
Final Exam, 2007

1. Prove that 6601 = 7 · 23 · 41 is an absolute pseudoprime.

2. Let n be a positive integer. Recall that the value of

nX

k=1

1

k

can be estimated by comparing it’s value to an integral. By

making such a comparison, explain why

nX

k=1

1

k
 1 + log n.

As usual, log n refers to the natural logarithm of n.

3. Let B(x) denote the number of natural numbers n  x

with a prime factor >
p

n. Prove that B(x) ⇠ (log 2)x.

You may use that
P

px
1/p = log log x + A + O(1/ log x)

for some constant A and that ⇡(x) = O(x/ log x). (Note: If

you end up preferring to replace >
p

n above with >
p

x,

then feel free to do so.)

4. Let n be a positive integer. Suppose n � 1 = FR where

all the prime factors of F are known and gcd(F, R) = 1.

Suppose further that there exists an integer a such that

a
n�1 ⌘ 1 (mod n) and for all primes p dividing F we have

gcd(a
(n�1)/p � 1, n) = 1.

Final Exam, 2007

1. Prove that 6601 = 7 · 23 · 41 is an absolute pseudoprime.

2. Let n be a positive integer. Recall that the value of

nX

k=1

1

k

can be estimated by comparing it’s value to an integral. By

making such a comparison, explain why

nX

k=1

1

k
 1 + log n.

As usual, log n refers to the natural logarithm of n.

3. Let B(x) denote the number of natural numbers n  x

with a prime factor >
p

n. Prove that B(x) ⇠ (log 2)x.

You may use that
P

px
1/p = log log x + A + O(1/ log x)

for some constant A and that ⇡(x) = O(x/ log x). (Note: If

you end up preferring to replace >
p

n above with >
p

x,

then feel free to do so.)

4. Let n be a positive integer. Suppose n � 1 = FR where

all the prime factors of F are known and gcd(F, R) = 1.

Suppose further that there exists an integer a such that

a
n�1 ⌘ 1 (mod n) and for all primes p dividing F we have

gcd(a
(n�1)/p � 1, n) = 1.

Final Exam, 2007

1. Prove that 6601 = 7 · 23 · 41 is an absolute pseudoprime.

2. Let n be a positive integer. Recall that the value of

nX

k=1

1

k

can be estimated by comparing it’s value to an integral. By

making such a comparison, explain why

nX

k=1

1

k
 1 + log n.

As usual, log n refers to the natural logarithm of n.

3. Let B(x) denote the number of natural numbers n  x

with a prime factor >
p

n. Prove that B(x) ⇠ (log 2)x.

You may use that
P

px
1/p = log log x + A + O(1/ log x)

for some constant A and that ⇡(x) = O(x/ log x). (Note: If

you end up preferring to replace >
p

n above with >
p

x,

then feel free to do so.)

4. Let n be a positive integer. Suppose n � 1 = FR where

all the prime factors of F are known and gcd(F, R) = 1.

Suppose further that there exists an integer a such that

a
n�1 ⌘ 1 (mod n) and for all primes p dividing F we have

gcd(a
(n�1)/p � 1, n) = 1.



Final Exam, 2007

1. Prove that 6601 = 7 · 23 · 41 is an absolute pseudoprime.

2. Let n be a positive integer. Recall that the value of

nX

k=1

1

k

can be estimated by comparing it’s value to an integral. By

making such a comparison, explain why

nX

k=1

1

k
 1 + log n.

As usual, log n refers to the natural logarithm of n.

3. Let B(x) denote the number of natural numbers n  x

with a prime factor >
p

n. Prove that B(x) ⇠ (log 2)x.

You may use that
P

px
1/p = log log x + A + O(1/ log x)

for some constant A and that ⇡(x) = O(x/ log x). (Note: If

you end up preferring to replace >
p

n above with >
p

x,

then feel free to do so.)

4. Let n be a positive integer. Suppose n � 1 = FR where

all the prime factors of F are known and gcd(F, R) = 1.

Suppose further that there exists an integer a such that

a
n�1 ⌘ 1 (mod n) and for all primes p dividing F we have

gcd(a
(n�1)/p � 1, n) = 1.



Final Exam, 2007

1. Prove that 6601 = 7 · 23 · 41 is an absolute pseudoprime.

2. Let n be a positive integer. Recall that the value of

nX

k=1

1

k

can be estimated by comparing it’s value to an integral. By

making such a comparison, explain why

nX

k=1

1

k
 1 + log n.

As usual, log n refers to the natural logarithm of n.

3. Let B(x) denote the number of natural numbers n  x

with a prime factor >
p

n. Prove that B(x) ⇠ (log 2)x.

You may use that
P

px
1/p = log log x + A + O(1/ log x)

for some constant A and that ⇡(x) = O(x/ log x). (Note: If

you end up preferring to replace >
p

n above with >
p

x,

then feel free to do so.)

4. Let n be a positive integer. Suppose n � 1 = FR where

all the prime factors of F are known and gcd(F, R) = 1.

Suppose further that there exists an integer a such that

a
n�1 ⌘ 1 (mod n) and for all primes p dividing F we have

gcd(a
(n�1)/p � 1, n) = 1.

(a) What does the Proth, Pocklington, Lehmer Test

allow us to conclude? In other words, the above

is everything except the last sentence of the Proth,

Pocklington, Lehmer Test that we stated in class.

What is the last sentence? (I don’t care about the

exact wording but do want the precise meaning of

whatever you write.)

(b) Prove the Proth, Pocklington, Lehmer Test.

5. Let

f(x) = an

nY

j=1

(x�↵j) and w(x) = an

Y

1jn

|↵j|>1

(x�↵j)

Y

1jn

|↵j|1

(↵jx�1).

Recall that f̃(x) = x
n
f(1/x) and ew(x) = x

n
w(1/x). Using

(do not prove) w(x) ew(x) = f(x)f̃(x), explain why M(f) 
kfk (where M(f) is the Mahler measure of f).

6. Hadamard’s inequality asserts that

det
�
~b1, . . . ,~bn

�
 k~b1k k~b2k · · · k~bnk,

where the ~bj correspond to column vectors in Rn
. The proof

of Hadamard’s inequality we gave in class can be broken

up into three parts. After (b) and (c) below, the above

inequality should be clear.
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(a) Give a brief explanation as to why

det
�
~b1, . . . ,~bn

�
= det

�
~b

⇤
1
, . . . ,~b

⇤
n

�
,

where the ~b
⇤
j

come from the Gram-Schmidt orthog-

onalization process and are defined by

~b
⇤
i
= ~bi�

i�1X

j=1

µij
~b

⇤
j

(for 1  i  n), µij = µi,j =

~bi ·~b⇤
j

~b
⇤
j

·~b⇤
j

(for 1  j < i  n).

(b) Using part (a), explain why det
�
~b1, . . . ,~bn

�2
=✓ nY

i=1

k~b⇤
i
k
◆2

. You may use here and in the next part

that the ~b
⇤
j
are pairwise orthogonal; you do not need

to justify this.

(c) Explain why k~b⇤
i
k  k~bik for each i 2 {1, 2, . . . , n}.

7. Define what it means for a basis ~b1, . . . ,~bn for a lattice L to
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8. Let f(x) = x
5
+ x + 1. Suppose we want to factor f(x)8. Let f(x) = x

5
+ x + 1. Suppose we want to factor f(x)

modulo 2. Working modulo 2, we compute a certain matrix

A and then B = A � I. The result of this computation is

(in the field of arithmetic modulo 2)

B = A � I =

0

BBBBBBB@

0 0 0 ⇤ 0

0 1 0 ⇤ 0

0 1 1 ⇤ 0

0 0 0 ⇤ 1

0 0 1 ⇤ 0

1

CCCCCCCA

,

where the elements of the fourth column have been replaced

by asterisks. Using Berlekamp’s algorithm and what has

been stated here, find a polynomial g(x) of degree  4 such

that when gcd(f(x), g(x)) is computed modulo 2, the result

is a non-trivial factor of f(x) modulo 2.

9. Let~b1, . . . ,~bn be a basis for a lattice L, and suppose~b
⇤
1
, . . . ,~b

⇤
n

are the corresponding vectors obtained from the Gram-

Schmidt orthogonalization process. Suppose ~b 2 L with

~b 6= 0. Then ~b can be written in the form

~b = u1
~b1 + · · · + uk

~bk, where each uj 2 Z and uk 6= 0.

Explain why k~bk2 � k~b⇤
k
k2

.

10. Given n = 26989, we want to use Dixon’s Factoring Al-

gorithm and the following tabulated information to find a



8. Let f(x) = x
5
+ x + 1. Suppose we want to factor f(x)

modulo 2. Working modulo 2, we compute a certain matrix

A and then B = A � I. The result of this computation is

(in the field of arithmetic modulo 2)

B = A � I =

0

BBBBBBB@

0 0 0 ⇤ 0

0 1 0 ⇤ 0

0 1 1 ⇤ 0

0 0 0 ⇤ 1

0 0 1 ⇤ 0

1

CCCCCCCA

,

where the elements of the fourth column have been replaced

by asterisks. Using Berlekamp’s algorithm and what has

been stated here, find a polynomial g(x) of degree  4 such

that when gcd(f(x), g(x)) is computed modulo 2, the result

is a non-trivial factor of f(x) modulo 2.

9. Let ~b1, . . . ,~bn be a basis for a lattice L, and let ~b
⇤
1
, . . . ,~b

⇤
n

be

the corresponding vectors obtained from the Gram-Schmidt

orthogonalization process. Suppose ~b 2 L with ~b 6= 0. Then

~b can be written in the form

~b = u1
~b1 + · · · + uk

~bk, where each uj 2 Z and uk 6= 0.

Explain why k~bk2 � k~b⇤
k
k2

.

10. Given n = 26989, we want to use Dixon’s Factoring Al-

gorithm and the following tabulated information to find a



10. We want to make use of Dixon’s Factoring Algorithm with

the table below to get a nontrivial factor of n = 26989.

The table contains some random integers a found for which

s(a) = a
2

mod n has all its prime factors  11. Use Dixon’s

Factoring Algorithm to reduce coming up with a factor of

n to the computation of gcd(x � y, n) where you tell me

precisely what the values of x and y are (each should involve

a product of specific numbers - you do not need to expand

products).

row number random a factorization of a
2

mod 26989

1 763 2
3 · 5

2 · 7 · 11

2 595 2
5 · 3

2 · 11

3 1026 3 · 5 · 7

4 830 3
4 · 5

2 · 7

5 519 2
2 · 3

3 · 5 · 7
2



Comp Exam Problem

We showed in class that if f(x), g(x) and h(x) are polynomials
in Z[x] satisfying f(x) = g(x)h(x), then kg(x)k  2deg gkf(x)k.
We did this for a reason. Let f(x) = x

8 + x
4 + x

2 � 1. Then

f(x) ⌘
�
x
2 + 1

�
(x + 23) (x + 80)

�
x
2 + 22x + 94

� �
x
2 + 81x + 94

�
(mod 103),

where the factors on the right are irreducible modulo 103. The
polynomial f(x) factors as x

2 + 1 times the product of two dif-
ferent irreducible cubics u(x) and v(x) in Z[x]. Using the fac-
torization of f(x) modulo 103, determine “with justification”
which of the factorizations below are the factorizations of u(x)
and v(x) modulo 103. You should not try to factor f(x) in Z[x]
for this problem.

(x + 23)
�
x
2 + 22x + 94

�

(x + 23)
�
x
2 + 81x + 94

�

(x + 80)
�
x
2 + 22x + 94

�
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�
x
2 + 81x + 94
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