciprocal part of $F(x) \in \mathbb{Z}[x]$ is reducible, and let $u(x)$ and $v(x)$ be as above. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $\boldsymbol{w} \neq \pm \boldsymbol{F}$ and $\boldsymbol{w} \neq \pm \widetilde{\boldsymbol{F}}$.
(ii) $\boldsymbol{w} \widetilde{\boldsymbol{w}}=\boldsymbol{F} \widetilde{\boldsymbol{F}}$.
(iii) $w(1)^{2}=F(1)^{2}$.
(iv) $\|w\|=\|F\|$.
(v) If F is a 0,1-polynomial, then w is also and with the same number of non-zero terms as F.

Step 2: Handle Non-Reciprocal Factors

$$
\begin{gathered}
g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35} \\
F(x)=x^{n}+g(x)
\end{gathered}
$$

If $n \geq 83$, then

$$
\boldsymbol{F} \widetilde{\boldsymbol{F}}=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots
$$

where all subsequent terms have degree ≥ 48.

$$
\begin{gathered}
w(x)=1+? ? ?+x^{n} \\
\widetilde{w}(x)=1+? ? ?+x^{n} \\
w(x)=1+x^{3}+\cdots+x^{n} \\
\widetilde{\boldsymbol{w}}(x)=1+\cdots+x^{n-3}+x^{n}
\end{gathered}
$$

If $n \geq 83$, then

$$
\boldsymbol{F} \widetilde{\boldsymbol{F}}=1+\boldsymbol{x}^{3}+\boldsymbol{x}^{15}+\boldsymbol{x}^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots
$$

where all subsequent terms have degree ≥ 48.

$$
\begin{gathered}
w(x)=1+? ? ?+x^{n} \\
\widetilde{w}(x)=1+? ? ?+x^{n} \\
w(x)=1+x^{3}+\cdots+x^{n} \\
\widetilde{w}(x)=1+\cdots+x^{n-3}+x^{n} \\
w(x)=1+x^{3}+x^{15}+\cdots+x^{n} \\
\widetilde{w}(x)=1+\cdots+x^{n-15}+x^{n-3}+x^{n} \\
w(x)=1+x^{3}+x^{15}+x^{16}+\cdots+x^{n} \\
\widetilde{w}(x)=1+\cdots+x^{n-16}+x^{n-15}+x^{n-3}+x^{n}
\end{gathered}
$$

So $\boldsymbol{w}=\boldsymbol{F}!!$

If $n \geq 83$, then

$$
\boldsymbol{F} \widetilde{\boldsymbol{F}}=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots
$$

where all subsequent terms have degree ≥ 48.

$$
\text { So } w=F!!
$$

Lemma 2. Suppose the non-reciprocal part of $F(x) \in \mathbb{Z}[x]$ is reducible, and let $u(x)$ and $v(x)$ be as above. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $\boldsymbol{w} \neq \pm \boldsymbol{F}$ and $\boldsymbol{w} \neq \pm \widetilde{\boldsymbol{F}}$.
(ii) $\boldsymbol{w} \widetilde{\boldsymbol{w}}=\boldsymbol{F} \widetilde{\boldsymbol{F}}$.
(iii) $w(1)^{2}=F(1)^{2}$.
(iv) $\|w\|=\|F\|$.
(v) If F is a 0,1-polynomial, then w is also and with the same number of non-zero terms as \boldsymbol{F}.

$$
\text { Why is } x^{n}+f_{7}(x) \text { irreducible for all } n \geq 36 ?
$$

Two Steps:

1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is only one).
3. How does

$$
f(x)=1+x^{211}+x^{517}+x^{575}+x^{1245}+x^{1398}
$$

factor in $\mathbb{Z}[x]$?
Lemma 2. Suppose the non-reciprocal part of $F(x) \in \mathbb{Z}[x]$ is reducible, and let $u(x)$ and $v(x)$ be as above. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $\boldsymbol{w} \neq \pm \boldsymbol{F}$ and $\boldsymbol{w} \neq \pm \widetilde{\boldsymbol{F}}$.
(ii) $\boldsymbol{w} \widetilde{\boldsymbol{w}}=\boldsymbol{F} \widetilde{\boldsymbol{F}}$.
(iii) $w(1)^{2}=F(1)^{2}$.
(iv) $\|w\|=\|F\|$.
(v) If F is a 0,1-polynomial, then w is also and with the same number of non-zero terms as F.
(Maple Time)

