
Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Discrete and Fast Fourier Transforms

Goal: Let M(d) denote the number of binary bit operations
needed to multiply two positive integers each with  d bits.
We stated that M(d) ⌧ d(log d) log log d. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles Rj, 1  j  r, with edges parallel
to R and common points only along these edges. Suppose
further that each Rj has at least one edge of integer length.
Then R itself has an edge of integer length.

Z 1

0
ei2⇡k✓d✓ =

1

2⇡

Z 2⇡

0
eik✓d✓ =

8
<

:
0 if k 2 Z � {0}
1 if k = 0,

ZZ

Rj

e2⇡i(x+y)dx dy = 0 () Rj has a side of integer length

����
ZZ

R

e2⇡i(x+y)dx dy

���� =

����
rX

j=1

ZZ

Rj

e2⇡i(x+y)dx dy

����

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

 ?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

 ?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

 ?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

 ?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

From (⇤) and (⇤⇤),

3S = log 2 +
p

3 i log
�
1 + !2

�

= log 2 +
p

3i log
�

� !
�

= log 2 +
p

3 ⇡/3,

from which the value of S above follows.

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

From (⇤) and (⇤⇤),

3S = log 2 +
p

3 i log
�
1 + !2

�

= log 2 +
p

3i log
�

� !
�

= log 2 +
p

3 ⇡/3,

from which the value of S above follows.

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

From (⇤) and (⇤⇤),

3S = log 2 +
p

3 i log
�
1 + !2

�

= log 2 +
p

3i log
�

� !
�

= log 2 +
p

3 ⇡/3,

from which the value of S above follows.

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Definitions and notations. For n a positive integer, we set
! = !n = e2⇡i/n. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1
1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...

1 !n�1 !2(n�1) · · · !(n�1)2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn, define ~v = hv0, v1, . . . , vn�1i,
called the discrete Fourier transform of ~u, by ~v = D ~uT .
The inverse discrete Fourier transform of a vector ~v 2 Cn is
defined as (1/n)D(n, !�1)~v T .

Why is (1/n)D(n, !�1)D(n, !) the identity matrix?

Lemma. Let n and k be integers with n � 1. Let ! = e2⇡i/n.
Then

n�1X

j=0

!kj =

8
<

:
0 if k 6⌘ 0 (mod n)

n if k ⌘ 0 (mod n).

Example.

1 �
1

4
+

1

7
�

1

10
+ · · · =

3 log 2 +
p

3⇡

9

Call the sum S. We use that

z2 log(1 + z) = z3 �
z4

2
+

z5

3
�

z6

4
+ · · · .

Let ! = e2⇡i/3, and note that

(⇤) (1 + !)(1 + !2) = 1 + ! + !2 + !3 = !3 = 1.

Also,

(⇤⇤) ! =
�1 +

p
3 i

2
and !2 =

�1 �
p

3 i

2
.

The lemma implies that

3S = log(1 + 1) + !2 log(1 + !) + ! log(1 + !2).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

?

Definitions and notations. For n a positive integer, we set

! = !n = e2⇡i/n
. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1

1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...
...

...
. . .

...

1 !n�1 !2(n�1) · · · !(n�1)
2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn
, define ~v = hv0, v1, . . . , vn�1i,

called the discrete Fourier transform of ~u, by ~v = D ~uT
.

The inverse discrete Fourier transform of a vector ~v 2 Cn
is

defined as (1/n)D(n, !�1
)~v T

.

Why is (1/n)D(n, !�1
)D(n, !) the identity matrix?

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).Definitions and notations. For n a positive integer, we set

! = !n = e2⇡i/n
. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1

1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...
...

...
. . .

...

1 !n�1 !2(n�1) · · · !(n�1)
2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn
, define ~v = hv0, v1, . . . , vn�1i,

called the discrete Fourier transform of ~u, by ~v = D ~uT
.

The inverse discrete Fourier transform of a vector ~v 2 Cn
is

defined as (1/n)D(n, !�1
)~v T

.

Why is (1/n)D(n, !�1
)D(n, !) the identity matrix?

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).Definitions and notations. For n a positive integer, we set

! = !n = e2⇡i/n
. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1

1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...
...

...
. . .

...

1 !n�1 !2(n�1) · · · !(n�1)
2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn
, define ~v = hv0, v1, . . . , vn�1i,

called the discrete Fourier transform of ~u, by ~v = D ~uT
.

The inverse discrete Fourier transform of a vector ~v 2 Cn
is

defined as (1/n)D(n, !�1
)~v T

.

Why is (1/n)D(n, !�1
)D(n, !) the identity matrix?

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).Definitions and notations. For n a positive integer, we set

! = !n = e2⇡i/n
. Let

D = D(n, !) =

0

BBBBB@

1 1 1 · · · 1

1 ! !2 · · · !n�1

1 !2 !4 · · · !2(n�1)

...
...

...
. . .

...

1 !n�1 !2(n�1) · · · !(n�1)
2

1

CCCCCA
.

For ~u = hu0, u1, . . . , un�1i 2 Cn
, define ~v = hv0, v1, . . . , vn�1i,

called the discrete Fourier transform of ~u, by ~v = D ~uT
.

The inverse discrete Fourier transform of a vector ~v 2 Cn
is

defined as (1/n)D(n, !�1
)~v T

.

Why is (1/n)D(n, !�1
)D(n, !) the identity matrix?

If

F (x) = f(1) + f(!)x + · · · + f(wn�1
)xn�1,

then

F (1) = na0, F
�
!�1

�
= na1, . . . , F

�
!�(n�1)

�
= nan�1.

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

A Polynomial Connection

Observe that if f(x) =
Pn�1

j=1
ajxj 2 C[x], then

D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

On the other hand, if we know f(1), f(!), . . . , f(!n�1
) and

do not know the coe�cients of f(x), then we can obtain the

coe�cients from

D�1hf(1), f(!), . . . , f(!n�1
)iT

= ha0, a1, . . . , an�1iT .

Note that here D�1
= (1/n)D(n, !�1

).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(⇤) D ha0, a1, . . . , an�1iT
= hf(1), f(!), . . . , f(!n�1

)iT .

There exist unique polynomials fe and fo in C[x] such that

f(x) = fe(x2
) + xfo(x2

). Calculate fe(!2j
), fo(!2j

) and

!jfo(!2j
) for 0  j  n � 1 to obtain the right side of (⇤).Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the

number of arithmetic operations that one needs to compute

f(1), f(!), . . . , f(!n�1
). Computing in an obvious way gives

A(n)  n2
+ n(n � 1). Observe that

fe(!
2j
n) = fe(!

2(j+(n/2))

n) for 0  j  (n/2) � 1.

Similar equations hold with fe replaced by fo. We deduce

that computing fe(!2j
) and fo(!2j

) takes 2A(n/2) arithmetic

operations. Multiplying fo(!2j
) by !j

and then adding fe(!2j
)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =) A(n) = (2/ log 2) n log n + Cn

for some constant C.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to prove b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to show (10) in the notes, that is that

b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to prove b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Review List for Math 788: Computational Number Theory⇤

1. Be able to do problems related to any of the homework. This includes homework problems

not directly related to computational aspects of number theory such as topics in Elementary

Number Theory and problems on notation. It also includes material not covered below (for

example, public-key encryption).

2. Be able to prove that gcd(u, v) is ⇣ log N on average and that usually it’s much smaller.

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n is a strong

pseudoprime to every base b with 1  b  n and gcd(b, n) = 1.

4. Be able to check if a number is prime by using Maple’s version of the Lucas-Lehmer test.

(This is not a sure prime test.)

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor >
p

n.

7. Be able to explain Pollard’s ⇢-Algorithm including Floyd’s cycle-finding algorithm.

8. Be able to factor n using Dixon’s Algorithm (see homework). (You will be given some

information and you will need to make use of it and give the remaining details.)

9. Be able to factor n using the Quadratic Sieve Algorithm. (You will be given some informa-

tion and you will need to make use of it and give the remaining details.)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

11. Let f(x) =
Pn�1

j=1 ajxj 2 C[x] and recall (7) from the notes which reads

D ha0, a1, . . . , an�1iT = hf(1), f(!), . . . , f(!n�1)iT .

Show that the right side can be computed in⌧ n log n total arithmetic operations (additions,

subtractions, multiplications or/and additions).

12. Be able to state and prove Hadamard’s inequality. (You do not need to be able to define the

b⇤j , but you should know that they are orthogonal and use this fact.)

13. Be able to define what it means for a basis in a lattice to be reduced.

14. Be able to prove b 2 L, b 6= 0 =) kb1k  2(n�1)/2kbk.

⇤You have the power to request and even make changes to the list above. I have the power to veto the changes.

Practice Problems

