Discrete and Fast Fourier Transforms

Goal: Let $M(d)$ denote the number of binary bit operations needed to multiply two positive integers each with $\leq \boldsymbol{d}$ bits.

Discrete and Fast Fourier Transforms

Goal: Let $M(d)$ denote the number of binary bit operations needed to multiply two positive integers each with $\leq d$ bits. We stated that $M(d) \ll d(\log d) \log \log d$. We give the basic idea behind the proof, not worrying so much about the running time but concentrating on the main idea of using fast Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed as a union of rectangles $R_{j}, 1 \leq j \leq r$, with edges parallel to R and common points only along these edges.

Discrete and Fast Fourier Transforms

Goal: Let $M(d)$ denote the number of binary bit operations needed to multiply two positive integers each with $\leq d$ bits. We stated that $M(d) \ll d(\log d) \log \log d$. We give the basic idea behind the proof, not worrying so much about the running time but concentrating on the main idea of using fast Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed as a union of rectangles $R_{j}, 1 \leq j \leq r$, with edges parallel to R and common points only along these edges. Suppose further that each R_{j} has at least one edge of integer length.

Discrete and Fast Fourier Transforms

Goal: Let $M(d)$ denote the number of binary bit operations needed to multiply two positive integers each with $\leq d$ bits. We stated that $M(d) \ll d(\log d) \log \log d$. We give the basic idea behind the proof, not worrying so much about the running time but concentrating on the main idea of using fast Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed as a union of rectangles $R_{j}, 1 \leq j \leq r$, with edges parallel to R and common points only along these edges. Suppose further that each R_{j} has at least one edge of integer length. Then R itself has an edge of integer length.

Example. Let R be a rectangle, and suppose R is expressed as a union of rectangles $R_{j}, 1 \leq j \leq r$, with edges parallel to R and common points only along these edges. Suppose further that each \boldsymbol{R}_{j} has at least one edge of integer length. Then R itself has an edge of integer length.

$$
\int_{0}^{1} e^{i 2 \pi k \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i k \theta} d \theta= \begin{cases}0 & \text { if } k \in \mathbb{Z}-\{0\} \\ 1 & \text { if } k=0\end{cases}
$$

$\iint_{R_{j}} e^{2 \pi i(x+y)} d x d y=0 \Longleftrightarrow R_{j}$ has a side of integer length

$$
\left|\iint_{R} e^{2 \pi i(x+y)} d x d y\right|=\left|\sum_{j=1}^{r} \iint_{R_{j}} e^{2 \pi i(x+y)} d x d y\right|
$$

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}=\left\{\begin{array}{lll}
0 & \text { if } k \not \equiv 0 & (\bmod n) \\
n & \text { if } k \equiv 0 & (\bmod n)
\end{array}\right.
$$

Example. $\quad 1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=?$
$\overline{>}$ evalf(sum ($\left.\left.(-1)^{\wedge} \mathrm{k} /\left(3^{*} \mathrm{k}+1\right), \mathrm{k}=0 . .10000\right)\right)$;
0.83566551354257290596014868433669232417119210209620

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}=\left\{\begin{array}{lll}
0 & \text { if } k \not \equiv 0 & (\bmod n) \\
n & \text { if } k \equiv 0 & (\bmod n)
\end{array}\right.
$$

Example. $\quad 1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=$?
$\left[\begin{array}{c}>\operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 10000\right)\right) ; \\ 0.83566551354257290596014868433669232417119210209620\end{array}\right.$
$\left[\begin{array}{r}> \\ >\operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 100000\right)\right) ; \\ 0.83565051491749890518903246793052057612353112399806\end{array}\right.$

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}=\left\{\begin{array}{lll}
0 & \text { if } k \not \equiv 0 & (\bmod n) \\
n & \text { if } k \equiv 0 & (\bmod n)
\end{array}\right.
$$

Example. $\quad 1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=?$
[> evalf(sum ($\left.\left.(-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 . .10000\right)\right)$;
0.83566551354257290596014868433669232417119210209620
$>\operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} k /(3 * k+1), k=0.100000\right)\right)$;
0.83565051491749890518903246793052057612353112399806
> evalf(sum ((-1$\left.)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 . .1000000\right)$) ;
0.83564901493124883118895531926797084904818207352932

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}=\left\{\begin{array}{lll}
0 & \text { if } k \not \equiv 0 & (\bmod n) \\
n & \text { if } k \equiv 0 & (\bmod n)
\end{array}\right.
$$

Example. $1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=?$

$0.83566551354257290596014868433669232417119210209620$
$\begin{aligned} \gg \operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 100000\right)\right) ; \\ 0.8356505149174989051890324679305205761235311239 \end{aligned}$
$\begin{aligned} & >\operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 1000000\right)\right) ; \\ & 0.83564901493124883118895531926797084904818207352 \end{aligned}$

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}=\left\{\begin{array}{lll}
0 & \text { if } k \not \equiv 0 & (\bmod n) \\
n & \text { if } k \equiv 0 & (\bmod n)
\end{array}\right.
$$

Example. $1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}$

$\left[\begin{array}{r} >\operatorname{evalf}\left(\operatorname { s u m } \left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1),\right.\right. \\ 0.8356655135425729059601486 \end{array}\right.$
$\begin{aligned} & \gg \operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 100000\right)\right) ; \\ & 0.8356505149174989051890324679305205761235311239 \end{aligned}$
$\left[\begin{array}{rl} \gg \operatorname{evalf}\left(\operatorname{sum}\left((-1)^{\wedge} \mathrm{k} /(3 * \mathrm{k}+1), \mathrm{k}=0 \ldots 1000000\right)\right) ; \\ 0.835649014931248831188955319267970849048182073529 \end{array}\right.$
0.8356488482647210533371034597001107667865221274

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Call the sum S.

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Call the sum S. We use that

$$
z^{2} \log (1+z)=z^{3}-\frac{z^{4}}{2}+\frac{z^{5}}{3}-\frac{z^{6}}{4}+\cdots
$$

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Call the sum S. We use that

$$
z^{2} \log (1+z)=z^{3}-\frac{z^{4}}{2}+\frac{z^{5}}{3}-\frac{z^{6}}{4}+\cdots
$$

Let $\omega=e^{2 \pi i / 3}$, and note that
$(*) \quad(1+\omega)\left(1+\omega^{2}\right)=1+\omega+\omega^{2}+\omega^{3}=\omega^{3}=1$.

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Call the sum S. We use that

$$
z^{2} \log (1+z)=z^{3}-\frac{z^{4}}{2}+\frac{z^{5}}{3}-\frac{z^{6}}{4}+\cdots
$$

Let $\omega=e^{2 \pi i / 3}$, and note that
$(*) \quad(1+\omega)\left(1+\omega^{2}\right)=1+\omega+\omega^{2}+\omega^{3}=\omega^{3}=1$.
Also,
$(* *) \quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$.

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}= \begin{cases}0 & \text { if } k \not \equiv 0 \quad(\bmod n) \\ n & \text { if } k \equiv 0 \quad(\bmod n)\end{cases}
$$

$$
z^{2} \log (1+z)=z^{3}-\frac{z^{4}}{2}+\frac{z^{5}}{3}-\frac{z^{6}}{4}+\cdots
$$

Let $\omega=e^{2 \pi i / 3}$, and note that
$(*) \quad(1+\omega)\left(1+\omega^{2}\right)=1+\omega+\omega^{2}+\omega^{3}=\omega^{3}=1$.
Also,
$(* *) \quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$.
The lemma implies that

$$
3 S=\log (1+1)+\omega^{2} \log (1+\omega)+\omega \log \left(1+\omega^{2}\right)
$$

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Let $\omega=e^{2 \pi i / 3}$, and note that
$(*) \quad(1+\omega)\left(1+\omega^{2}\right)=1+\omega+\omega^{2}+\omega^{3}=\omega^{3}=1$.
Also,
$(* *) \quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$.
The lemma implies that

$$
3 S=\log (1+1)+\omega^{2} \log (1+\omega)+\omega \log \left(1+\omega^{2}\right)
$$

From (*) and ($* *$),

$$
3 S=\log 2+\sqrt{3} i \log \left(1+\omega^{2}\right)
$$

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Also,
$(* *) \quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$.
The lemma implies that

$$
3 S=\log (1+1)+\omega^{2} \log (1+\omega)+\omega \log \left(1+\omega^{2}\right)
$$

From (*) and (**),

$$
\begin{aligned}
3 S & =\log 2+\sqrt{3} i \log \left(1+\omega^{2}\right) \\
& =\log 2+\sqrt{3} i \log (-\omega)
\end{aligned}
$$

$$
1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots=\frac{3 \log 2+\sqrt{3} \pi}{9}
$$

Also,
$(* *) \quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$.
The lemma implies that

$$
3 S=\log (1+1)+\omega^{2} \log (1+\omega)+\omega \log \left(1+\omega^{2}\right)
$$

From (*) and ($* *$),

$$
\begin{aligned}
3 S & =\log 2+\sqrt{3} i \log \left(1+\omega^{2}\right) \\
& =\log 2+\sqrt{3} i \log (-\omega) \\
& =\log 2+\sqrt{3} \pi / 3
\end{aligned}
$$

from which the value of S above follows.

Definitions and notations.

Definitions and notations. For n a positive integer, we set $\omega=\omega_{n}=e^{2 \pi i / n}$.

Definitions and notations. For n a positive integer, we set $\omega=\omega_{n}=e^{2 \pi i / n}$. Let

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

Definitions and notations. For n a positive integer, we set $\omega=\omega_{n}=e^{2 \pi i / n}$. Let

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

For $\overrightarrow{\boldsymbol{u}}=\left\langle u_{0}, u_{1}, \ldots, u_{n-1}\right\rangle \in \mathbb{C}^{n}$, define $\overrightarrow{\boldsymbol{v}}=\left\langle v_{0}, v_{1}, \ldots, v_{n-1}\right\rangle$, called the discrete Fourier transform of \vec{u}, by $\vec{v}=D \vec{u}^{T}$.

Definitions and notations. For n a positive integer, we set $\omega=\omega_{n}=e^{2 \pi i / n}$. Let

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

For $\overrightarrow{\boldsymbol{u}}=\left\langle u_{0}, u_{1}, \ldots, u_{n-1}\right\rangle \in \mathbb{C}^{n}$, define $\overrightarrow{\boldsymbol{v}}=\left\langle v_{0}, v_{1}, \ldots, v_{n-1}\right\rangle$, called the discrete Fourier transform of \vec{u}, by $\vec{v}=D \vec{u}^{T}$. The inverse discrete Fourier transform of a vector $\vec{v} \in \mathbb{C}^{n}$ is defined as $(1 / n) D\left(n, \omega^{-1}\right) \vec{v}^{T}$.

Why is $(1 / n) D\left(n, \omega^{-1}\right) D(n, \omega)$ the identity matrix?

Lemma. Let n and k be integers with $n \geq 1$. Let $\omega=e^{2 \pi i / n}$. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}= \begin{cases}0 & \text { if } k \not \equiv 0 \quad(\bmod n) \\ n & \text { if } k \equiv 0 \quad(\bmod n)\end{cases}
$$

Definitions and notations. For n a positive integer, we set $\omega=\omega_{n}=e^{2 \pi i / n}$. Let

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

For $\overrightarrow{\boldsymbol{u}}=\left\langle u_{0}, u_{1}, \ldots, u_{n-1}\right\rangle \in \mathbb{C}^{n}$, define $\overrightarrow{\boldsymbol{v}}=\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-1}\right\rangle$, called the discrete Fourier transform of \vec{u}, by $\vec{v}=D \vec{u}^{T}$. The inverse discrete Fourier transform of a vector $\vec{v} \in \mathbb{C}^{n}$ is defined as $(1 / n) D\left(n, \omega^{-1}\right) \vec{v}^{T}$.

Why is $(1 / n) D\left(n, \omega^{-1}\right) D(n, \omega)$ the identity matrix?

A Polynomial Connection

Observe that if $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$, then

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=?
$$

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

A Polynomial Connection

Observe that if $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$, then

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T} .
$$

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

A Polynomial Connection

Observe that if $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$, then

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}
$$

On the other hand, if we know $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$ and do not know the coefficients of $f(x)$, then we can obtain the coefficients from

$$
\begin{gathered}
D^{-1}\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T} . \\
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
\end{gathered}
$$

A Polynomial Connection

Observe that if $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$, then

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}
$$

On the other hand, if we know $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$ and do not know the coefficients of $f(x)$, then we can obtain the coefficients from

$$
D^{-1}\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}
$$

Note that here $D^{-1}=(1 / n) D\left(n, \omega^{-1}\right)$.

$$
D=D(n, \omega)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

A Polynomial Connection

Observe that if $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$, then

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}
$$

On the other hand, if we know $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$ and do not know the coefficients of $f(x)$, then we can obtain the coefficients from

$$
D^{-1}\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}
$$

Note that here $D^{-1}=(1 / n) D\left(n, \omega^{-1}\right)$.
If

$$
F(x)=f(1)+f(\omega) x+\cdots+f\left(w^{n-1}\right) x^{n-1}
$$

then

$$
F(1)=n a_{0}, F\left(\omega^{-1}\right)=n a_{1}, \ldots, F\left(\omega^{-(n-1)}\right)=n a_{n-1}
$$

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*)

$$
D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}
$$

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*) $\quad D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$.

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

Why is this Fast?

For convenience, view n as a power of 2 .

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

Why is this Fast?

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$.

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

Why is this Fast?

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$.

The Fast Fourier Transform

We explain a fast way of performing the computation in
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

Why is this Fast?

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

(*) $\quad D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

Similar equations hold with f_{e} replaced by f_{o}.
(*) $\quad D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

Similar equations hold with f_{e} replaced by f_{o}. We deduce that computing $f_{e}\left(\omega^{2 j}\right)$ and $f_{o}\left(\omega^{2 j}\right)$ takes $2 A(n / 2)$ arithmetic operations.
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

Similar equations hold with f_{e} replaced by f_{o}. We deduce that computing $f_{e}\left(\omega^{2 j}\right)$ and $f_{o}\left(\omega^{2 j}\right)$ takes $2 A(n / 2)$ arithmetic operations. Multiplying $f_{o}\left(\omega^{2 j}\right)$ by ω^{j} and then adding $f_{e}\left(\omega^{2 j}\right)$ takes $2 n$ more arithmetic operations.
(*) $D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

Similar equations hold with f_{e} replaced by f_{o}. We deduce that computing $f_{e}\left(\omega^{2 j}\right)$ and $f_{o}\left(\omega^{2 j}\right)$ takes $2 A(n / 2)$ arithmetic operations. Multiplying $f_{o}\left(\omega^{2 j}\right)$ by ω^{j} and then adding $f_{e}\left(\omega^{2 j}\right)$ takes $2 n$ more arithmetic operations. We obtain

$$
A(n)=2 A(n / 2)+2 n \Longrightarrow
$$

(*) $\quad D\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle^{T}=\left\langle f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right\rangle^{T}$.
There exist unique polynomials f_{e} and f_{o} in $\mathbb{C}[x]$ such that $f(x)=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)$. Calculate $f_{e}\left(\omega^{2 j}\right), f_{o}\left(\omega^{2 j}\right)$ and $\omega^{j} f_{o}\left(\omega^{2 j}\right)$ for $0 \leq j \leq n-1$ to obtain the right side of $(*)$.

For convenience, view n as a power of 2 . Let $A(n)$ be the number of arithmetic operations that one needs to compute $f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)$. Computing in an obvious way gives $A(n) \leq n^{2}+n(n-1)$. Observe that

$$
f_{e}\left(\omega_{n}^{2 j}\right)=f_{e}\left(\omega_{n}^{2(j+(n / 2))}\right) \quad \text { for } 0 \leq j \leq(n / 2)-1
$$

Similar equations hold with f_{e} replaced by f_{o}. We deduce that computing $f_{e}\left(\omega^{2 j}\right)$ and $f_{o}\left(\omega^{2 j}\right)$ takes $2 A(n / 2)$ arithmetic operations. Multiplying $f_{o}\left(\omega^{2 j}\right)$ by ω^{j} and then adding $f_{e}\left(\omega^{2 j}\right)$ takes $2 n$ more arithmetic operations. We obtain

$$
A(n)=2 A(n / 2)+2 n \Longrightarrow A(n)=(2 / \log 2) n \log n+C n
$$

for some constant C.

Math 788: Computational Number Theory

- Math 788 Computational Number Theory Syllabus
- Math 788 Computational Number Theory Course Description
- Math 788 Computational Number Theory Class Notes

- Lectures on Primality Testing in Polynomial Time
- Computational Material on Polynomials
- Lectures

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5
Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25
Lecture 26

- Test Materials

Review List
Test from 2007
Final Exam from 2007
Old Comp Exam Problems

- Graduate Number Theory Courses At The University of South Carolina
- Lectures on Primality Testing in Polynomial Time
- Computational Material on Polynomials
- Lectures

$\underline{\text { Lecture 1 }}$	$\underline{\text { Lecture 2 }}$	$\underline{\text { Lecture 3 }}$	$\underline{\text { Lecture 4 }}$	$\underline{\text { Lecture 5 }}$
$\underline{\text { Lecture } 6}$	$\underline{\text { Lecture 7 }}$	$\underline{\text { Lecture 8 }}$	$\underline{\text { Lecture } 9}$	$\underline{\text { Lecture 10 }}$
$\underline{\text { Lecture 11 }}$	$\underline{\text { Lecture 12 }}$	$\underline{\text { Lecture 13 }}$	$\underline{\text { Lecture 14 }}$	$\underline{\text { Lecture 15 }}$
$\underline{\text { Lecture 16 }}$	$\underline{\text { Lecture 17 }}$	$\underline{\text { Lecture 18 }}$	$\underline{\text { Lecture 19 }}$	$\underline{\text { Lecture 20 }}$
$\underline{\text { Lecture 21 }}$	$\underline{\text { Lecture 22 }}$	$\underline{\text { Lecture 23 }}$	$\underline{\text { Lecture 24 }}$	$\underline{\text { Lecture 25 }}$

Lecture 26

- Test Materials

Review List
Test from 2007
Final Exam from 2007
Old Comp Exam Problems

- Graduate Number Theory Courses At The University of South Carolina

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong pseudoprime to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.
4. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.
5. Be able to prove that most numbers n have a prime factor $>\sqrt{n}$.
(This is not a sure prime test.)
6. Be able to factor n using Dixon's Algorithm (see homework).

7. Be able to factor n using the Quadratic Sieve Algorithm.
9) Re ahle to factor n usino the Ouadratic Sieve Alonrithm (You will he oiven come informa-
10. Be able to prove Landau's inequality for the size of the factors of a polynomial.
11. Let $f(x)=\sum_{j=1}^{n-1} a_{j} x^{j} \in \mathbb{C}[x]$ and recall (7) from the notes which reads
12. Be able to state and prove Hadamard's inequality.
13. Be able to define what it means for a basis in a lattice to be reduced.
14. Be able to prove $\mathbf{b} \in \mathcal{L}, \mathbf{b} \neq \mathbf{0} \Longrightarrow\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\mathbf{b}\|$.
15. Be able to do problems related to any of the homework. Practice Problems
16. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong pseudoprime to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.
17. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.
18. Be able to prove that most numbers n have a prime factor $>\sqrt{n}$.
19. Be able to factor n using Dixon's Algorithm (see homework).
20. Be able to factor n using the Quadratic Sieve Algorithm.
21. Be able to prove Landau's inequality for the size of the factors of a polynomial.
22. Be able to state and prove Hadamard's inequality.
23. Be able to define what it means for a basis in a lattice to be reduced.
24. Be able to prove $\mathbf{b} \in \mathcal{L}, \mathbf{b} \neq \mathbf{0} \Longrightarrow\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\mathbf{b}\|$.

- Lectures on Primality Testing in Polynomial Time
- Computational Material on Polynomials
- Lectures

$\underline{\text { Lecture 1 }}$	$\underline{\text { Lecture 2 }}$	$\underline{\text { Lecture 3 }}$	$\underline{\text { Lecture 4 }}$	$\underline{\text { Lecture 5 }}$
$\underline{\text { Lecture } 6}$	$\underline{\text { Lecture 7 }}$	$\underline{\text { Lecture 8 }}$	$\underline{\text { Lecture } 9}$	$\underline{\text { Lecture 10 }}$
$\underline{\text { Lecture 11 }}$	$\underline{\text { Lecture 12 }}$	$\underline{\text { Lecture 13 }}$	$\underline{\text { Lecture 14 }}$	$\underline{\text { Lecture 15 }}$
$\underline{\text { Lecture 16 }}$	$\underline{\text { Lecture 17 }}$	$\underline{\text { Lecture 18 }}$	$\underline{\text { Lecture 19 }}$	$\underline{\text { Lecture 20 }}$
$\underline{\text { Lecture 21 }}$	$\underline{\text { Lecture 22 }}$	$\underline{\text { Lecture 23 }}$	$\underline{\text { Lecture 24 }}$	$\underline{\text { Lecture 25 }}$

Lecture 26

- Test Materials

Review List
Test from 2007
Final Exam from 2007
Old Comp Exam Problems

- Graduate Number Theory Courses At The University of South Carolina

