Test: Monday, November 19

Problems from Another Final

Let $f(x)=x^{4}+4 x^{2}+x-1$. To factor $f(x)$ modulo 3 using Berlekamp's algorithm, we compute a certain matrix A as in class and then $B=A-I$. The result of this computation is (in the field of arithmetic $\bmod 3$)

$$
B=A-I=\left(\begin{array}{cccc}
0 & 0 & * & 2 \\
0 & 2 & * & 0 \\
0 & 0 & * & 1 \\
0 & 1 & * & 0
\end{array}\right)
$$

where the elements of the third column have been replaced by asterisks.
(a) Compute the third column of the matrix $B=A-I$.
(b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3.
(a) Compute the third column of the matrix $B=A-I$.
(b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3 .
(c) Explain why $f(x)$ has exactly two irreducible factors mod 3.
(d) Using Berlekamp's algorithm and what has been stated here, find a polynomial $g(x)$ of degree ≤ 3 such that when

$$
\prod_{s=0}^{2} \operatorname{gcd}(g(x)-s, f(x))
$$

is computed modulo 3 , the result is a non-trivial factorization of $f(x)$ modulo 3.
(e) Factor $f(x)$ modulo 3 as a product of monic irreducible polynomials modulo 3.
(f) Explain why $f(x)$ is irreducible in $\mathbb{Z}[x]$.
(a) Compute the third column of the matrix $B=A-I$.
(b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3 .
(c) Explain why $f(x)$ has exactly two irreducible factors mod 3.
(d) Using Berlekamp's algorithm and what has been stated here, find a polynomial $g(x)$ of degree ≤ 3 such that when

$$
\prod_{s=0}^{2} \operatorname{gcd}(g(x)-s, f(x))
$$

is computed modulo 3 , the result is a non-trivial factorization of $f(x)$ modulo 3.
(e) Factor $f(x)$ modulo 3 as a product of monic irreducible polynomials modulo 3.
(f) Explain why $f(x)$ is irreducible in $\mathbb{Z}[x]$.

Problems from Another Final

Let $\vec{b}_{1}^{*}, \vec{b}_{2}^{*}, \vec{b}_{3}^{*}$, and \vec{b}_{4}^{*} be the result of applying the Gram-Schmidt orthogonalization process to a basis $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}$ for a lattice \mathcal{L} in \mathbb{Q}^{4}. Suppose

$$
\begin{aligned}
\langle-2,2,7,-2\rangle & =2 \vec{b}_{1}^{*}+\vec{b}_{3}^{*}+\vec{b}_{4}^{*} \\
\langle 0,4,7,4\rangle & =\vec{b}_{2}^{*}+\vec{b}_{3}^{*}+\vec{b}_{4}^{*}
\end{aligned}
$$

and

$$
\langle-1,1,7,-1\rangle=\vec{b}_{1}^{*}+\vec{b}_{3}^{*}+\vec{b}_{4}^{*} .
$$

What is the value of

$$
\left\|\vec{b}_{1}^{*}\right\|^{2}+\left\|\vec{b}_{2}^{*}\right\|^{2}+\left\|\vec{b}_{3}^{*}\right\|^{2}+\left\|\vec{b}_{4}^{*}\right\|^{2} ?
$$

Justify that your work gives the correct answer. In particular, you should be using a property of $\vec{b}_{1}^{*}, \vec{b}_{2}^{*}, \vec{b}_{3}^{*}, \vec{b}_{4}^{*}$, and you should be telling me what property this is and where you are using it.

Problems from Another Final

Let n and b be integers >1. Define what it meatin for dinteger n to be a strong pseudone to the base b ?
(b) Prove that no intege is a strong pseudoprime to every base $h \operatorname{th} 1<b \leq$ vind $\operatorname{gcd}(b, n)=1$.
(c) Is strong pseudoprime to the base unstify your answer.

Problems from Another Final

Definition: Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a basis for a lattice \mathcal{L} and $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ the corresponding basis for \mathbb{R}^{n} obtained from the Gram-Schmidt orthogonalization process, with $\mu_{i j}$ as defined before. Then $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is said to be reduced if
(i) $\left|\mu_{i j}\right| \leq \frac{1}{2} \quad$ for $1 \leq j<i \leq n$
(ii) $\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \quad$ for $1<i \leq n$.

$$
\begin{gathered}
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*} \quad(1 \leq i \leq n) \\
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}} \quad(1 \leq j<i \leq n)
\end{gathered}
$$

Problems from Another Final

Definition: Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a basis for a lattice \mathcal{L} and $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ the corresponding basis for \mathbb{R}^{n} obtained from the Gram-Schmidt orthogonalization process, with $\mu_{i j}$ as defined before. Then $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is said to be reduced if
(i) $\left|\mu_{i j}\right| \leq \frac{1}{2} \quad$ for $1 \leq j<i \leq n$
(ii) $\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \quad$ for $1<i \leq n$.

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*} \quad(1 \leq i \leq n)
$$

Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a reduced basis for a lattice \mathcal{L}. Prove that if $\vec{b} \in \mathcal{L}$, then $\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\|$.

Online Test Problem

row number	numerator	numerator squared mods 34189
1	185	$2^{2} \cdot 3^{2}$
2	1849	$-1 \cdot 3^{2} \cdot 11$
3	5732	$3 \cdot 5 \cdot 13$
4	7581	$-1 \cdot 2^{2} \cdot 37$
5	13313	193
6	20894	$-1 \cdot 3 \cdot 5 \cdot 7$
7	55101	$5 \cdot 7^{2}$
8	75995	$-1 \cdot 2^{2} \cdot 11$
9	587066	$3 \cdot 7 \cdot 11$
10	663061	$-1 \cdot 3 \cdot 41$
11	1913188	43
12	15968565	$-1 \cdot 7 \cdot 13$
13	49818883	$2^{2} \cdot 67$
14	65787448	$-1 \cdot 3 \cdot 7$
15	1102418051	$2^{2} \cdot 3 \cdot 5^{2}$

Suppose we wish to use the CFRAC algorithm to factor $N=$ 34189. In the table below, the first column of the j th row corresponds to the j th numerator of a reduced convergent of the simple continued fraction for $\sqrt{34189}$ for $1 \leq j \leq 15$. Letting $B=11$ in the algorithm, we choose a_{j} 's from among these numerators so that $s\left(a_{j}\right)=a_{j}^{2} \operatorname{mods} N$ (the residue in $(-N / 2, N / 2])$ has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that $\operatorname{gcd}(x-y, N)$ has a good chance of giving us a non-trivial factor of N. For example, using rows 3 , 6 , and 12 , we deduce that

$$
\operatorname{gcd}(5732 \cdot 20894 \cdot 15968565-3 \cdot 5 \cdot 7 \cdot 13,34189)
$$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds $B=11$. Write down three different expressions like the one above (that is, expressions of the form $\operatorname{gcd}(x-y, 34189)$ where x and y are given explicitly but should be written as products as I have done above) that correspond to good gcd computations suggested by the CFRAC algorithm for finding a non-trivial factor of 34189 . Note that you should be taking $B=11$ (so my choice above would be a wrong answer) and you should NOT be doing the gcd computation (i.e., I am not asking for a non-trivial factor of 34189).

Suppose we wish to use the CFRAC algorithm to factor $N=$ 34189. In the table below, the first column of the j th row corresponds to the j th numerator of a reduced convergent of the simple continued fraction for $\sqrt{34189}$ for $1 \leq j \leq 15$. Letting $B=11$ in the algorithm, we choose a_{j} 's from among these numerators so that $s\left(a_{j}\right)=a_{j}^{2} \operatorname{mods} N$ (the residue in $(-N / 2, N / 2])$ has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that $\operatorname{gcd}(x-y, N)$ has a good chance of giving us a non-trivial factor of N. For example, using rows 3 , 6 , and 12 , we deduce that

$$
\operatorname{gcd}(5732 \cdot 20894 \cdot 15968565-3 \cdot 5 \cdot 7 \cdot 13,34189)
$$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds $B=11$. Write down three different expressions like the one above (that is, expressions of the form $\operatorname{gcd}(x-y, 34189)$ where x and y are given explicitly but should be written as products as
$(-N / 2, N / 2])$ has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that $\operatorname{gcd}(x-y, N)$ has a good chance of giving us a non-trivial factor of N. For example, using rows 3 , 6 , and 12 , we deduce that

$$
\operatorname{gcd}(5732 \cdot 20894 \cdot 15968565-3 \cdot 5 \cdot 7 \cdot 13,34189)
$$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds $B=11$. Write down three different expressions like the one above (that is, expressions of the form $\operatorname{gcd}(x-y, 34189)$ where x and y are given explicitly but should be written as products as I have done above) that correspond to good gcd computations suggested by the CFRAC algorithm for finding a non-trivial factor of 34189 . Note that you should be taking $B=11$ (so my choice above would be a wrong answer) and you should NOT be doing the gcd computation (i.e., I am not asking for a non-trivial factor of 34189).

row number	numerator	numerator squared mods 34189
1	185	$2^{2} \cdot 3^{2}$
2	1849	$-1 \cdot 3^{2} \cdot 11$
3	5732	$3 \cdot 5 \cdot 13$
4	7581	$-1 \cdot 2^{2} \cdot 37$
5	13313	193
6	20894	$-1 \cdot 3 \cdot 5 \cdot 7$
7	55101	$5 \cdot 7^{2}$
8	75995	$-1 \cdot 2^{2} \cdot 11$
9	587066	$3 \cdot 7 \cdot 11$
10	663061	$-1 \cdot 3 \cdot 41$
11	1913188	43
12	15968565	$-1 \cdot 7 \cdot 13$
13	49818883	$2^{2} \cdot 67$
14	65787448	$-1 \cdot 3 \cdot 7$
15	1102418051	$2^{2} \cdot 3 \cdot 5^{2}$

row number	numerator	numerator squared mods 34189
1	185	2 $2^{2} \cdot 3^{2}$
2	1849	$-1 \cdot 3^{2} \cdot 11$
\bigcirc	-732	\cdots
- 4 -	$\underline{9501}$	
$-$	13010	- 4930
6	20894	$-1 \cdot 3 \cdot 5 \cdot 7$
7	55101	$5 \cdot 7^{2}$
8	75995	$-1 \cdot 2^{2} \cdot 11$
9	587066	3.7.11
-10	cc30c1	
- 1	1010708	$-40 \sim$
-12	15000505	
-10	10910808	$2-2{ }^{2}$
14	65787448	$-1 \cdot 3 \cdot 7$
15	1102418051	$2^{2} \cdot 3 \cdot 5^{2}$

