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1. Be able to do problems related to any of the homewoIk. pracﬁce prob[emg

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n 1s a strong
pseudoprime to every base b with 1 < b < n and ged(b,n) = 1.

27 Beableto prove that ecd(w. U)1s =< 1og IN"0on average and that usually 1t’s much smaller.

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor > /n.

8. Be able to factor n using Dixon’s Algorithm (see homework).

(e} ™ 11 . T a_ - ™ _ _ _9_ A1

9. Be able to factor n using the Quadratic Sieve Algorithm.

fion and you will'need to make use of 1tand give the remaining details?)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.
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12. Be able to state and prove Hadamard’s inequality.

13. Be able to define what it means for a basis in a lattice to be reduced.

14 Ra ahla tn chaw (T in tha natac that 1c that

14. Beabletoproveb € £, b#0 = |by| <2 Y/2||b]|.
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Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.
We stated that M (d) < d(log d) loglogd. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1 .
Zwkj: 0 k%0 (modn)
=0 =

n fk=0 (modn).
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Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1 .
Zwkj _ 0 k%0 (modn)
j=0

n fk=0 (modn).

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

(1 1 1 1)
1 w w? w1
D — D(n, CJJ) p— ]_ wz w4 e o wz(n_l)
\1 w1 H2n-1) L, w(n—l)Z)
For @ = (ug, U1y...,Up_1) € C?, define ¥ = (vg, V15...,Vp_1),
called the discrete Fourier transform of #, by ¥ = Dul.

The inverse discrete Fourier transform of a vector v € C" is
defined as (1/n)D(n,w ) v,

Why is (1/n)D(n,w !')D(n,w) the identity matrix?



A Polynomial Connection

Observe that if f(x) = Z;":_ll a;x’ € Clx], then

D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw" ).
On the other hand, if we know f(1), f(w),..., f(w™ ') and

do not know the coefficients of f(x), then we can obtain the
coefficients from

D_1<.f(1)7 f(w),..., .f(wn_l)>T = (@oy A1y .+« a'n—1>T-
Note that here D! = (1/n)D(n,w™1).
If

F(z) = f(1) + f(@)a + -+ F(w"a""",
then

F(1) = nay, F(w_l) = Na1, ..., F(w_("_l)) = Na,_1.



The Fast Fourier Transform

We explain a fast way of performing the computation in

(*)  D{ag,a,...,an-1)" = (f(1), f(w),..., F(w" )"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute
f(1), f(w)y..., f(w™ ). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that

o) = FLGEOTD) for 0< < (n/2) ~ 1.



(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2))  for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

"
A(n) =2A(n/2) + 2n —_:;> A(n) = (2/log2)nlogn + Cn

for some constant C.
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We explain a fast way of performing the computation in

(*)  D{ag,a,...,an-1)" = (f(1), f(w),..., F(w" )"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
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There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2.| Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(w),..., f(w™ ). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wy) = fe(wp?*0/20)  for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

An) =2A(n/2) 4+ 2n %A(n) = (2/log2)nlogn + Cn

for some constant C.



(*) D <(1,0, A1y ooy a'n—1>T — <f(1)9 f(w)a c e f(wn_1)>T

(**) D—1<f(1)7 f(w), c e f(wn_1)>T — <a’09 A1y ooy an—1>T

Comment: Each of these can be computed using O(n logn)
complex arithmetic operations.
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multiplications.
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These can be computed with O(nlogn) complex arithmetic
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g(x) and h(x) with leading zeroes as
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takes n multiplications. Applying (*x*) allows us to compute
the coefficients of f(x) with O(nlogn) further arithmetic

operations.
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g(x) and h(x) with leading zeroes as

g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),

D <b09 blv e bn—1>T — <g(1)9 g(""’)? © e ,g(wn—1)>T

and
D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations. Computing f(w’) = g(w?)h(w?) for 0 < j < n-—1
takes n multiplications. Applying (*x*) allows us to compute
the coefficients of f(x) with O(nlogn) further arithmetic
operations. Rescaling, we deduce that the product of two
polynomials of degree < n in C|x| can be computed with
O(nlogn) complex additions and multiplications.
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1968, Volker Straussen showed one can approximate the roots
of unity to sufficient accuracy to obtain a total complexity
for the multiplication of order nlogn (loglogn)'*¢ (for any
fixed e > 0) where n is a bound on the number of bits of
A and B.



Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (bf,a_l ¢ oo b1b0)2 and B = (Cs—l ¢ oo Clco)g.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients
of f(x) are not in {0,1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coefficients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to sufficient accuracy to obtain a total complexity
for the multiplication of order nlogn (loglogn)'*¢ (for any
fixed e > 0) where n is a bound on the number of bits of
A and B. But there is an alternative approach that avoids
computations of the complex roots of unity.
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Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. Waith the notation above,

dz_:l |0 (modp) ift#0 (mod d)
WY =
j=0 d (modp) ift=0 (mod d).

Comment: Both d and w have inverses modulo p. One can
use the discrete Fourier transform modulo p using w as our
root of unity. Both D(d,w) and its inverse D(d,w™')/d are
defined modulo p. The previous arguments all carry through.



What’s next?

We will go over a number of “Practice Problems” for the test.

Then we will go over some interesting computational

related questions on irreducibility /factoring in Z|x].



Examples of questions we would like to answer:

1. How does
f(z) =1+ p211 4 51T 4 575 4 1245 | 1398

factor in Z|x]?

2. Let fo(x) = 1. For kK > 1, define fi(x) to be the reducible
polynomial of the form fj,_;(x)+x™ with n as small as possible
and n > deg fi_1.



2. Let fo(x) = 1. For k > 1, define fi(x) to be the reducible
polynomial of the form f;_;(x)4+x™ with n as small as possible

and n > deg fi_1.

1

1—|—w3

1+ 23 4+ 21°

1+ 23 4+ z1° 4 216

1+ 23 4+ 215 4 216 4 232

14 23 + 215 4 216 4 532 4 438

14 23 + 215 4 216 4 232 4 233 4 534

14+ 23+ 215 4 16 4 232 4 233 4 534 | 35

Is the sequence {fir(x)} an infinite sequence?



3. The polynomial f(x) = xz* 4+ x + 1 is Eisenstein because one
can use

f(w—l—l):wz—l—Sm—l—S

to deduce that f(x) is irreducible by Eisenstein’s criterion.



3. The polynomial f(x) = xz* 4+ x + 1 is Eisenstein because one
can use

f(w—l—l):wz—l—Sm—l—S

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

:1315—|—2:v14—3:v8—|—a:7—3:13—|—1

and /or

a:g—w8—|—2:c5—|—:c4—|—2w—|—1



