Theorem 2.1.1. (The Schonemann-Eisenstein Criterion)
Let f(x) = >, a;x’ € 7Z[x] where n is a positive integer.
Suppose there erists a prime p such that p { a,, p|a; for
all 3 < n, and p*t ag. Then f(x) is irreducible over Q.

A polynomial f(z) = >/, a;x! € Z[z] is in Eisenstein
form (with respect to the prime p) if there is a prime p
such that p { a,, p|a; for j < n, and p? 1 a,.

An FEisenstein polynomial is an f(x) € Z|x]| for which
there is an integer a and a prime p such that f(x+a) is in
Eisenstein form with respect to the prime p. In this case,
we say f(x) is Fisenstein with respect to the prime p.



Example.

f(x) =x*+5x*+2x —1 and g(x) = 3z° + 10x + 2

1 5 2 —1 0 1 5 2 —1 0
01 5 2 -1 01 5 2 -1
R(f,g)=|310 2 0 0|=0-5 —4 3 O
0 3 10 2 O 0 0 —5 —4 3
0 0 3 10 2 0 0 3 10 2
1 5 2 -1 1 5 2 -1
-5 -4 3 0| |0 21 13 -5
|0 -5 —4 3| |0 -5 —4 3
0 3 10 2 0 3 10 2
21 13 —5
= |—5 —4 3 |=21(—38)—13(—19)+(—5)(—38)
3 10 2

= 19(—42+13410) = —19°



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

Steps:
e Calculate R(f, f').

— If R(f, f') = 0, then f(x) is not Eisenstein with
respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
» Factor R(f, f’).

» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.

> If it is for some such p, then f(x) is an
Eisenstein polyomial (with respect to p).

> If it is not for every such p, then f(x) is
not an Eisenstein polynomial.



Example.

f(x) =x*+5x*+2x —1 and g(x) = 3z° + 10x + 2

1 5 2 —1 0 1 5 2 —1 0
01 5 2 -1 01 5 2 -1
R(f,g)=|310 2 0 0|=0-5 —4 3 O
0 3 10 2 O 0 0 —5 —4 3
0 0 3 10 2 0 0 3 10 2
1 5 2 -1 1 5 2 -1
-5 -4 3 0| |0 21 13 -5
|0 -5 —4 3| |0 -5 —4 3
0 3 10 2 0 3 10 2
21 13 —5
= |—5 —4 3 |=21(—38)—13(—19)+(—5)(—38)
3 10 2

= 19(—42+13410) = —19°



Example.

f(x) =x*+5x*+2x —1 and g(x) = 3z° + 10x + 2

]

> f 1= x => x"3 + 5*x72 + 2*x - 1;
fi=x—>r+5x%+2x— 1
> sort (expand(f(x+11)));
X 4 38 x° 4+ 475 x + 1957
> ifactor(475); ifactor(1957);
(5)° (19)
(19) (103)

'=

Note: The prime p = 19 is the only p that can *“work”.
From f(x) = (x —11)° (mod 19) and unique factorization
in Fig|x|, we get 11 is the only a that can “work”.



a, Qnp_1 Q9 ap 0 O 0"
0O a, a,_1 a; ag 0O 0
0 0 an, as ai1 Qg 0 T TOWs
R _ : : . 2 : ;
59 =1p by by ... by 0 O ol
0O b. b,y . by by O 0
\ 7 TOWS
0O O b, . by b1 by 0
: /
Comment: If ay,...,a, are the roots of f(x), then

R(f,g) = a, g(ai) -+ g(an)-
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(Maple Time)



0, 1-Polynomials

fo(x) =1
fi(z) =1+ 2



0, 1-Polynomials

f()(ZB) =1
fi(z) =1+ 2
folr) =14+ 4+ 2™



0, 1-Polynomials

f()(ZB) =1
fifz) =1+
fole) =1+ % + 2°
fa(x) =1+ x> + ' + 1°



0, 1-Polynomials

fo(x) =1
fi(z) =1+ 2
fole) =1+ % + 2°
fa(x) =1+ x° + 2 + 2'f
fa(x) = 14 2® 4+ 2% + 216 4 232



0, 1-Polynomials

fo(x) =1
fi(z) =1+ 2
fole) =1+ % + 2°
fa(x) =1+ x° + 2 + 2'f
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f5(C13) — 1 333 w15 21316 €B32 $33




0, 1-Polynomials

fo(x) =1
fifz) =1+
fole) =1+ % + 2°
fa(x) =1+ x° + 2 + 2'f
fa(x) = 14 2® 4+ 2% + 216 4 232
fo(x) = 1+ 2® + 2% 4+ 26 4 232 4 £33

fﬁ(w) —1 + ZIZ‘S + 21315 + 21316 + 3332 + 21333 + 21334




0, 1-Polynomials

fo(x) =1
fi(z) =1+ 2
fole) =1+ % + 2°
fa(x) =1+ x° + 2 + 2'f
fa(x) =14 2° + ' + 20 4 23
fo(x) = 1+ 2® + 2% 4+ 26 4 232 4 £33
fo(z) = 1+ 2 + 215 + 216 4 252 4 233 4 2>
fr(z) =14 2 + 25 + 210 4 232 4 23 4 23 4 2%

Problem: Prove. Titseslscgtlicnce is infinite.



Definitions and Notations: Let f(x) € Clz] with f(x) Z 0.
Define f(z) = x97ff(1/x). The polynomial f is called
the reciprocal of f(x). The constant term of f is always
non-zero. If the constant term of f is non-zero, then
degf — deg f and the reciprocal of f is f. If a # 0 is
a root of f, then 1/a is a root of f. If f(z) = g(x)h(x)
with g(«) and h(z) in C[z], then f = gh. If f = +F,
then f is called reciprocal. 1f f is not reciprocal, we say
that f is non-reciprocal. If f is reciprocal and « is a root
of f, then 1/« is a root of f. The product of reciprocal
polynomials is reciprocal so that a non-reciprocal poly-
nomial must have a non-reciprocal irreducible factor. For
f(x) € Z|x|, we refer to the non-reciprocal part of f(x) as
the polynomial f(x) removed of its irreducible reciprocal
factors having a positive leading coefficient. For example,
the non-reciprocal part of 3(—x +1)x(x?+2) is —x(x?+ 2)
(the irreducible reciprocal factors 3 and  — 1 have been
removed from the polynomial 3(—x + 1)x(x? + 2)).




Lemma 9.1.1. Let f(x) be an arbitrary polynomsial in Z|x].
If the non-reciprocal part of f(x) is reducible, then there
exist polynomials u(x) and v(x) in Zlx| satisfying u(x)
and v(x) are both non-reciprocal and f(x) = u(x)v(x).
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exist polynomials u(x) and v(x) in Zlx| satisfying u(x)
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Lemma 9.1.2. Let f(x) € Z|x] with f(0) # 0, and suppose
f(x) = u(x)v(x) where each of u(x) and v(x) s non-
reciprocal. Then the polynomial w(x) = wu(x)v(x) has
the following properties:

(i) w(z) # L£f(x) and w(z) # L£f(x).
(it) w(z)w(z) = f(z)f(z).

(iii) w(1)? = f(1).

(w) ||lw]| = | f]].
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Lemma 9.1.3. Suppose f(x) is a 0,1-polynomial with
f(0) # 0 and f(x) = u(x)v(x) where each of u(x) and
v(x) s non-reciprocal and each of u(x) and v(x) has a
positive leading coefficient. Then the polynomial w(x) =
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(v) w(x) is a 0,1-polynomial with the same number of
non-zero terms as f(x).

(vi) w(1) = £(1).
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