Theorem 2.1.1. (The Schönemann-Eisenstein Criterion) Let $f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x]$ where n is a positive integer. Suppose there exists a prime p such that $p \nmid a_{n}, p \mid a_{j}$ for all $j<n$, and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible over \mathbb{Q}.

A polynomial $f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x]$ is in Eisenstein form (with respect to the prime p) if there is a prime p such that $p \nmid a_{n}, p \mid a_{j}$ for $j<n$, and $p^{2} \nmid a_{0}$.

An Eisenstein polynomial is an $f(x) \in \mathbb{Z}[x]$ for which there is an integer a and a prime p such that $f(x+a)$ is in Eisenstein form with respect to the prime p. In this case, we say $f(x)$ is Eisenstein with respect to the prime p.

Example.

$$
f(x)=x^{3}+5 x^{2}+2 x-1 \text { and } g(x)=3 x^{2}+10 x+2
$$

$$
\begin{aligned}
R(f, g) & =\left|\begin{array}{ccccc}
1 & 5 & 2 & -1 & 0 \\
0 & 1 & 5 & 2 & -1 \\
3 & 10 & 2 & 0 & 0 \\
0 & 3 & 10 & 2 & 0 \\
0 & 0 & 3 & 10 & 2
\end{array}\right|=\left|\begin{array}{ccccc}
1 & 5 & 2 & -1 & 0 \\
0 & 1 & 5 & 2 & -1 \\
0 & -5 & -4 & 3 & 0 \\
0 & 0 & -5 & -4 & 3 \\
0 & 0 & 3 & 10 & 2
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 5 & 2 & -1 \\
-5 & -4 & 3 & 0 \\
0 & -5 & -4 & 3 \\
0 & 3 & 10 & 2
\end{array}\right|=\left|\begin{array}{cccc}
1 & 5 & 2 & -1 \\
0 & 21 & 13 & -5 \\
0 & -5 & -4 & 3 \\
0 & 3 & 10 & 2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
21 & 13 & -5 \\
-5 & -4 & 3 \\
3 & 10 & 2
\end{array}\right|=21(-38)-13(-19)+(-5)(-38) \\
& =19(-42+13+10)=-19^{2}
\end{aligned}
$$

Algorithm: Given $f(x) \in \mathbb{Z}[x]$ of degree $n \geq 2$, determine whether $f(x)$ is an Eisenstein polynomial.

Steps:

- Calculate $R\left(f, f^{\prime}\right)$.
\rightarrow If $R\left(f, f^{\prime}\right)=0$, then $f(x)$ is not Eisenstein with respect to any prime.
\rightarrow If $R\left(f, f^{\prime}\right) \neq 0$, then proceed as follows.
- Factor $R\left(f, f^{\prime}\right)$.
- For each prime p dividing $R\left(f, f^{\prime}\right)$ and each $a \in\{0,1, \ldots, p-1\}$, check if $f(x+a)$ is in Eisenstein form with respect p.
\succ If it is for some such p, then $f(x)$ is an Eisenstein polyomial (with respect to p).
\succ If it is not for every such p, then $f(x)$ is not an Eisenstein polynomial.

Example.

$$
f(x)=x^{3}+5 x^{2}+2 x-1 \text { and } g(x)=3 x^{2}+10 x+2
$$

$$
\begin{aligned}
R(f, g) & =\left|\begin{array}{ccccc}
1 & 5 & 2 & -1 & 0 \\
0 & 1 & 5 & 2 & -1 \\
3 & 10 & 2 & 0 & 0 \\
0 & 3 & 10 & 2 & 0 \\
0 & 0 & 3 & 10 & 2
\end{array}\right|=\left|\begin{array}{ccccc}
1 & 5 & 2 & -1 & 0 \\
0 & 1 & 5 & 2 & -1 \\
0 & -5 & -4 & 3 & 0 \\
0 & 0 & -5 & -4 & 3 \\
0 & 0 & 3 & 10 & 2
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 5 & 2 & -1 \\
-5 & -4 & 3 & 0 \\
0 & -5 & -4 & 3 \\
0 & 3 & 10 & 2
\end{array}\right|=\left|\begin{array}{cccc}
1 & 5 & 2 & -1 \\
0 & 21 & 13 & -5 \\
0 & -5 & -4 & 3 \\
0 & 3 & 10 & 2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
21 & 13 & -5 \\
-5 & -4 & 3 \\
3 & 10 & 2
\end{array}\right|=21(-38)-13(-19)+(-5)(-38) \\
& =19(-42+13+10)=-19^{2}
\end{aligned}
$$

Example.

$$
f(x)=x^{3}+5 x^{2}+2 x-1 \text { and } g(x)=3 x^{2}+10 x+2
$$

$\overline{>} \mathrm{f}:=\mathrm{x} \rightarrow \mathrm{x}^{\wedge} 3+5 \mathrm{t}^{\wedge}{ }^{\wedge} 2+2 * \mathrm{x}-1$;

$$
f:=x \rightarrow x^{3}+5 x^{2}+2 x-1
$$

> sort(expand(f(x+11)));

$$
x^{3}+38 x^{2}+475 x+1957
$$

> ifactor(475); ifactor(1957);

Note: The prime $p=19$ is the only p that can "work". From $f(x) \equiv(x-11)^{3}(\bmod 19)$ and unique factorization in $\mathbb{F}_{19}[x]$, we get 11 is the only a that can "work".

$$
\begin{aligned}
& f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{C}[x], \quad g(x)=\sum_{j=0}^{r} b_{j} x^{j} \in \mathbb{C}[x] \\
& n \geq 1, \quad r \geq 1, \quad a_{n} b_{r} \neq 0 \\
& \left.R(f, g)=\left|\begin{array}{ccccccccc}
a_{n} & a_{n-1} & a_{n-2} & \ldots & a_{0} & 0 & 0 & \ldots & 0 \\
0 & a_{n} & a_{n-1} & \ldots & a_{1} & a_{0} & 0 & \ldots & 0 \\
0 & 0 & a_{n} & \ldots & a_{2} & a_{1} & a_{0} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
b_{r} & b_{r-1} & b_{r-2} & \ldots & b_{0} & 0 & 0 & \ldots & 0 \\
0 & b_{r} & b_{r-1} & \ldots & b_{1} & b_{0} & 0 & \ldots & 0 \\
0 & 0 & b_{r} & \ldots & b_{2} & b_{1} & b_{0} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right|\right\} r \text { rows }
\end{aligned}
$$

Comment: If $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$, then

$$
R(f, g)=a_{n}^{r} g\left(\alpha_{1}\right) \cdots g\left(\alpha_{n}\right)
$$

Example.

$$
f(x)=x^{3}+5 x^{2}+2 x-1 \text { and } g(x)=3 x^{2}+10 x+2
$$

$\left\lceil>f:=x->x^{\wedge} 3+5 * x^{\wedge} 2+2 * x-1 ;\right.$

$$
f:=x \rightarrow x^{3}+5 x^{2}+2 x-1
$$

> sort(expand(f(x+11)));

$$
x^{3}+38 x^{2}+475 x+1957
$$

> ifactor(475); ifactor(1957);

Note: The prime $p=19$ is the only p that can "work". From $f(x) \equiv(x-11)^{3}(\bmod 19)$ and unique factorization in $\mathbb{F}_{19}[x]$, we get 11 is the only a that can "work".

0, 1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3}
\end{gathered}
$$

0, 1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15}
\end{gathered}
$$

0, 1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16}
\end{gathered}
$$

0, 1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16} \\
f_{4}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}
\end{gathered}
$$

0,1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16} \\
f_{4}(x)=1+x^{3}+x^{15}+x^{16}+x^{32} \\
f_{5}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}
\end{gathered}
$$

0,1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16} \\
f_{4}(x)=1+x^{3}+x^{15}+x^{16}+x^{32} \\
f_{5}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33} \\
f_{6}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}
\end{gathered}
$$

0,1-Polynomials

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=1+x^{3} \\
f_{2}(x)=1+x^{3}+x^{15} \\
f_{3}(x)=1+x^{3}+x^{15}+x^{16} \\
f_{4}(x)=1+x^{3}+x^{15}+x^{16}+x^{32} \\
f_{5}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33} \\
f_{6}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34} \\
f_{7}(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
\end{gathered}
$$

Problem: Prove the diequence is infinite.

Definitions and Notations: Let $f(x) \in \mathbb{C}[x]$ with $f(x) \not \equiv 0$. Define $\tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)$. The polynomial \tilde{f} is called the reciprocal of $f(x)$. The constant term of \tilde{f} is always non-zero. If the constant term of f is non-zero, then $\operatorname{deg} \tilde{f}=\operatorname{deg} f$ and the reciprocal of \tilde{f} is f. If $\alpha \neq 0$ is a root of f, then $1 / \alpha$ is a root of \tilde{f}. If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{C}[x]$, then $\tilde{f}=\tilde{g} \tilde{h}$. If $f= \pm \tilde{f}$, then f is called reciprocal. If f is not reciprocal, we say that f is non-reciprocal. If f is reciprocal and α is a root of f, then $1 / \alpha$ is a root of f. The product of reciprocal polynomials is reciprocal so that a non-reciprocal polynomial must have a non-reciprocal irreducible factor. For $f(x) \in \mathbb{Z}[x]$, we refer to the non-reciprocal part of $f(x)$ as the polynomial $f(x)$ removed of its irreducible reciprocal factors having a positive leading coefficient. For example, the non-reciprocal part of $3(-x+1) x\left(x^{2}+2\right)$ is $-x\left(x^{2}+2\right)$ (the irreducible reciprocal factors 3 and $x-1$ have been removed from the polynomial $\left.3(-x+1) x\left(x^{2}+2\right)\right)$.

Lemma 9.1.1. Let $f(x)$ be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of $f(x)$ is reducible, then there exist polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ satisfying $u(x)$ and $v(x)$ are both non-reciprocal and $f(x)=u(x) v(x)$.

Lemma 9.1.1. Let $f(x)$ be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of $f(x)$ is reducible, then there exist polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ satisfying $u(x)$ and $v(x)$ are both non-reciprocal and $f(x)=u(x) v(x)$.

Lemma 9.1.1. Let $f(x)$ be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of $f(x)$ is reducible, then there exist polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ satisfying $u(x)$ and $v(x)$ are both non-reciprocal and $f(x)=u(x) v(x)$.

Lemma 9.1.2. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$, and suppose $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is nonreciprocal. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
$(i v)\|w\|=\|f\|$.

Lemma 9.1.2. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$, and suppose $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is nonreciprocal. Then the polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
$(i v)\|w\|=\|f\|$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
$(i v)\|w\|=\|f\|$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.
(vi) $w(1)=f(1)$.

Lemma 9.1.3. Suppose $f(x)$ is a 0,1-polynomial with $f(0) \neq 0$ and $f(x)=u(x) v(x)$ where each of $u(x)$ and $v(x)$ is non-reciprocal and each of $u(x)$ and $v(x)$ has a positive leading coefficient. Then the polynomial $w(x)=$ $u(x) \tilde{v}(x)$ also has the following properties:
(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x) \widetilde{w}(x)=f(x) \tilde{f}(x)$.
(iii) $w(1)^{2}=f(1)^{2}$.
(iv) $\|w\|=\|f\|$.
(v) $w(x)$ is a 0,1-polynomial with the same number of non-zero terms as $f(x)$.
$(v i) w(1)=f(1)$.
$F(x)=x^{n}+x^{35}+x^{34}+x^{33}+x^{32}+x^{16}+x^{15}+x^{3}+1$

