

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to prove b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to prove b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Practice Problems

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

If

F (x) = f(1) + f(!)x + · · · + f(wn�1
)xn�1,

then

F (1) = na0, F
�
!�1

�
= na1, . . . , F

�
!�(n�1)

�
= nan�1.

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

?
?

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Comment: Each of these can be computed using O(n log n)

complex arithmetic operations.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

Multiplying Two Polynomials

An obvious way of obtaining the coe�cients of a product

of two polynomials of degree  n takes on the order of n
2

multiplications. We can do better (but using arithmetic with

nth roots of unity). Let

g(x) = br�1x
r�1

+ · · · + b0 and h(x) = cs�1x
s�1

+ · · · + c0

be polynomials in C[x] with s  r. Let n = 2r, and rewrite

g(x) and h(x) with leading zeroes as

g(x) = bn�1x
n�1

+· · ·+b0 and h(x) = cn�1x
n�1

+· · ·+c0.

Let f(x) = g(x)h(x), and note that deg f  n � 1. By (⇤),

D hb0, b1, . . . , bn�1iT
= hg(1), g(!), . . . , g(!

n�1
)iT

and

D hc0, c1, . . . , cn�1iT
= hh(1), h(!), . . . , h(!

n�1
)iT

.

These can be computed with O(n log n) complex arithmetic

operations. Computing f(!
j
) = g(!

j
)h(!

j
) for 0  j  n�1

takes n multiplications. Applying (⇤⇤) allows us to compute

the coe�cients of f(x) with O(n log n) further arithmetic

operations. Rescaling, we deduce that the product of two

polynomials of degree  n in C[x] can be computed with

O(n log n) complex additions and multiplications.

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!

n�1
)iT

(⇤⇤) D
�1hf(1), f(!), . . . , f(!

n�1
)iT

= ha0, a1, . . . , an�1iT

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to su�cient accuracy to obtain a total complexity
for the multiplication of order n log n (log log n)1+" (for any
fixed " > 0) where n is a bound on the number of bits of
A and B. But there is an alternative approach that avoids
computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to su�cient accuracy to obtain a total complexity
for the multiplication of order n log n (log log n)1+" (for any
fixed " > 0) where n is a bound on the number of bits of
A and B. But there is an alternative approach that avoids
computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

The main di�culty is in having to deal with roots of unity. In
1968, Volker Straussen showed that it is possible to approxi-
mate the roots of unity to su�cient accuracy to obtain a total
complexity for the multiplication of order n log n(log log n)1+"

(for any fixed " > 0) where n is a bound on the number of
bits of A and B. But there is an alternative approach that
avoids computations of the complex roots of unity.

Integer Multiplication

Suppose we wish to multiply two positive integers A and B.
Write each in binary as

A = (br�1 . . . b1b0)2 and B = (cs�1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute
the product f(x) = g(x)h(x). Observe that the coe�cients
of f(x) are not in {0, 1}. However, the product AB can still
be obtained by computing f(2) which, after computing the
coe�cients of f(x), amounts to some shifts and additions that
do not require much time.

This involves arithmetic operations with roots of unity. In
1968, Volker Straussen showed one can approximate the roots
of unity to su�cient accuracy to obtain a total complexity
for the multiplication of order n log n (log log n)1+" (for any
fixed " > 0) where n is a bound on the number of bits of
A and B. But there is an alternative approach that avoids
computations of the complex roots of unity.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Comment: Both d and ! have inverses modulo p. One can
use the discrete Fourier transform modulo p using ! as our
root of unity. Both D(d, !) and its inverse D

�
d, !

�1
�
/d are

defined modulo p. The previous arguments all carry through.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Comment: Both d and ! have inverses modulo p. One can
use the discrete Fourier transform modulo p using ! as our
root of unity. Both D(d, !) and its inverse D

�
d, !

�1
�
/d are

defined modulo p. The previous arguments all carry through.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Comment: Both d and ! have inverses modulo p. One can
use the discrete Fourier transform modulo p using ! as our
root of unity. Both D(d, !) and its inverse D

�
d, !

�1
�
/d are

defined modulo p. The previous arguments all carry through.

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Main Idea: Replace complex roots of unity with roots of 1
modulo some prime (or various primes) p.

Let d be a positive integer with only small prime divisors.
Let p be a prime such that d|(p�1). Then there is a positive
integer ! such that ! has order d modulo p�1. The following
lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d�1X

j=0

!
tj ⌘

8
<

:
0 (mod p) if t 6⌘ 0 (mod d)

d (mod p) if t ⌘ 0 (mod d).

Comment: Both d and ! have inverses modulo p. One can
use the discrete Fourier transform modulo p using ! as our
root of unity. Both D(d, !) and its inverse D

�
d, !

�1
�
/d are

defined modulo p. The previous arguments all carry through.

What’s next?

We will go over a number of “Practice Problems” for the test.

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 2x + 2

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

What’s next?

We will go over a number of “Practice Problems” for the test.

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 2x + 2

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

What’s next?

We will go over a number of “Practice Problems” for the test.

Then we will go over some interesting computational

related questions on irreducibility/factoring in Z[x].

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 2x + 2

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

What’s next?

We will go over a number of “Practice Problems” for the test.

Then we will go over some interesting computational

related questions on irreducibility/factoring in Z[x].

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 3x + 3

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 2x + 2

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

What’s next?

We will go over a number of “Practice Problems” for the test.

Then we will go over some interesting computational

related questions on irreducibility/factoring in Z[x].

3. The polynomial f(x) = x
2 + x + 1 is Eisenstein because one

can use
f(x + 1) = x

2 + 3x + 3

to deduce that f(x) is irreducible by Eisenstein’s criterion.
Which of the following are Eisenstein?

x
15 + 2x

14 � 3x
8 + x

7 � 3x + 1

and/or

x
9 � x

8 + 2x
5 + x

4 + 2x + 1

