Addition and Subtraction

How fast do we add (or subtract) two numbers n and m?

How fast can we add (or subtract) two numbers n and m?

Definition. Let A(d) denote the maximal number of steps required to add two numbers with $\leq d$ bits.

Theorem. $A(d) \asymp d$.

Theorem. $S(d) \asymp d$.

Multiplication

How fast do we multiply two numbers n and m?

How fast can we multiply two numbers n and m?

Definition. Let M(d) denote the number of steps required to multiply two numbers with $\leq d$ bits.

Theorem. $M(d) \ll d^2$.

Can we do better? Yes

How can we see "easily" that something better is possible?

Attempt 2

Definition. Let M(d) denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon > 0$.
- Let n and m have $\leq d$ bits, and write $n = a_n \times 2^r + b_n$ and $m = a_m \times 2^r + b_m$, where $r = \lfloor d/2 \rfloor$ and the a_j and b_j are integers with $b_j < 2^r$.

• From

- Hence, $M(d) \leq (3+\varepsilon)^s M((d+2^{s+2}-4)/2^s).$
- Take $s = \lfloor \log_2 d \rfloor C$ (with C big). Then $2^s \ge d/2^{C+1}$.
- Conclude, $M(d) \ll (3 + \varepsilon)^{\log_2 d} = d^{\log(3 + \varepsilon)/\log 2}$.

Theorem. $M(d) \ll d^2$.

• Conclude, $M(d) \ll (3 + \varepsilon)^{\log_2 d} = d^{\log(3 + \varepsilon)/\log 2}$.

$$\frac{\log 3}{\log 2} = 1.5849625$$

Theorem. $M(d) \ll d^{1.585}$.

HW: Due September 7 (Friday) Page 3, Problems 1 and 2 Page 5, unnumbered homework (first set) (you may use $(\log 5 / \log 3) + \varepsilon$ instead of $\log 5 / \log 3$)

Idea for Doing Better

- Let n and m have $\leq d$ bits, and write $n = a_n \times 2^r + b_n$ and $m = a_m \times 2^r + b_m$, where $r = \lfloor d/2 \rfloor$ and the a_j and b_j are integers with $b_j < 2^r$.
- From

Think in terms of writing

 $n=a_n2^{2r}+b_n2^r+c_n \quad ext{and} \quad m=a_m2^{2r}+b_m2^r+c_m,$ where $r=\lfloor d/3
floor.$

How many multiplications does it take to expand nm?

Theorem. For every $\varepsilon > 0$, we have $M(d) \ll_{\varepsilon} d^{1+\varepsilon}$.

Theorem. $M(d) \ll d (\log d) \log \log d$.

Theorem. Given distinct numbers x_0, x_1, \ldots, x_k and numbers y_0, y_1, \ldots, y_k , there is a unique polynomial f of degree $\leq k$ such that $f(x_j) = y_j$ for all j.

Lagrange Interpolation:

$$f(x) = \sum_{i=0}^k \left(\prod_{\substack{0 \leq j \leq k \ j
eq i}} rac{x-x_j}{x_i-x_j}
ight) y_i$$

Theorem. For every $\varepsilon > 0$, we have $M(d) \ll_{\varepsilon} d^{1+\varepsilon}$.

• Suppose n and m have $\leq kr$ digits. Write

$$n = \sum_{u=0}^{k-1} a_u 2^{ur} \quad ext{and} \quad m = \sum_{v=0}^{k-1} b_v 2^{vr}.$$

$$ullet$$
 Then $nm=f(2^r),$ where $f(x)=igg(\sum_{u=0}^{k-1}a_ux^uigg)igg(\sum_{v=0}^{k-1}b_vx^vigg).$

• Compute the 2k-1 numbers $y_j = f(j)$, for $0 \le j \le 2k-2$

• Then
$$nm=f(2^r),$$
 where $f(x)=igg(\sum_{u=0}^{k-1}a_ux^uigg)igg(\sum_{v=0}^{k-1}b_vx^vigg).$

- Compute the 2k-1 numbers $y_j = f(j)$, for $0 \le j \le 2k-2$, using 2k-1 multiplications of two $\le r+c_k$ digit numbers.
- Compute the coefficients of f(x) expanded, using Lagrange interpolation, in $O_k(r)$ steps.

Theorem. For every $\varepsilon > 0$, we have $M(d) \ll_{\varepsilon} d^{1+\varepsilon}$.

• Suppose n and m have $\leq kr$ digits. Write

$$n = \sum_{u=0}^{k-1} a_u 2^{ur} \quad ext{and} \quad m = \sum_{v=0}^{k-1} b_v 2^{vr}.$$

$$ullet$$
 Then $nm=f(2^r),$ where $f(x)=igg(\sum_{u=0}^{k-1}a_ux^uigg)igg(\sum_{v=0}^{k-1}b_vx^vigg).$

- Compute the 2k-1 numbers $y_j = f(j)$, for $0 \le j \le 2k-2$, using 2k-1 multiplications of two $\le r+c_k$ digit numbers.
- Compute the coefficients of f(x) expanded, using Lagrange interpolation, in $O_k(r)$ steps.
- ullet Deduce $M(kr) \leq (2k-1)M(r+c_k)+c_k'r$ so that $M(d) \ll (2k-1)^{\log_k d} \ll d^{\log(2k-1)/\log k}.$

Division

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$n = mq + r$$
 and $0 \le r < m$.

Definition. Let M'(d) denote an upper bound on the number of steps required to multiply two numbers with $\leq d$ bits. Let D'(d) denote an upper bound on the number of steps required to obtain q and r given n and m each have $\leq d$ binary digits.

Theorem. Suppose M'(d) has the form df(d) where f(d) is an increasing function of d. Then $D'(d) \ll M'(d)$. Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

n = mq + r and $0 \le r < m$.

We need only compute 1/m to sufficient accuracy.

Suppose n and m have $\leq s$ digits.

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$n = mq + r \quad ext{and} \quad 0 \leq r < m.$$

We need only compute 1/m to sufficient accuracy.

Suppose n and m have $\leq s$ digits. If $1/m = 0.d_1d_2d_3d_4...$ (base 2) with d_1, \ldots, d_s known, then

$$rac{n}{m} = rac{1}{2^s}(n imes d_1d_2\ldots d_s) + heta, \quad ext{where} \ 0 \leq heta \leq 1.$$

Write this in the form

$$rac{n}{m}=rac{1}{2^s}(q^\prime 2^s+q^{\prime\prime})+ heta,$$

so $n = mq' + \theta'$ where $0 \le \theta' < 2m$. Try q = q' and q = q' + 1.

Newton's Method

Say we want to compute 1/m.

Newton's Method

Say we want to compute 1/m. Take a function f(x) which has root 1/m. If x' is an approximation to the root, then how can we get a better approximation? Take

$$f(x) = m - 1/x.$$

Starting with $x' = x_0$, this leads to the approximations

$$x_{n+1}=2x_n-mx_n^2.$$

Note that if $x_n = (1 - \varepsilon)/m$, then $x_{n+1} = (1 - \varepsilon^2)/m$.

Algorithm from Knuth, Vol. 2, pp. 295-6

Algorithm R. Let v in binary be $v = (0.v_1v_2v_3...)_2$, with $v_1 = 1$. The algorithm outputs z satisfying

$$|z-1/v|\leq 2^{-n}. \qquad z\in [0,2]$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4} \lfloor 32/(4v_1 + 2v_2 + v_3) \rfloor$ and $k \leftarrow 0$.

- R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(**.**\cdots*)_2$ with 2^k+1 places after the radix point.) Calculate z^2 exactly. Then calculate $V_k z^2$ exactly, where $V_k = (0.v_1v_2 \dots v_{2^{k+1}+3})_2$. Then set $z \leftarrow 2z - V_k z^2 + r$, where $0 \leq r < 2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.
- R3. [End Test] If $2^k < n$, go back to step R2; otherwise the algorithm terminates.