Office Hours

This Week: Monday, 2:15-3:45 p.m.
Wednesday, 11:45 p.m.-12:30 p.m.



Goal: Find a non-trivial factorization of a given f(x) € Z|x]
or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor
f(x) into irreducibles modulo p* where p is a prime and k €
77" is large (using Berlekamp’s algorithm and Hensel lifting).
Suppose h(x) is a monic irreducible factor of f(x) mod p*.
Let ho(x) denote an irreducible factor of f(x) in Z[x] such
that hg(x) is divisible by h(x) modulo p*. (Note that the
greatest common divisor of the coefficients of ho(x) is 1.)

New Goal: Show how one can determine hg(x) using h(x)
and without worrying about other factors of f(x) modulo p*.

Why would this improve on the Zassenhaus approach?

What i1s the lattice we want to use”?



What i1s the lattice we want to use”?

h(x) monic irreducible factor of f(x) modulo p*
ho(z)|f(z) in Z[z], h(z)|ho(z) modulo p*

¢ =degh, me {l,£+1,...,n— 1}
m is the possible degree of hy(x)

w(x) = apx™ + -+ a1x + ag € Z|x]

“— g:(&o,al,...,am> EZm_l_l

Define £ to be the lattice in Z™™! spanned by the vectors

associated with
)

pkxj_l for 1 <3</

wi(ax) = < .
(@) \h(a:)a:]_*'z_1 for 0 +1< 3 <m+1.




Define £ to be the lattice in Z™™! spanned by the vectors

assocliated with
)

pkmj_l for 1 <3</

Wi (L) = < .
(@) \h(az)az?_e_l fort +1<j3<m+1.

Example

> f = x*14-4*x*"3+2*x*"2+x-3;
f:=xl4—4x3+2x2+x—3
> Factor (f) mod 151;
2 2 2
(™ +129x +44) (x” +147x+92) (x

+127x+31) (x" +24x° + 91 x° + 81 %"
+30x +20x" +2x+34) (x + 26)

m =5



Example

> £ = x*14-4*x"342*x"2+x-3;
f:=x14—4x3—|—2x2—|—x—3
_> Factor(f) mod 151;
2 2 2
(" +129x+44) (¥ + 147x +92) (x

+127x4+31) (x" +24x° 4+ 91 % + 81 %
+30x 4+ 20x" + 2 x + 34) (x + 26)

Claim: The lattice L is exactly (151,0,0,0,0,0)
the vectors corresponding to (0,151,0,0,0,0)
w(x) € Zlx] of degree < (44,129,1,0, 0, 0)

m which can be expressed as
some multiple of h(x) mod p*. (0, 44,129, 1,0, 0)
Hence, by € L, where by corre- (0,0,44,129,1,0)

sponds to hg(x). (0,0,0,44,129,1)



(151,0, 0,0, 0, 0) > £ s

(0,151, 0,0, 0, 0)

XN14-4*x*34+2*x"24+x-3;
f:=xl4—4x3 +2x"+x—3
'> Factor (f) mod 151;

(44,129, 1,0, 0, 0) (x* + 129x 4+ 44) (x* + 147 x + 92) (°
(0,44,129,1, 0, 0) +127x+31) (x" +24x° +91x° + 81"
(0,0,44,129, 1, 0) +30x° +20x" +2x+34) (x + 26)

(0,0,0,44,129, 1)

Claim: The lattice L is exactly
the vectors corresponding to
w(x) € Zlx] of degree <
m which can be expressed as
some multiple of h(x) mod p*.
Hence, 50 € L, where 50 corre-
sponds to hg(x).

(Go to Maple.)

We will show that in fact if

p¥ is large and b1, : bm+1

is a reduced basis for L
with

by = (A, 1y« -5 Q)
then
bo = (ao/d,ai/d,...,an/d),

where d = gcd(agy ..., am).



Example with Rough Connection

Point of Example.
The polynomial f(x) factors a certain way in Z[x|.

The polynomial f(x) factors even further modulo p.

A single irreducible factor of f(x) mod p by itself

determines the unique irreducible factor
of f(x) in Z[x] that it divides.

131723



Example with Rough Connection

Point of Example.
The polynomial f(x) factors a certain way in Z[x|.

The polynomial f(x) factors even further modulo p.

A single irreducible factor of f(x) mod p by itself

determines the unique irreducible factor
of f(x) in Z[x] that it divides.

13-17-23=(2+3i)-(2—3i)- (4 +14)-(4—1) - 23

m = (9 + 42) - (9 — 412) - (other stuff)



Example with Rough Connection

The polynomial f(x) factors a certain way in Z[x|.
The polynomial f(x) factors even further modulo p.

A single irreducible factor of f(x) mod p by itself
determines the unique irreducible factor

of f(x) in Z|x] that it divides.

13-17-23 = (24+3i) - (2—3i)- (4 +4) - (4 —3) - 23
m = (9 4+ 42) - (9 — 42) - (other stuff)

The comparison is not fair.

For a fixed irreducible polynomial h(x) mod p,

there are infinitely many irreducible hy(x) € Z|x]
such that h(x) divides ho(x) mod p.



Example with Rough Connection

13-17-23 = (2

3i) - (2 — 37) - (4

i) (4 —4)-23

m = (9 4+ 42) - (9 — 42) - (other stuff)

The comparison is not fair.

For a fixed irreducible polynomial h(x) mod p,
there are infinitely many irreducible ho(x) € Z|x]

such that h(x) divides hg(x) mod p.

However, there is only one possibility
for ho(x) € Z|x| with ||hg(x)|| small.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.



fz) = Z?:o a’jwj € Clz], g(x)= Z;:O bjwj € Clz],
n>1, r>1, apb.#0

a, a,-1 Qpn_9 ... ag 0 0 ... 0O
O a, a,_q a; ap 0O 0
0 0 a, az a; ao 0
R0 =y b by . by 0 O 0
0O b. b,y . by by O 0
0 0 b, b, b; by 0
If ay,...,a, are the roots of f(x), then

R(f,g) = a; g(aq) -+ - gay,).

If f(x) and g(x) are in Z[x], there exist u(x) and v(x) in
Z|x] such that degu < degg, degv < deg f, and

f(x)u(zx) + g(z)v(z) = R(f,9)



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hq(x).



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be

the resultant of ho(x) and go(x).



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|x], we have R # 0.

If a1,...,a, are the roots of f(x), then

R(.fv g) — a;g(al) ° 'g(an)‘




Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed).

If a1,...,a, are the roots of f(x), then

R(.fv g) — a;g(al) ° 'g(an)‘




Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose

R is not large.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose
R is not large. There are polynomials u(x) and v(x) in Z|x]
such that
ho(x)u(x) 4+ go(x)v(x) = R.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose
R is not large. There are polynomials u(x) and v(x) in Z|x]
such that
ho(x)u(x) 4+ go(x)v(x) = R.

The left-hand side is of the form h(x)w(x) modulo p* with
h(x) monic and of degree ¢ > 1.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose
R is not large. There are polynomials u(x) and v(x) in Z|x]
such that
ho(x)u(x) 4+ go(x)v(x) = R.

The left-hand side is of the form h(x)w(x) modulo p* with
h(x) monic and of degree £ > 1. This implies p*|R.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose
R is not large. There are polynomials u(x) and v(x) in Z|x]
such that

ho(x)u(x) + go(x)v(x) = R.
The left-hand side is of the form h(x)w(x) modulo p* with
h(x) monic and of degree £ > 1. This implies p*|R. Hence,

given p* is large, we deduce R is large, giving us the desired
conclusion that ||go(x)|| is large.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Claim Revised. If b € £ and go(z) € L is the polynomial
associated with b, then either both R > p* and ||go(x)]|| is
large or R = 0. Further, if R = 0, then b is a multiple of b,.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Proof. Suppose go(x) € Z|x]| is irreducible, of degree < m,
divisible by h(x) mod p*, and different from hy(x). Let R be
the resultant of hy(x) and go(x). Note that since hgo(x) and
go(x) are irreducible in Z|[x], we have R # 0. The definition
of the resultant implies that if R is large, then ||go(x)|| must
be large (since we are viewing hg(x) as fixed). So suppose
R is not large. There are polynomials u(x) and v(x) in Z|x]
such that

ho(x)u(x) + go(x)v(x) = R.
The left-hand side is of the form h(x)w(x) modulo p* with
h(x) monic and of degree £ > 1. This implies p*|R. Hence,

given p* is large, we deduce R is large, giving us the desired
conclusion that ||go(x)|| is large.



Claim. If p* is large enough, then hy(x) is the only irreducible
polynomial in Z|x| that corresponds to a short vector in L.

Claim Revised. If b € £ and go(z) € L is the polynomial
associated with b, then either both R > «p—a-lil-d-Hg(}(ilZ)_“ is
large or R = 0. Furthes'it R = 0, then b is a multlple of 9

—

Definition. Let bl, , b, be a basis for a lattice £, and let
b;‘, . b* be the correspondmg basis in R"™ obtained from the
Gram-Schmldt orthogonalization process, with p;; as defined

—

before. Then we say that 51, ..., b, is reduced if both of the
following hold

1
(1)mw|<§ for1 <j<21<mn

.o — — 3 —_ i
(i) 115 + pii-aby o> > B P for 1< i <.



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

—

Definition. Let 51, ..., b, be a basis for a lattice £, and let
bl,..., b be the corresponding basis in R" obtained from the
Gram-Schmidt orthogonalization process, with u;; as defined

—

before. Then we say that 51, ..., b, 1s reduced if both of the
following hold

. 1 L.
() lnigl <5 for1<j<i<n

— — 3 —
(i) 1187 + pig1B |2 > S 1512 for 1< i < m.
In the notation of the definition,

be L, b#0 = |[bi <27V

Thus, b, is not far from being the shortest vector in L.



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

In the notation of the definition,
be L, b£0 = b <207V2|p].

Thus, 51 is not far from being the shortest vector in L.

Given f(zx), we take p* > 2548 /)°/2|| f()||2de8 7.



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

In the notation of the definition,
be L, b£0 = b <207V2|p].

Thus, 51 is not far from being the shortest vector in L.

Given f(w), we take p” > 25(deg £)°/2|| £ (z)||2dee F. We want to
show b1 is a multiple of b() It suffices to show R < pF.



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

In the notation of the definition,
be L, b£0 = b <207V2|p].

Thus, 51 is not far from being the shortest vector in L.
Given f(w), we take p” > 25(deg £)°/2|| £ (z)||2dee F. We want to

show b1 is a multiple of b() It suffices to show R < p*. Let
go(x) be the polynomial associated with by.



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

In the notation of the definition,
be L, b£0 = b <207V2|p].

Thus, 51 is not far from being the shortest vector in L.

Given f(w), we take p” > 25(deg £)°/2|| £ (z)||2dee F. We want to
show b1 is a multiple of b() It suffices to show R < p*. Let
go(z) be the polynomial associated with b;. Recall

[ho(z)|| < 2| f ()]



Claim Revised. If b € £ and go(x) € L is the polynomial
associated with b, then either both R > p* and ||go(x)| is
large or R = 0. Further, if R = 0, then b is a multiple of by.

In the notation of the definition,
be L, b£0 = b <207V2|p].

Thus, 51 is not far from being the shortest vector in L.

Given f(w), we take p” > 25(deg £)°/2|| £ (z)||2dee F. We want to
show b1 is a multiple of b() It suffices to show R < p*. Let
go(z) be the polynomial associated with b;. Recall

[ho(z)|| < 2| f ()]
Taking b = by above (note n = m + 1), we get

lgo(z) || < 2™/2||ho(z)]l.



Given f(z), we take pF > 25(deg £)°/2|| £ (z)||2dee F. We Want to
show b1 is a multiple of bo It suffices to show R < p*. Let
go(x) be the polynomial associated with b;. Recall

[ho(x) || < 27| f (x)]]-
Taking b = by above (note n = m + 1), we get

1go(z)|| < 2™/2||ho(z)]|.
Thus,
1go(x)|| < 2°™72|| f()]|.



Given f(z), we take pF > 25(deg £)°/2|| £ (z)||2dee F. We Want to
show b1 is a multiple of bo It suffices to show R < p*. Let
go(x) be the polynomial associated with b;. Recall

[ho(x) || < 27| f (x)]]-
Taking b = by above (note n = m + 1), we get

1go(z)|| < 2™/2||ho(z)]|.
Thus,
1go(x)|| < 2°™72|| f()]|.

The Sylvester determinant form of the resultant (sort-of) and
Hadamard’s inequality give

[R| < llgo(=)||"[|ho(2)|I™



Given f(z), we take pF > 25(deg £)°/2|| £ (z)||2dee F. We Want to
show b1 is a multiple of bo It suffices to show R < p*. Let
go(x) be the polynomial associated with b;. Recall

[ho(x) || < 27| f (x)]]-
Taking b = by above (note n = m + 1), we get

1go(z)|| < 2™/2||ho(z)]|.
Thus,
1go(x)|| < 2°™72|| f()]|.

The Sylvester determinant form of the resultant (sort-of) and
Hadamard’s inequality give

[R| < llgo(=)||"[|ho(2)|I™
< (22 @) )™ (2™ (1 (@)])™



Given f(z), we take pF > 25(deg £)°/2|| £ (z)||2dee F. We Want to
show b1 is a multiple of bo It suffices to show R < p*. Let
go(x) be the polynomial associated with b;. Recall

[ho(x) || < 27| f (x)]]-
Taking b = by above (note n = m + 1), we get

1go(z)|| < 2™/2||ho(z)]|.
Thus,
1go(x)|| < 2°™72|| f()]|.

The Sylvester determinant form of the resultant (sort-of) and
Hadamard’s inequality give

IR| < llgo(@)[I™|Iho()||™
< @2If@)I)™ (2 1F @)))™
=22 f (@) *" < p*. I



