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Page 20, the one Homework problem there
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Goal: Find a non-trivial factorization of a given f(x) 2 Z[x]

or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor

f(x) into irreducibles modulo pk
where p is a prime and k 2

Z+
is large (using Berlekamp’s algorithm and Hensel lifting).

Suppose h(x) is a monic irreducible factor of f(x) mod pk
.

Let h0(x) denote an irreducible factor of f(x) in Z[x] such

that h0(x) is divisible by h(x) modulo pk
. (Note that the

greatest common divisor of the coe�cients of h0(x) is 1.)

New Goal: Show how one can determine h0(x) using h(x)

and without worrying about other factors of f(x) modulo pk
.

Why would this improve on the Zassenhaus approach?
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What is the lattice we want to use?

h(x) monic irreducible factor of f(x) modulo pk

h0(x)|f(x) in Z[x], h(x)|h0(x) modulo pk

` = deg h, m 2 {`, ` + 1, . . . , n� 1}

m is the possible degree of h0(x)

w(x) = amxm
+ · · · + a1x + a0 2 Z[x]

 ! ~b = ha0, a1, . . . , ami 2 Zm+1

Define L to be the lattice in Zm+1
spanned by the vectors

associated with

wj(x) =

(
pkxj�1

for 1  j  `

h(x)xj�`�1
for ` + 1  j  m + 1.
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m = 5

h151, 0, 0, 0, 0, 0i
h0, 151, 0, 0, 0, 0i
h44, 129, 1, 0, 0, 0i
h0, 44, 129, 1, 0, 0i
h0, 0, 44, 129, 1, 0i
h0, 0, 0, 44, 129, 1i

Example

m = 5

Claim: The lattice L is exactly

the vectors corresponding to

w(x) 2 Z[x] of degree 
m which can be expressed as

some multiple of h(x) mod pk
.

Hence, ~b0 2 L, where ~b0 corre-

sponds to h0(x).

We will show that in fact if

pk
is large and ~b1, . . . ,~bm+1 is

a reduced basis for L, then

~b0 = ~b#

1
, where~b#

1
is the vector

obtained by dividing the com-

ponents of ~b1 by the greatest

common divisor of these com-

ponents.
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Claim: The lattice L is exactly

the vectors corresponding to

w(x) 2 Z[x] of degree 
m which can be expressed as

some multiple of h(x) mod pk
.

Hence, ~b0 2 L, where ~b0 corre-

sponds to h0(x).

(Go to Maple.)

We will show that in fact if

pk
is large and ~b1, . . . ,~bm+1 is

a reduced basis for L, then

~b0 = ~b#

1
, where~b#

1
is the vector

obtained by dividing the com-

ponents of ~b1 by the greatest

common divisor of these com-

ponents.

We will show that in fact if

pk
is large and ~b1, . . . ,~bm+1

is a reduced basis for L
with

b1 = ha0, a1, . . . , ami,

then

~b0 = ha0/d, a1/d, . . . , am/di,

where d = gcd(a0, . . . , am).
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Example with Rough Connection

Point of Example.

The polynomial f(x) factors a certain way in Z[x].

The polynomial f(x) factors even further modulo p.

A single irreducible factor of f(x) mod p by itself

determines the unique irreducible factor

of f(x) in Z[x] that it divides.

13 · 17 · 23 = (2 + 3i) · (2 � 3i) · (4 + i) · (4 � i) · 23

m = (9 + 4i) · (9 � 4i) · (other stu↵)
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Claim. If pk
is large enough, then h0(x) is the only irreducible

polynomial in Z[x] that corresponds to a short vector in L.

Proof. Suppose g0(x) 2 Z[x] is irreducible, of degree  m,

divisible by h(x) mod pk
, and di↵erent from h0(x). Let R be

the resultant of h0(x) and g0(x). Note that since h0(x) and

g0(x) are irreducible in Z[x], we have R 6= 0. The definition

of the resultant implies that if R is large, then kg0(x)k must

be large (since we are viewing h0(x) as fixed). So suppose

R is not large. There are polynomials u(x) and v(x) in Z[x]

such that

h0(x)u(x) + g0(x)v(x) = R.

The left-hand side is of the form h(x)w(x) modulo pk
with

h(x) monic and of degree ` � 1. This implies pk|R. Hence,

given pk
is large, we deduce R is large, giving us the desired

conclusion that kg0(x)k is large.



f(x) =
Pn

j=0
ajxj 2 C[x], g(x) =

Pr
j=0

bjxj 2 C[x],

n � 1, r � 1, anbr 6= 0

R(f, g) =

�����������������

an an�1 an�2 . . . a0 0 0 . . . 0

0 an an�1 . . . a1 a0 0 . . . 0

0 0 an . . . a2 a1 a0 . . . 0

...
...

...
. . .

...
...

...
. . .

...
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Claim. If pk
is large enough, then h0(x) is the only irreducible

polynomial in Z[x] that corresponds to a short vector in L.

Proof. Suppose g0(x) 2 Z[x] is irreducible, of degree  m,

divisible by h(x) mod pk
, and di↵erent from h0(x). Let R be

the resultant of h0(x) and g0(x). Note that since h0(x) and

g0(x) are irreducible in Z[x], we have R 6= 0. The definition

of the resultant implies that if R is large, then kg0(x)k must

be large (since we are viewing h0(x) as fixed). So suppose

R is not large. There are polynomials u(x) and v(x) in Z[x]

such that

h0(x)u(x) + g0(x)v(x) = R.

The left-hand side is of the form h(x)w(x) modulo pk
with

h(x) monic and of degree ` � 1. This implies pk|R. Hence,

given pk
is large, we deduce R is large, giving us the desired

conclusion that kg0(x)k is large.
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Comment: The main part of the work of Lenstra, Lenstra

and Lovász establishes an algorithm that runs in polynomial

time that constructs a reduced basis of L from an arbitrary

basis ~b1, . . . ,~bn of L. We do not give this algorithm, but

instead give a little more background and then explain how

a reduced basis can be used to factor a polynomial f(x).
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Claim Revised. If ~b 2 L and g0(x) 2 L is the polynomial

associated with ~b, then either both R � pk
and kg0(x)k is

large or R = 0. Further, if R = 0, then ~b is a multiple of ~b0.

Given f(x), we take pk > 2
5(deg f)

2/2kf(x)k2 deg f
. We want to

show ~b1 is a multiple of ~b0. It su�ces to show R < pk
. Let

g(x) be the polynomial associated with ~b1. Recall

kh0(x)k  2
mkf(x)k.

Taking ~b = ~b0 above (note n = m + 1), we get

kg0(x)k  2
m/2kh0(x)k.

Thus,

kg0(x)k  2
3m/2kf(x)k.

The Sylvester determinant form of the resultant (sort-of) and

Hadamard’s inequality give

|R|  kg0(x)kmkh0(x)km


�
2

3m/2kf(x)k
�m�

2
mkf(x)k

�m

= 2
5m2/2kf(x)k2m < pk.
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Factoring Polynomials

Homework: (due November 9 by class time)
Page 20, the one Homework problem there
Page 22, Problem (1) and (2)
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