Test: Monday, November 19

Let $f(x) = x^4 + 4x^2 + x - 1$. To factor f(x) modulo 3 using Berlekamp's algorithm, we compute a certain matrix A as in class and then B = A - I. The result of this computation is (in the field of arithmetic mod 3)

$$B=A-I=egin{pmatrix} 0 & 0 & * & 2\ 0 & 2 & * & 0\ 0 & 0 & * & 1\ 0 & 1 & * & 0 \end{pmatrix},$$

where the elements of the third column have been replaced by asterisks.

- (a) Compute the third column of the matrix B = A I.
- (b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3.

- (a) Compute the third column of the matrix B = A I.
- (b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3.
- (c) Explain why f(x) has exactly two irreducible factors mod 3.
- (d) Using Berlekamp's algorithm and what has been stated here, find a polynomial g(x) of degree ≤ 3 such that when

$$\prod_{s=0}^2 \gcd(g(x)-s,f(x))$$

is computed modulo 3, the result is a non-trivial factorization of f(x) modulo 3.

- (e) Factor f(x) modulo 3 as a product of monic irreducible polynomials modulo 3.
- (f) Explain why f(x) is irreducible in $\mathbb{Z}[x]$.

- (a) Compute the third column of the matrix B = A I.
- (b) Find a basis for the null space of B. Justify that the basis you found is a basis. Don't forget that you are working in the field of arithmetic modulo 3.
- (c) Explain why f(x) has exactly two irreducible factors mod 3.
- (d) Using Berlekamp's algorithm and what has been stated here, find a polynomial g(x) of degree ≤ 3 such that when

$$\prod_{s=0}^2 \gcd(g(x)-s,f(x))$$

is computed modulo 3, the result is a non-trivial factorization of f(x) modulo 3.

- (e) Factor f(x) modulo 3 as a product of monic irreducible polynomials modulo 3.
- (f) Explain why f(x) is irreducible in $\mathbb{Z}[x]$.

Let $\vec{b}_1^*, \vec{b}_2^*, \vec{b}_3^*$, and \vec{b}_4^* be the result of applying the Gram-Schmidt orthogonalization process to a basis $\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4$ for a lattice \mathcal{L} in \mathbb{Q}^4 . Suppose

$$egin{aligned} \langle -2,2,7,-2
angle &= 2ec{b}_1^*+ec{b}_3^*+ec{b}_4^*,\ \langle 0,4,7,4
angle &= ec{b}_2^*+ec{b}_3^*+ec{b}_3^*+ec{b}_4^*, \end{aligned}$$

and

$$\langle -1,1,7,-1
angle = ec{b}_1^* + ec{b}_3^* + ec{b}_4^*.$$

What is the value of

$$\|ec{b}_1^*\|^2 + \|ec{b}_2^*\|^2 + \|ec{b}_3^*\|^2 + \|ec{b}_4^*\|^2$$
?

Justify that your work gives the correct answer. In particular, you should be using a property of $\vec{b}_1^*, \vec{b}_2^*, \vec{b}_3^*, \vec{b}_4^*$, and you should be telling me what property this is and where you are using it.

Let n and b be integers > 1. Define what it means for a pinteger n to be a strong pseudoprime to the base b?

(b) Prove that no integer it is a strong pseudoprime to every base b and $1 < b \leq 2$ and gcd(b, n) = 1.

(c) Is 25 a strong pseudoprime to the base 17 Justify your answer.

Definition: Let $\vec{b}_1, \ldots, \vec{b}_n$ be a basis for a lattice \mathcal{L} and $\vec{b}_1^*, \ldots, \vec{b}_n^*$ the corresponding basis for \mathbb{R}^n obtained from the Gram-Schmidt orthogonalization process, with μ_{ij} as defined before. Then $\vec{b}_1, \ldots, \vec{b}_n$ is said to be *reduced* if

$$\begin{array}{ll} (\mathrm{i}) \ |\mu_{ij}| \leq \frac{1}{2} & \text{for } 1 \leq j < i \leq n \\ \\ (\mathrm{ii}) \ \|\vec{b}_i^* + \mu_{i,i-1} \vec{b}_{i-1}^*\|^2 \geq \frac{3}{4} \, \|\vec{b}_{i-1}^*\|^2 & \text{for } 1 < i \leq n. \end{array}$$

$$ec{b}_{i}^{*} = ec{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_{j}^{*} \quad (1 \leq i \leq n)$$

$$\mu_{ij} = \mu_{i,j} = rac{ec{b}_i \cdot ec{b}_j^*}{ec{b}_j^* \cdot ec{b}_j^*} \quad (1 \leq j < i \leq n)$$

Definition: Let $\vec{b}_1, \ldots, \vec{b}_n$ be a basis for a lattice \mathcal{L} and $\vec{b}_1^*, \ldots, \vec{b}_n^*$ the corresponding basis for \mathbb{R}^n obtained from the Gram-Schmidt orthogonalization process, with μ_{ij} as defined before. Then $\vec{b}_1, \ldots, \vec{b}_n$ is said to be *reduced* if

$$\begin{array}{ll} \text{(i)} \ |\mu_{ij}| \leq \frac{1}{2} & \text{for } 1 \leq j < i \leq n \\ \text{(ii)} \ \|\vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*\|^2 \geq \frac{3}{4} \, \|\vec{b}_{i-1}^*\|^2 & \text{for } 1 < i \leq n. \end{array}$$

$$ec{b}_{i}^{*} = ec{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_{j}^{*} \quad (1 \leq i \leq n)$$

Let $\vec{b}_1, \ldots, \vec{b}_n$ be a reduced basis for a lattice \mathcal{L} . Prove that if $\vec{b} \in \mathcal{L}$, then $\|\vec{b}_1\| \leq 2^{(n-1)/2} \|\vec{b}\|$.

Online Test Problem

row number	numerator	numerator squared mods 34189
1	185	$2^2\cdot 3^2$
2	1849	$-1\cdot 3^2\cdot 11$
3	5732	$3 \cdot 5 \cdot 13$
4	$\boldsymbol{7581}$	$-1\cdot2^2\cdot37$
5	13313	193
6	20894	$-1\cdot 3\cdot 5\cdot 7$
7	55101	$5\cdot7^2$
8	75995	$-1\cdot 2^2\cdot 11$
9	587066	$3 \cdot 7 \cdot 11$
10	663061	$-1\cdot 3\cdot 41$
11	1913188	43
12	15968565	$-1 \cdot 7 \cdot 13$
13	49818883	$2^2 \cdot 67$
14	65787448	$-1\cdot 3\cdot 7$
15	1102418051	$2^2 \cdot 3 \cdot 5^2$

Suppose we wish to use the CFRAC algorithm to factor N = 34189. In the table below, the first column of the *j*th row corresponds to the *j*th numerator of a reduced convergent of the simple continued fraction for $\sqrt{34189}$ for $1 \leq j \leq 15$. Letting B = 11 in the algorithm, we choose a_j 's from among these numerators so that $s(a_j) = a_j^2 \mod N$ (the residue in (-N/2, N/2]) has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that gcd(x - y, N) has a good chance of giving us a non-trivial factor of N. For example, using rows 3, 6, and 12, we deduce that

 $gcd(5732 \cdot 20894 \cdot 15968565 - 3 \cdot 5 \cdot 7 \cdot 13, 34189)$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds B = 11. Write down three different expressions like the one above (that is, expressions of the form gcd(x - y, 34189) where x and y are given explicitly but should be written as products as I have done above) that correspond to good gcd computations suggested by the CFRAC algorithm for finding a non-trivial factor of 34189. Note that you should be taking B = 11 (so my choice above would be a wrong answer) and you should NOT be doing the gcd computation (i.e., I am not asking for a non-trivial factor of 34189).

Suppose we wish to use the CFRAC algorithm to factor N =34189. In the table below, the first column of the *j*th row corresponds to the *j*th numerator of a reduced convergent of the simple continued fraction for $\sqrt{34189}$ for $1 \leq j \leq 15$. Letting B = 11 in the algorithm, we choose a_i 's from among these numerators so that $s(a_j) = a_j^2 \mod N$ (the residue in (-N/2, N/2] has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that gcd(x - y, N) has a good chance of giving us a non-trivial factor of N. For example, using rows 3, 6, and 12, we deduce that

$gcd(5732 \cdot 20894 \cdot 15968565 - 3 \cdot 5 \cdot 7 \cdot 13, 34189)$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds B = 11. Write down three different expressions like the one above (that is, expressions of the form gcd(x - y, 34189) where x and y are given explicitly but should be written as products as

(-N/2, N/2]) has no prime factor greater than B. Note: We treat -1 as if it is a prime number. For the CFRAC algorithm, we end up attempting to factor N by properly combining information from different rows of the table to produce positive integers x and y such that gcd(x - y, N) has a good chance of giving us a non-trivial factor of N. For example, using rows 3, 6, and 12, we deduce that

 $gcd(5732 \cdot 20894 \cdot 15968565 - 3 \cdot 5 \cdot 7 \cdot 13, 34189)$

would be a good gcd to compute to try to factor N except that the prime divisor 13 appearing in this expression exceeds B = 11. Write down three different expressions like the one above (that is, expressions of the form gcd(x - y, 34189) where x and y are given explicitly but should be written as products as I have done above) that correspond to good gcd computations suggested by the CFRAC algorithm for finding a non-trivial factor of 34189. Note that you should be taking B = 11 (so my choice above would be a wrong answer) and you should NOT be doing the gcd computation (i.e., I am not asking for a non-trivial factor of 34189).

row number	numerator	numerator squared mods 34189
1	185	$2^2\cdot 3^2$
2	1849	$-1 \cdot 3^2 \cdot 11$
3	5732	$3\cdot 5\cdot 13$
4	7581	$-1 \cdot 2^2 \cdot 37$
5	13313	193
6	20894	$-1\cdot 3\cdot 5\cdot 7$
7	55101	$5\cdot7^2$
8	75995	$-1\cdot 2^2\cdot 11$
9	587066	$3 \cdot 7 \cdot 11$
10	663061	$-1 \cdot 3 \cdot 41$
11	1913188	43
12	15968565	$-1 \cdot 7 \cdot 13$
13	49818883	$2^2 \cdot 67$
14	65787448	$-1\cdot 3\cdot 7$
15	1102418051	$2^2 \cdot 3 \cdot 5^2$

row number	numerator	numerator squared mods 34189
1	185	$2^2\cdot 3^2$
2	1849	$-1\cdot 3^2\cdot 11$
	5792	
G	20204	
0	20894	$-1 \cdot 3 \cdot 5 \cdot 7$
7	55101	$5\cdot7^2$
8	75995	$-1\cdot 2^2\cdot 11$
9	587066	$3\cdot 7\cdot 11$
10	662061	
	1010100	
	TOTOTOO	TU THE AND
	15900505	
19	10010000 10010000	
14	65787448	$-1\cdot 3\cdot 7$
15	1102418051	$2^2\cdot 3\cdot 5^2$