Addition and Subtraction

How fast do we add (or subtract) two numbers n and m ?
How fast can we add (or subtract) two numbers n and m ?

Definition. Let $A(d)$ denote the maximal number of steps required to add two numbers with $\leq d$ bits.

Theorem. $A(d) \asymp d$.
Theorem. $S(d) \asymp d$.

Multiplication

How fast do we multiply two numbers n and m ?
How fast can we multiply two numbers n and m ?
Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

Theorem. $M(d) \ll d^{2}$.

Can we do better? Yes

How can we see "easily" that something better is possible?

Attempt 2

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From
$n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}$,
deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.
- Hence, $M(d) \leq(3+\varepsilon)^{s} M\left(\left(d+2^{s+2}-4\right) / 2^{s}\right)$.
- Take $s=\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

Theorem. $M(d) \ll d^{2}$.

- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

$$
\frac{\log 3}{\log 2}=1.5849625
$$

Theorem. $M(d) \ll d^{1.585}$.

HW: Due September 7 (Friday)
Page 3, Problems 1 and 2
Page 5, unnumbered homework (first set)
$($ you may use $(\log 5 / \log 3)+\varepsilon$ instead of $\log 5 / \log 3)$

Idea for Doing Better

- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From
$n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}$, deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.

Think in terms of writing

$$
n=a_{n} 2^{2 r}+b_{n} 2^{r}+c_{n} \quad \text { and } \quad m=a_{m} 2^{2 r}+b_{m} 2^{r}+c_{m},
$$

where $r=\lfloor d / 3\rfloor$.

How many multiplications does it take to expand $n m$?

Theorem. For every $\varepsilon>0$, we have $M(d) \lll d^{1+\varepsilon}$.
Theorem. $M(d) \ll d(\log d) \log \log d$.
Theorem. Given distinct numbers $x_{0}, x_{1}, \ldots, x_{k}$ and numbers $y_{0}, y_{1}, \ldots, y_{k}$, there is a unique polynomial f of degree $\leq k$ such that $f\left(x_{j}\right)=y_{j}$ for all j.

Lagrange Interpolation:

$$
f(x)=\sum_{i=0}^{k}\left(\prod_{\substack{0 \leq j \leq k \\ j \neq i}} \frac{x-x_{j}}{x_{i}-x_{j}}\right) \boldsymbol{y}_{i}
$$

Theorem. For every $\varepsilon>0$, we have $M(d) \ll{ }_{\varepsilon} d^{1+\varepsilon}$.

- Suppose n and m have $\leq k r$ digits. Write

$$
n=\sum_{u=0}^{k-1} a_{u} 2^{u r} \quad \text { and } \quad m=\sum_{v=0}^{k-1} b_{v} 2^{v r}
$$

- Then $n m=f\left(2^{r}\right)$, where $f(x)=\left(\sum_{u=0}^{k-1} a_{u} x^{u}\right)\left(\sum_{v=0}^{k-1} b_{v} x^{v}\right)$.
- Compute the $2 k-1$ numbers $y_{j}=f(j)$, for $0 \leq j \leq 2 k-2$

Lagrange Interpolation:

- Sur

$$
f(x)=\sum_{i=0}^{k}\left(\prod_{\substack{0 \leq j \leq k \\ j \neq i}} \frac{x-x_{j}}{x_{i}-x_{j}}\right) y_{i}
$$

- Then $n m=f\left(2^{r}\right)$, where $f(x)=\left(\sum_{u=0}^{k-1} a_{u} x^{u}\right)\left(\sum_{v=0}^{k-1} b_{v} x^{v}\right)$.
- Compute the $2 k-1$ numbers $y_{j}=f(j)$, for $0 \leq j \leq 2 k-2$, using $2 k-1$ multiplications of two $\leq r+c_{k}$ digit numbers.
- Compute the coefficients of $f(x)$ expanded, using Lagrange interpolation, in $O_{k}(r)$ steps.

Theorem. For every $\varepsilon>0$, we have $M(d) \lll d^{1+\varepsilon}$.

- Suppose n and m have $\leq k r$ digits. Write

$$
n=\sum_{u=0}^{k-1} a_{u} 2^{u r} \quad \text { and } \quad m=\sum_{v=0}^{k-1} b_{v} 2^{v r}
$$

- Then $n m=f\left(2^{r}\right)$, where $f(x)=\left(\sum_{u=0}^{k-1} a_{u} x^{u}\right)\left(\sum_{v=0}^{k-1} b_{v} x^{v}\right)$.
- Compute the $2 k-1$ numbers $y_{j}=f(j)$, for $0 \leq j \leq 2 k-2$, using $2 k-1$ multiplications of two $\leq r+c_{k}$ digit numbers.
- Compute the coefficients of $f(x)$ expanded, using Lagrange interpolation, in $O_{k}(r)$ steps.
- Deduce $M(k r) \leq(2 k-1) M\left(r+c_{k}\right)+c_{k}^{\prime} r$ so that

$$
M(d) \ll(2 k-1)^{\log _{k} d} \ll d^{\log (2 k-1) / \log k}
$$

Division

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

Definition. Let $M^{\prime}(d)$ denote an upper bound on the number of steps required to multiply two numbers with $\leq \boldsymbol{d}$ bits. Let $D^{\prime}(d)$ denote an upper bound on the number of steps required to obtain q and r given n and m each have $\leq d$ binary digits.

Theorem. Suppose $M^{\prime}(d)$ has the form $d f(d)$ where $f(d)$ is an increasing function of d. Then $D^{\prime}(d) \ll M^{\prime}(d)$.

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

We need only compute $1 / m$ to sufficient accuracy.

Suppose n and m have $\leq s$ digits.

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

We need only compute $1 / m$ to sufficient accuracy.

Suppose n and m have $\leq s$ digits. If $1 / m=0 . d_{1} d_{2} d_{3} d_{4} \ldots$ (base 2) with d_{1}, \ldots, d_{s} known, then

$$
\frac{n}{m}=\frac{1}{2^{s}}\left(n \times d_{1} d_{2} \ldots d_{s}\right)+\theta, \quad \text { where } 0 \leq \theta \leq 1
$$

Write this in the form

$$
\frac{n}{m}=\frac{1}{2^{s}}\left(q^{\prime} 2^{s}+q^{\prime \prime}\right)+\theta
$$

so $n=m q^{\prime}+\theta^{\prime}$ where $0 \leq \theta^{\prime}<2 m$. Try $q=q^{\prime}$ and $q=q^{\prime}+1$.

Newton's Method

Say we want to compute $1 / m$.

Newton's Method

Say we want to compute $1 / m$. Take a function $f(x)$ which has root $1 / m$. If x^{\prime} is an approximation to the root, then how can we get a better approximation? Take

$$
f(x)=m-1 / x
$$

Starting with $x^{\prime}=x_{0}$, this leads to the approximations

$$
x_{n+1}=2 x_{n}-m x_{n}^{2}
$$

Note that if $x_{n}=(1-\varepsilon) / m$, then $x_{n+1}=\left(1-\varepsilon^{2}\right) / m$.

Algorithm from Knuth, Vol. 2, pp. 295-6

Algorithm R. Let v in binary be $v=\left(0 . v_{1} v_{2} v_{3} \ldots\right)_{2}$, with $v_{1}=1$. The algorithm outputs z satisfying

$$
|z-1 / v| \leq 2^{-n} .
$$

$$
z \in[0,2]
$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right) /\right.$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.
R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

