Math 788: Computational Number Theory

e Math 788 Computational Number Theory Syllabus

e Math 788 Computational Number Theory Course Description

e Math 788 Computational Number Theory Class Notes ﬁ

L —

e Lectures on Primality Testing in Polynomial Time

e Computational Material on Polynomials

e Lectures

Lecture 1 Lecture2 Lecture3 Lectured4 LectureS5S

Lecture 6 Lecture7 Lecture8 Lecture9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture24 Lecture 25

Lecture 26

e Test Materials

Review List
Test from 2007
Final Exam from 2007

Old Comp Exam Problems

e Graduate Number Theory Courses At The University of South Carolina

e Lectures on Primality Testing in Polynomial Time

e Computational Material on Polynomials

e Lectures

Lecturel Lecture2 Lecture3 Lectured4 LectureS5

Lecture 6 Lecture7 Lecture8 Lecture9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture24 Lecture 25
Lecture 26

e Test Materials

Review List <@
Test from 2007 €——

Final Exam from 2007 <
Old Comp Exam Problems <

e Graduate Number Theory Courses At The University of South Carolina

1. Be able to do problems related to any of the homewoIk. pracﬁce prob[emg

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n 1s a strong
pseudoprime to every base b with 1 < b < n and ged(b,n) = 1.

27 Beableto prove that ecd(w. U)1s =< 1og IN"0on average and that usually 1t’s much smaller.

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor > /n.

8. Be able to factor n using Dixon’s Algorithm (see homework).

(e} ™ 11 . T a_ - ™ _ _ _9_ A1

9. Be able to factor n using the Quadratic Sieve Algorithm.

fion and you will'need to make use of 1tand give the remaining details?)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

— .m PR — — S —— ST - 7}

12. Be able to state and prove Hadamard’s inequality.

13. Be able to define what it means for a basis in a lattice to be reduced.

14 Ra ahla tn chaw (T in tha natac that 1c that

14. Beabletoproveb € £, b#0 = |by| <2 Y/2||b]|.

Uw re c PUVVCI (454 ICqWCL)l/ urtw cvere rrteenc LILUILSC auvuv wuve ric }IUVV MII«SCL)-

Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.
We stated that M (d) < d(log d) loglogd. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1 .
Zwkj: 0 k%0 (modn)
=0 =

n fk=0 (modn).

1 1 310g2—|—\/§ﬂ'
10 9

Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1 .
Zwkj _ 0 k%0 (modn)
j=0

n fk=0 (modn).

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

(1 1 1 1)
1 w w? w1
D — D(n, CJJ) p—]_ wz w4 e o wz(n_l)
\1 w1 H2n-1) L, w(n—l)Z)
For @ = (ug, U1y...,Up_1) € C?, define ¥ = (vg, V15...,Vp_1),
called the discrete Fourier transform of #, by ¥ = Dul.

The inverse discrete Fourier transform of a vector v € C" is
defined as (1/n)D(n,w) v,

Why is (1/n)D(n,w !')D(n,w) the identity matrix?

A Polynomial Connection

Observe that if f(x) = Z;":_ll a;x’ € Clx], then

D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw").
On the other hand, if we know f(1), f(w),..., f(w™ ') and

do not know the coefficients of f(x), then we can obtain the
coefficients from

D_1<.f(1)7 f(w),..., .f(wn_l)>T = (@oy A1y .+« a'n—1>T-
Note that here D! = (1/n)D(n,w™1).
If

F(z) = f(1) + f(@)a + -+ F(w"a""",
then

F(1) = nay, F(w_l) = Na1, ..., F(w_("_l)) = Na,_1.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute
f(1), f(w)y..., f(w™). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that

o) = FLGEOTD) for 0< < (n/2) ~ 1.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

"
A(n) =2A(n/2) + 2n —_:;> A(n) = (2/log2)nlogn + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2.| Let A(n) be the

number of arithmetic operations that one needs to compute
f(1), f(w)y..., f(w™). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that

o) = FLGEOTD) for 0< < (n/2) ~ 1.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2.| Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(w),..., f(w™). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wy) = fe(wp?*0/20) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

An) =2A(n/2) 4+ 2n %A(n) = (2/log2)nlogn + Cn

for some constant C.

(*) D <(1,0, A1y ooy a'n—1>T — <f(1)9 f(w)a c e f(wn_1)>T

(**) D—1<f(1)7 f(w), c e f(wn_1)>T — <a’09 A1y ooy an—1>T

Comment: Each of these can be computed using O(n logn)
complex arithmetic operations.

Multiplying Two Polynomials

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity).

Multiplying Two Polynomials

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity). Let

g(x) = b,_1x" 1+...4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Cl|x] with s < r.

Multiplying Two Polynomials

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity). Let

g(x) = b,_1x" 1+...4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_12" '4+---+by and h(x)=c,_1z" '+ -+co.

Multiplying Two Polynomials

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity). Let

g(x) = b,_1x" 1+...4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_12" '4+---+by and h(x)=c,_1z" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1.

(*) D <a'07 A1y ooy an—1>T — <f(1)7 f(w), I f(wn_1)>T

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity). Let

g(x) = b,_1x" 1+...4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_12" '4+---+by and h(x)=c,_1z" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1.

(*) D <a'07 A1y ooy an—1>T — <f(1)7 f(w), I f(wn_1)>T

An obvious way of obtaining the coeflicients of a product
of two polynomials of degree < n takes on the order of n?
multiplications. We can do better (but using arithmetic with
nth roots of unity). Let

g(x) = b,_1x" 1+...4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_12" '4+---+by and h(x)=c,_1z" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),
D <b07 bla IO bn—1>T — <g(1)7 g(“"’)? ¢ oo ’g(wn—1)>T

and

D {co,Ciy.--rCn_1)t = (R(1), h(w),..., (" 1))T.

g(x) = b,_1x" 1+..-.4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.

Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),
D (bg,b1,. .. by1)" = (g(1),9(w),...,g(w" "))"

and

D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations.

g(x) = b,_1x" 1+..-.4+by and h(x) = Co_ 125 14+ ¢

be polynomials in Clx] with s < r. Let n = 2r, and rewrite
g(x) and h(x) with leading zeroes as

g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.

Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),
D (bg,b1,. .. by1)" = (g(1),9(w),...,g(w" "))"

and

D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations. Computing f(w’) = g(w?)h(w?) for 0 < j < n-—1
takes n multiplications.

(**) D—1<f(1)7 f(w)a c e f(wn_1)>T — <a’09 A1y ey an—1>T

e ~ I’v-.j e e e e e e e P i VLWJ Ve W el e ~ - v w -— 7 e W VOV e e W s

g(x) and h(x) with leading zeroes as

g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),

D <b09 blv e bn—1>T — <g(1)9 g(""’)? © e ,g(wn—1)>T

and
D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations. Computing f(w’) = g(w?)h(w?) for 0 < j < n-—1
takes n multiplications.

(**) D—1<f(1)7 f(w)a c e f(wn_1)>T — <a’09 A1y ey an—1>T

e ~ I’v-.j e e e e e e e P i VLWJ Ve W el e ~ ~ [4 - —— N W v w -— 7 e W VOV e e W s
—

g(x) and h(x) with leading zeroes as
g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),

D <b09 blv e bn—1>T — <g(1)9 g(""’)? © e ,g(wn—1)>T

and
D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations. Computing f(w’) = g(w?)h(w?) for 0 < j < n-—1
takes n multiplications. Applying (*x*) allows us to compute
the coefficients of f(x) with O(nlogn) further arithmetic

operations.

(**) D—1<f(1)7 f(w)a c e f(wn_1)>T — <a’09 A1y ey an—1>T

e ~ I’v-.j e e e e e e e P i VLWJ Ve W el e ~ ~ [4 - —— N W v w -— 7 e W VOV e e W s
—

g(x) and h(x) with leading zeroes as

g(x) =b,_1x" '4+---4+by and h(x)=c,_1x" '+ -+co.
Let f(x) = g(x)h(x), and note that deg f < n — 1. By (%),

D <b09 blv e bn—1>T — <g(1)9 g(""’)? © e ,g(wn—1)>T

and
D {co,Ciy.--yCn_1)t = (R(1), h(w),..., (" 1))T.

These can be computed with O(nlogn) complex arithmetic
operations. Computing f(w’) = g(w?)h(w?) for 0 < j < n-—1
takes n multiplications. Applying (*x*) allows us to compute
the coefficients of f(x) with O(nlogn) further arithmetic
operations. Rescaling, we deduce that the product of two
polynomials of degree < n in C|x| can be computed with
O(nlogn) complex additions and multiplications.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br—l ¢ oo b1b0)2 and B = (Cs—l ¢ oo 6160)2.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br—l ¢ oo b1b0)2 and B = (Cs—l ¢ oo 6160)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x).

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br—l ¢ oo b1b0)2 and B = (Cs—l ¢ oo 6160)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients

of f(x) are not in {0,1}.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br—l ¢ oo b1b0)2 and B = (Cs—l ¢ oo 6160)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients
of f(x) are not in {0,1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coefficients of f(x), amounts to some shifts and additions that
do not require much time.

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (bf,a_l ¢ oo b1b0)2 and B = (Cs—l ¢ oo Clco)g.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients
of f(x) are not in {0,1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coefficients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity.

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (bf,a_l ¢ oo b1b0)2 and B = (Cs—l ¢ oo Clco)g.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients
of f(x) are not in {0,1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coefficients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to sufficient accuracy to obtain a total complexity
for the multiplication of order nlogn (loglogn)'*¢ (for any
fixed e > 0) where n is a bound on the number of bits of
A and B.

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (bf,a_l ¢ oo b1b0)2 and B = (Cs—l ¢ oo Clco)g.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coefficients
of f(x) are not in {0,1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coefficients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to sufficient accuracy to obtain a total complexity
for the multiplication of order nlogn (loglogn)'*¢ (for any
fixed e > 0) where n is a bound on the number of bits of
A and B. But there is an alternative approach that avoids
computations of the complex roots of unity.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p—1).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. Waith the notation above,

dz_:l |0 (modp) ift#0 (mod d)
WY =
j=0 d (modp) ift=0 (mod d).

Comment: Both d and w have inverses modulo p.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. Waith the notation above,

0 (modp) ¢ft#0 (mod d)

d—1
Y wh =
im0 d (mod p) ift=0 (mod d).

Comment: Both d and w have inverses modulo p. One can
use the discrete Fourier transform modulo p using w as our

root of unity.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. Waith the notation above,

dz_:l |0 (modp) ift#0 (mod d)
WY =
j=0 d (modp) ift=0 (mod d).

Comment: Both d and w have inverses modulo p. One can
use the discrete Fourier transform modulo p using w as our
root of unity. Both D(d,w) and its inverse D(d,w™')/d are

defined modulo p.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p —1). Then there is a positive
integer w such that w has order d modulo p—1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. Waith the notation above,

dz_:l |0 (modp) ift#0 (mod d)
WY =
j=0 d (modp) ift=0 (mod d).

Comment: Both d and w have inverses modulo p. One can
use the discrete Fourier transform modulo p using w as our
root of unity. Both D(d,w) and its inverse D(d,w™')/d are
defined modulo p. The previous arguments all carry through.

What’s next?

We will go over a number of “Practice Problems” for the test.

Then we will go over some interesting computational

related questions on irreducibility /factoring in Z|x].

Examples of questions we would like to answer:

1. How does
f(z) =1+ p211 4 51T 4 575 4 1245 | 1398

factor in Z|x]?

2. Let fo(x) = 1. For kK > 1, define fi(x) to be the reducible
polynomial of the form fj,_;(x)+x™ with n as small as possible
and n > deg fi_1.

2. Let fo(x) = 1. For k > 1, define fi(x) to be the reducible
polynomial of the form f;_;(x)4+x™ with n as small as possible

and n > deg fi_1.

1

1—|—w3

1+ 23 4+ 21°

1+ 23 4+ z1° 4 216

1+ 23 4+ 215 4 216 4 232

14 23 + 215 4 216 4 532 4 438

14 23 + 215 4 216 4 232 4 233 4 534

14+ 23+ 215 4 16 4 232 4 233 4 534 | 35

Is the sequence {fir(x)} an infinite sequence?

3. The polynomial f(x) = xz* 4+ x + 1 is Eisenstein because one
can use

f(w—l—l):wz—l—Sm—l—S

to deduce that f(x) is irreducible by Eisenstein’s criterion.

3. The polynomial f(x) = xz* 4+ x + 1 is Eisenstein because one
can use

f(w—l—l):wz—l—Sm—l—S

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

:1315—|—2:v14—3:v8—|—a:7—3:13—|—1

and /or

a:g—w8—|—2:c5—|—:c4—|—2w—|—1

