Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.

Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.
We stated that M (d) < d(log d) loglogd. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles R;, 1 < 3 < r, with edges parallel
to R and common points only along these edges.

Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.
We stated that M (d) < d(log d) loglogd. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles R;, 1 < 3 < r, with edges parallel
to R and common points only along these edges. Suppose
further that each R; has at least one edge of integer length.

Discrete and Fast Fourier Transforms

Goal: Let M (d) denote the number of binary bit operations
needed to multiply two positive integers each with < d bits.
We stated that M (d) < d(log d) loglogd. We give the basic
idea behind the proof, not worrying so much about the run-
ning time but concentrating on the main idea of using fast
Fourier transforms for performing multiplication.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles R;, 1 < 3 < r, with edges parallel
to R and common points only along these edges. Suppose
further that each R; has at least one edge of integer length.
Then R itself has an edge of integer length.

Example. Let R be a rectangle, and suppose R is expressed
as a union of rectangles R;, 1 < 3 < r, with edges parallel
to R and common points only along these edges. Suppose
further that each R; has at least one edge of integer length.
Then R itself has an edge of integer length.

1 1 27 0 ifkeZ—40
/ ezZWkHdHZ T ezkedez { }
0 27 Jo 1 ifk=0

/ / @ drdy = 0 <~— R, has a side of integer length

R.
//6277i(w+y)dw dy Z // 271'2(:13—|-y)da3 dy

)
R I=1 R,

Lemma. Let n and k be integers with n > 1. Let w = e2™¥/",

Then
n—1 .
Zwkj: 0 k%0 (modn)
j=0 =

n fk=0 (modn).

E 1 1 1 1 1 |
xample. — — 4+ —
b 4 T |

?
10

> evalf (sum((-1)~*k/ (3*k+1) ,k=0..10000)) ;
0.83566551354257290596014868433669232417119210209620

Lemma. Let n and k be integers with n > 1. Let w = e2™¥/",

Then
n—1 .
Zwkj: 0 k%0 (modn)
j=0 =

n fk=0 (modn).
1 1

1
Example. 1 — — 4+ — I
b 27 10

?

> evalf (sum((-1)~*k/ (3*k+1) ,k=0..10000)) ;
0.83566551354257290596014868433669232417119210209620

> evalf (sum((-1)~“k/ (3*k+1) ,k=0..100000)) ;
0.83565051491749890518903246793052057612353112399806

Lemma. Let n and k be integers with n > 1. Let w = €

Then
n—1 .
Z i 0 k%0 (modn)
im0 n fk=0 (modn).
- | ,]__% 1 1 | N
xample. — — 4+ = oo =
P 4 7 10 '

'=

> evalf (sum((-1)~*k/ (3*k+1) ,k=0..10000)) ;

0.83566551354257290596014868433669232417119210209620

> evalf (sum((-1)~“k/ (3*k+1) ,k=0..100000)) ;

0.83565051491749890518903246793052057612353112399806

(> evalf (sum((-1)“k/ (3*k+1) ,k=0..1000000)) ;

0.83564901493124883118895531926797084904818207352932

2mwi/n

Lemma. Let n and k be integers with n > 1. Let w = €

Then

0 k%0 (modn)
n fk=0 (modn).

n—1
E Wk =
7=0

evalf (sum((-1)*k/ (3*k+1) ,k=0..10000)) ;
0.83566551354257290596014868433669232417119210209620

evalf (sum((-1)“*k/ (3*k+1) ,k=0..100000)) ;
0.83565051491749890518903246793052057612353112399806

evalf (sum((-1)“*k/ (3*k+1) ,k=0..1000000)) ;
0.83564901493124883118895531926797084904818207352932

evalf ((3*log(2)+sqgrt(3)*Pi) /9) ;
0.83564884826472105333710345970011076678652212748433

2mwi/n

Lemma. Let n and k be integers with n > 1. Let w = e2™¥/",

Then
n—1 .
Zwkj _ 0 k%0 (modn)
j=0

n fk=0 (modn).
1 1 _310g2—|—\/§ﬂ'

1
Example. 1 — — 4+ — loee
b 27 10 9

> evalf (sum((-1)“*k/ (3*k+1) ,k=0..10000)) ;
0.83566551354257290596014868433669232417119210209620

> evalf (sum((-1)“*k/ (3*k+1) ,k=0..100000)) ;
0.83565051491749890518903246793052057612353112399806

> evalf (sum((-1)“*k/ (3*k+1) ,k=0..1000000)) ;
0.83564901493124883118895531926797084904818207352932

> evalf ((3*log(2)+sqrt(3)*Pi) /9) ;
0.83564884826472105333710345970011076678652212748433

1 1 1 - 3log2+ V3w

1 — - 4+ = Loves
4+7 10 0

Call the sum S.

1 1 1 - 3log2+ V3w

1 — - 4+ = Loves
4+7 10 0

Call the sum S. We use that

zzlog(1—|—z):z3 | oo

, 1+1 1 - 3log2+ V3w
4 7 10 - 0

Call the sum S. We use that

zzlog(1—|—z):z3 | oo

271 /3

Let w==¢€ , and note that

() 1+w@A+w)=14+w+w+w =w’=1.

, 1+1 1 - 3log2+ V3w
4 7 10 - 0

Call the sum S. We use that

zzlog(1—|—z):z3 | oo

271 /3

Let w==¢€ , and note that

() 1+w(@4+w)=14+w+w’+w=w’=1.
Also,

1+ 31 , 1 — /33
() W = > and w > :

Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1
E W =
j=0

0 k%0 (modn)
n fk=0 (modn).

zzlog(1—|-z):z3 | oo

Let w = e2™/3, and note that

() 1+w(@4+w)=14+w+w’+w=w’=1.
Also,

1+ 31 , 1 — /33
() W = > and w’ = > :

The lemma implies that

38 = log(1l + 1) + w?log(1l 4+ w) 4+ wlog(l + w?).

, 1+1 1 - 3log2+ V3w
4 7 10 - 0

Let w = €23, and note that
() 1+w)(1l+w)=1l4+wt+w’+w =w =1
Also,

1+ 33 , 1 — /33
() W = > and w’®= > :

The lemma implies that
38 = log(l + 1) + w?log(1l 4+ w) + wlog(l + w?).

From (%) and (%),
35S = log 2 + \/§z’log (1 —|—w2)

, 1+1 1 - 3log2+ V3w
4 7 10 - 0

Also,

1+ 31 , 1 — /33
() w = > and w°® = > :

The lemma implies that
38 = log(1l + 1) + w?log(1l 4+ w) + wlog(l + w?).
From (%) and (%),
35S =log2 + V3ilog (1 —|—w2)
= log 2 + V/3ilog (— w)

, 1+1 1 - 3log2+ V3w
4 7 10 - 0

Also,

1+ 31 , 1 — /33
() w = > and w°® = > :

The lemma implies that
38 = log(1l + 1) + w?log(1l 4+ w) + wlog(l + w?).
From (%) and (%),
35S =log2 + V3ilog (1 —|—w2)
= log 2 + V/3ilog (— w)
— log 2 + V3 7/3,

from which the value of S above follows.

Definitions and notations.

Definitions and notations. For n a positive integer, we set

W= w, = ™",

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

/1 1 1 e 1)
]_ W w2 e o o wn_]-
D=Dn,w)=|1 w’ w21

\1 w";_l wz(";—l) w(no—l)zj

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

/1 1 1 1)
]_ W w2 e o o wn_]-
D=Dn,w)=|1 w’ wt .. w21
\1 Wt WD L)
For u = <u07 Uty e ooy un—1> ~ Cn, define v = <'U()7 Vigeoo 7'Un—1>,

called the discrete Fourier transform of #, by ¥ = Dul.

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

(1 1 1 1)
1 w w? ... whd
D=Dnw) =|1 w? wt ... 2""Y
\1 w1 y2(n—-1) |, w(n—1)2/
For @ = (ug, U1y...,Up_1) € C?, define ¥ = (vg,V1y...,Vpn_1),
called the discrete Fourier transform of #, by ¥ = Dul.

The inverse discrete Fourier transform of a vector v € C" 1is
defined as (1/n)D(n,w™ 1) v,

Why is (1/n)D(n,w !')D(n,w) the identity matrix?

Lemma. Let n and k be integers with n > 1. Let w = e?™¥/",

Then
n—1 .
Zwkj _ 0 k%0 (modn)
j=0

n fk=0 (modn).

Definitions and notations. For n a positive integer, we set
W= w, = e2™/" Let

(1 1 1 1)
1 w w? w1
D — D(n, CJJ) p—]_ wz w4 e o wz(n_l)
\1 w1 H2n-1) L, w(n—l)Z)
For @ = (ug, U1y...,Up_1) € C?, define ¥ = (vg, V15...,Vp_1),
called the discrete Fourier transform of #, by ¥ = Dul.

The inverse discrete Fourier transform of a vector v € C" is
defined as (1/n)D(n,w) v,

Why is (1/n)D(n,w !')D(n,w) the identity matrix?

A Polynomial Connection

Observe that if f(x) =)

n—1

o

J

—1 @5

D <(1,0, 23 PRI an—1>T — ?

D =D(n,w) =

x) € C[z], then

1 1)
w2 . <.“Jn—l
Wl w2(n—1)

A Polynomial Connection

Observe that if f(x) = Z?:_ll a;x’ € Clx], then
D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw").

(1 1 1 1)

1 w w? wn 1
D=Dn,w) =1 w? wt ... 2D

\1 w1 (y2(n—1) w(n—1)2/

A Polynomial Connection

Observe that if f(x) = Z;":_ll a;x’ € Clx], then

D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw").
On the other hand, if we know f(1), f(w),..., f(w™ ') and

do not know the coefficients of f(x), then we can obtain the
coefficients from

D_1<.f(1)7 f(w),..., .f(wn_l)>T = (@oy A1y .+« a'n—1>T-

(1 1 1 1)

1 w w? wn 1
D=Dn,w) =1 w? wt ... 2D

\1 w1 (y2(n—1) w(n—1)2/

A Polynomial Connection

Observe that if f(x) = Z;":_ll a;x’ € Clx], then

D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw").
On the other hand, if we know f(1), f(w),..., f(w™ ') and

do not know the coefficients of f(x), then we can obtain the
coefficients from

D_1<.f(1)7 f(w),..., .f(wn_l)>T = (@oy A1y .+« a'n—1>T-
Note that here D! = (1/n)D(n,w™1).

(1 1 1 1)
1 w w? A LU
DD = D(n’ (.U) — 1 w2 w4 « oo wz(n_l)

\]._ wrnt_l w2(;"_1) ..: w(n._l)2/

A Polynomial Connection

Observe that if f(x) = Z;":_ll a;x’ € Clx], then

D {ap,a1y...,an_1)" = (f(1), fF(wW),..., Flw").
On the other hand, if we know f(1), f(w),..., f(w™ ') and

do not know the coefficients of f(x), then we can obtain the
coefficients from

D_1<.f(1)7 f(w),..., .f(wn_l)>T = (@oy A1y .+« a'n—1>T-
Note that here D! = (1/n)D(n,w™1).
If

F(z) = f(1) + f(@)a + -+ F(w"a""",
then

F(1) = nay, F(w_l) = Na1, ..., F(w_("_l)) = Na,_1.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that

f(@) = fe(@®) + @fo(x?).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that
f(x) = fe(z?) + zfo(x®). Calculate fc(w?), fo(w¥) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view nn as a power of 2.

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that
f(x) = fe(z?) + zfo(x®). Calculate fc(w?), fo(w¥) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

FQA), Fw)yons Flw™H).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™). Computing in an obvious way gives
An) <n?*+n(n—1).

The Fast Fourier Transform

We explain a fast way of performing the computation in

(*) D{ag,a,...,an-1)" = (f(1), f(w),..., F(w")"

There exist unique polynomials f. and f, in C|x] such that

f(x) = fe(z®) + zfo(z?). Calculate fe(w?), fo(w?) and
w? fo(w?) for 0 < 7 < n — 1 to obtain the right side of (*).

Why is this Fast?

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute
f(1), f(w)y..., f(w™). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that

o) = FLGEOTD) for 0< < (n/2) ~ 1.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations.

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

A(n) =2An/2) +2n —

(*) D <a09 A1y ooy an—1>T — <f(1)9 f(w)a c e f(wn_1)>T'

There exist unique polynomials f. and f, in C[x] such that

f(x) = fe(x®) + xfo(z®). Calculate fe(w?), fo(w®) and
w! f,(w?) for 0 < j < n — 1 to obtain the right side of (x).

For convenience, view n as a power of 2. Let A(n) be the
number of arithmetic operations that one needs to compute

f(1), f(w)y..., f(w™1). Computing in an obvious way gives
A(n) < n?+ n(n —1). Observe that
fe(wi?) = fe(wp*/2)) for 0 < j < (n/2) — 1.

Similar equations hold with f. replaced by f,. We deduce
that computing f.(w?) and f,(w?) takes 2A(n/2) arithmetic
operations. Multiplying f,(w?) by w’/ and then adding f.(w?’)
takes 2n more arithmetic operations. We obtain

An) =2An/2)+2n — A(n) = (2/log2)nlogn + Cn

for some constant C.

Math 788: Computational Number Theory

e Math 788 Computational Number Theory Syllabus

e Math 788 Computational Number Theory Course Description

e Math 788 Computational Number Theory Class Notes ﬁ

L —

e Lectures on Primality Testing in Polynomial Time

e Computational Material on Polynomials

e Lectures

Lecture 1 Lecture2 Lecture3 Lectured4 LectureS5S

Lecture 6 Lecture7 Lecture8 Lecture9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture24 Lecture 25

Lecture 26

e Test Materials

Review List
Test from 2007
Final Exam from 2007

Old Comp Exam Problems

e Graduate Number Theory Courses At The University of South Carolina

e Lectures on Primality Testing in Polynomial Time

e Computational Material on Polynomials

e Lectures

Lecture 1l Lecture2 Lecture3 Lectured4 LectureS5

Lecture 6 Lecture7 Lecture8 Lecture9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture24 Lecture 25
Lecture 26

e Test Materials

Review List <@
Test from 2007 €——

Final Exam from 2007 «———
Old Comp Exam Problems <

e Graduate Number Theory Courses At The University of South Carolina

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n 1s a strong
pseudoprime to every base b with 1 < b < n and ged(b,n) = 1.

not directly related to computatlonal aspects of number theory such as toplcs m blementary

AT 1 m

5. Be able to state and prove the Proth, Pockhngton Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor > /n.

(This 1s not a sure prime test.)

8. Be able to factor n using Dixon’s Algorithm (see homework).

9. Be able to factor n using the Quadratic Sieve Algorithm.

0 Re ahle ta factar n nano the Mnmadratic Sieve Alonrithm (Yon will he oiven come infarma-

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

n—T

11. Let f(z) = > 7| a;2’ € C[z] and recall (7) from the notes which reads

12. Be able to state and prove Hadamard’s inequality.

13. Be able to define what it means for a basis 1in a lattice to be reduced.

14 DA clkla bn Al aeers FTNN Zd bl n canbnn 4lant A e

14. Beabletoproveb € L, b#A0 = ||by| <2"=D/2||b]|.

Trounavestne powertoTrequesTanaevenmaKe cnangesrorrneisravovesTnave e power o vero e cnanges.

1. Be able to do problems related to any of the homewoIk. pracﬁce prob[emg

3. Be able to define a strong pseudoprime to the base b and be able to prove that no n 1s a strong
pseudoprime to every base b with 1 < b < n and ged(b,n) = 1.

27 Beableto prove that ecd(w. U)1s =< 1og IN"0on average and that usually 1t’s much smaller.

5. Be able to state and prove the Proth, Pocklington, Lehmer Test for primality.

6. Be able to prove that most numbers n have a prime factor > /n.

8. Be able to factor n using Dixon’s Algorithm (see homework).

(e} ™ 11 . T a_ - ™ _ _ _9_ A1

9. Be able to factor n using the Quadratic Sieve Algorithm.

fion and you will'need to make use of 1tand give the remaining details?)

10. Be able to prove Landau’s inequality for the size of the factors of a polynomial.

— .m PR — — S —— ST - 7}

12. Be able to state and prove Hadamard’s inequality.

13. Be able to define what it means for a basis in a lattice to be reduced.

14 Ra ahla tn chaw (T in tha natac that 1c that

14. Beabletoproveb € £, b#0 = |by| <2 Y/2||b]|.

Uw re c PUVVCI (454 ICqWCL)l/ urtw cvere rrteenc LILUILSC auvuv wuve ric }IUVV MII«SCL)-

e Lectures on Primality Testing in Polynomial Time

e Computational Material on Polynomials

e Lectures

Lecturel Lecture2 Lecture3 Lectured4 LectureS5

Lecture 6 Lecture7 Lecture8 Lecture9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture24 Lecture 25
Lecture 26

e Test Materials

Review List <@
Test from 2007 €——

Final Exam from 2007 <
Old Comp Exam Problems <

e Graduate Number Theory Courses At The University of South Carolina

