Theorem 2.1.1. (The Schönemann-Eisenstein Criterion) Let $f(x) = \sum_{j=0}^{n} a_j x^j \in \mathbb{Z}[x]$ where *n* is a positive integer. Suppose there exists a prime *p* such that $p \nmid a_n$, $p \mid a_j$ for all j < n, and $p^2 \nmid a_0$. Then f(x) is irreducible over \mathbb{Q} .

A polynomial $f(x) = \sum_{j=0}^{n} a_j x^j \in \mathbb{Z}[x]$ is in *Eisenstein* form (with respect to the prime p) if there is a prime psuch that $p \nmid a_n$, $p \mid a_j$ for j < n, and $p^2 \nmid a_0$.

An *Eisenstein polynomial* is an $f(x) \in \mathbb{Z}[x]$ for which there is an integer a and a prime p such that f(x+a) is in Eisenstein form with respect to the prime p. In this case, we say f(x) is *Eisenstein with respect to the prime* p. Example.

$$f(x) = x^3 + 5x^2 + 2x - 1 \text{ and } g(x) = 3x^2 + 10x + 2$$

$$R(f,g) = \begin{vmatrix} 1 & 5 & 2 & -1 & 0 \\ 0 & 1 & 5 & 2 & -1 \\ 3 & 10 & 2 & 0 & 0 \\ 0 & 3 & 10 & 2 & 0 \\ 0 & 0 & 3 & 10 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & 2 & -1 & 0 \\ 0 & 1 & 5 & 2 & -1 \\ 0 & -5 & -4 & 3 & 0 \\ 0 & 0 & -5 & -4 & 3 \\ 0 & 0 & 3 & 10 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 5 & 2 & -1 \\ -5 & -4 & 3 & 0 \\ 0 & -5 & -4 & 3 \\ 0 & 3 & 10 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & 2 & -1 \\ 0 & 21 & 13 & -5 \\ 0 & -5 & -4 & 3 \\ 0 & 3 & 10 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 21 & 13 & -5 \\ -5 & -4 & 3 \\ 3 & 10 & 2 \end{vmatrix} = 21(-38) - 13(-19) + (-5)(-38)$$

$$= 19(-42 + 13 + 10) = -19^2$$

Algorithm: Given $f(x) \in \mathbb{Z}[x]$ of degree $n \geq 2$, determine whether f(x) is an Eisenstein polynomial.

Steps:

- Calculate R(f, f').
 - \rightarrow If R(f, f') = 0, then f(x) is not Eisenstein with respect to any prime.
 - \rightarrow If $R(f, f') \neq 0$, then proceed as follows.
 - Factor R(f, f').
 - For each prime p dividing R(f, f') and each $a \in \{0, 1, ..., p 1\}$, check if f(x + a) is in Eisenstein form with respect p.
 - \succ If it is for some such p, then f(x) is an Eisenstein polynomial (with respect to p).
 - \succ If it is not for every such p, then f(x) is not an Eisenstein polynomial.

Example.

$$f(x) = x^3 + 5x^2 + 2x - 1 \text{ and } g(x) = 3x^2 + 10x + 2$$

$$R(f,g) = \begin{vmatrix} 1 & 5 & 2 & -1 & 0 \\ 0 & 1 & 5 & 2 & -1 \\ 3 & 10 & 2 & 0 & 0 \\ 0 & 3 & 10 & 2 & 0 \\ 0 & 0 & 3 & 10 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & 2 & -1 & 0 \\ 0 & 1 & 5 & 2 & -1 \\ 0 & -5 & -4 & 3 & 0 \\ 0 & 0 & -5 & -4 & 3 \\ 0 & 0 & 3 & 10 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 5 & 2 & -1 \\ -5 & -4 & 3 & 0 \\ 0 & -5 & -4 & 3 \\ 0 & 3 & 10 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & 2 & -1 \\ 0 & 21 & 13 & -5 \\ 0 & -5 & -4 & 3 \\ 0 & 3 & 10 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 21 & 13 & -5 \\ -5 & -4 & 3 \\ 3 & 10 & 2 \end{vmatrix} = 21(-38) - 13(-19) + (-5)(-38)$$

$$= 19(-42 + 13 + 10) = -19^2$$

Example.

$$f(x) = x^3 + 5x^2 + 2x - 1$$
 and $g(x) = 3x^2 + 10x + 2$

> f := x -> x^3 + 5*x^2 + 2*x - 1;

$$f:=x \rightarrow x^3 + 5x^2 + 2x - 1$$

> sort(expand(f(x+11)));
 $x^3 + 38x^2 + 475x + 1957$
> ifactor(475); ifactor(1957);
(5)²(19)
(19)(103)

Note: The prime p = 19 is the only p that can "work". From $f(x) \equiv (x-11)^3 \pmod{19}$ and unique factorization in $\mathbb{F}_{19}[x]$, we get 11 is the only a that can "work".

$$egin{aligned} f(x) &= \sum_{j=0}^n a_j x^j \in \mathbb{C}[x], \quad g(x) = \sum_{j=0}^r b_j x^j \in \mathbb{C}[x] \ &n \geq 1, \quad r \geq 1, \quad a_n b_r
eq 0 \end{aligned}$$

$$n \geq 1, \quad r \geq 1, \quad a_n b_r \neq 0 \ \left. egin{array}{cccccccccc} a_n & a_{n-1} & a_{n-2} & \ldots & a_0 & 0 & 0 & \ldots & 0 \ 0 & a_n & a_{n-1} & \ldots & a_1 & a_0 & 0 & \ldots & 0 \ 0 & 0 & a_n & \ldots & a_2 & a_1 & a_0 & \ldots & 0 \ dots & dots &$$

Comment: If $\alpha_1, \ldots, \alpha_n$ are the roots of f(x), then

$$R(f,g) = a_n^r g(lpha_1) \cdots g(lpha_n).$$

Example.

$$f(x) = x^3 + 5x^2 + 2x - 1$$
 and $g(x) = 3x^2 + 10x + 2$

> f := x -> x^3 + 5*x^2 + 2*x - 1;

$$f:=x \rightarrow x^3 + 5x^2 + 2x - 1$$

> sort(expand(f(x+11)));
 $x^3 + 38x^2 + 475x + 1957$
> ifactor(475); ifactor(1957);
(5)²(19)
(19)(103)

Note: The prime p = 19 is the only p that can "work". From $f(x) \equiv (x-11)^3 \pmod{19}$ and unique factorization in $\mathbb{F}_{19}[x]$, we get 11 is the only a that can "work".

(Maple Time)

$$egin{aligned} f_0(x) &= 1 \ f_1(x) &= 1 + x^3 \end{aligned}$$

$$egin{aligned} f_0(x) &= 1 \ f_1(x) &= 1 + x^3 \ f_2(x) &= 1 + x^3 + x^{15} \end{aligned}$$

$$egin{aligned} f_0(x) &= 1 \ f_1(x) &= 1 + x^3 \ f_2(x) &= 1 + x^3 + x^{15} \ f_3(x) &= 1 + x^3 + x^{15} + x^{16} \end{aligned}$$

$$egin{aligned} f_0(x) &= 1 \ f_1(x) &= 1 + x^3 \ f_2(x) &= 1 + x^3 + x^{15} \ f_3(x) &= 1 + x^3 + x^{15} + x^{16} \ f_4(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32} \end{aligned}$$

$$egin{aligned} f_0(x) &= 1\ f_1(x) &= 1 + x^3\ f_2(x) &= 1 + x^3 + x^{15}\ f_3(x) &= 1 + x^3 + x^{15} + x^{16}\ f_4(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32}\ f_5(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} \end{aligned}$$

$$egin{aligned} f_0(x) &= 1\ f_1(x) &= 1 + x^3\ f_2(x) &= 1 + x^3 + x^{15}\ f_3(x) &= 1 + x^3 + x^{15} + x^{16}\ f_4(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32}\ f_5(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33}\ f_5(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33}\ f_6(x) &= 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{34} \end{aligned}$$

$$f_0(x) = 1$$

 $f_1(x) = 1 + x^3$
 $f_2(x) = 1 + x^3 + x^{15}$
 $f_3(x) = 1 + x^3 + x^{15} + x^{16}$
 $f_4(x) = 1 + x^3 + x^{15} + x^{16} + x^{32}$
 $f_5(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33}$
 $f_6(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34}$
 $f_7(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35}$
Problem: Prove that this sequence is infinite.

Definitions and Notations: Let $f(x) \in \mathbb{C}[x]$ with $f(x) \not\equiv 0$. Define $\tilde{f}(x) = x^{\deg f} f(1/x)$. The polynomial \tilde{f} is called the *reciprocal* of f(x). The constant term of f is always non-zero. If the constant term of f is non-zero, then $\deg f = \deg f$ and the reciprocal of f is f. If $\alpha \neq 0$ is a root of f, then $1/\alpha$ is a root of f. If f(x) = g(x)h(x)with g(x) and h(x) in $\mathbb{C}[x]$, then $f = \tilde{g}h$. If $f = \pm f$, then f is called *reciprocal*. If f is not reciprocal, we say that f is non-reciprocal. If f is reciprocal and α is a root of f, then $1/\alpha$ is a root of f. The product of reciprocal polynomials is reciprocal so that a non-reciprocal polynomial must have a non-reciprocal irreducible factor. For $f(x) \in \mathbb{Z}[x]$, we refer to the non-reciprocal part of f(x) as the polynomial f(x) removed of its irreducible reciprocal factors having a positive leading coefficient. For example, the non-reciprocal part of $3(-x+1)x(x^2+2)$ is $-x(x^2+2)$ (the irreducible reciprocal factors 3 and x - 1 have been removed from the polynomial $3(-x+1)x(x^2+2)$).

Lemma 9.1.1. Let f(x) be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of f(x) is reducible, then there exist polynomials u(x) and v(x) in $\mathbb{Z}[x]$ satisfying u(x)and v(x) are both non-reciprocal and f(x) = u(x)v(x). Lemma 9.1.1. Let f(x) be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of f(x) is reducible, then there exist polynomials u(x) and v(x) in $\mathbb{Z}[x]$ satisfying u(x)and v(x) are both non-reciprocal and f(x) = u(x)v(x). Lemma 9.1.1. Let f(x) be an arbitrary polynomial in $\mathbb{Z}[x]$. If the non-reciprocal part of f(x) is reducible, then there exist polynomials u(x) and v(x) in $\mathbb{Z}[x]$ satisfying u(x)and v(x) are both non-reciprocal and f(x) = u(x)v(x).

Lemma 9.1.2. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$, and suppose f(x) = u(x)v(x) where each of u(x) and v(x) is non-reciprocal. Then the polynomial $w(x) = u(x)\tilde{v}(x)$ has the following properties:

(i) $w(x) \neq \pm f(x)$ and $w(x) \neq \pm \tilde{f}(x)$. (ii) $w(x)\tilde{w}(x) = f(x)\tilde{f}(x)$. (iii) $w(1)^2 = f(1)^2$. (iv) ||w|| = ||f||. Lemma 9.1.2. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$, and suppose f(x) = u(x)v(x) where each of u(x) and v(x) is non-reciprocal. Then the polynomial $w(x) = u(x)\tilde{v}(x)$ has the following properties:

(i)
$$w(x) \neq \pm f(x)$$
 and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x)\tilde{w}(x) = f(x)\tilde{f}(x)$.
(iii) $w(1)^2 = f(1)^2$.
(iv) $||w|| = ||f||$.

(i)
$$w(x) \neq \pm f(x)$$
 and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x)\tilde{w}(x) = f(x)\tilde{f}(x)$.
(iii) $w(1)^2 = f(1)^2$.
(iv) $||w|| = ||f||$.

(i)
$$w(x) \neq \pm f(x)$$
 and $w(x) \neq \pm \tilde{f}(x)$.
(ii) $w(x)\tilde{w}(x) = f(x)\tilde{f}(x)$.
(iii) $w(1)^2 = f(1)^2$.
(iv) $||w|| = ||f||$.

 $F(x) = x^n + x^{35} + x^{34} + x^{33} + x^{32} + x^{16} + x^{15} + x^3 + 1$