The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) \boldsymbol{U} V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)
$$

Given that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathbb{R}^{n}, it follows that $U V$ is the identity matrix and det $V= \pm 1$. The second equation above then implies

$$
\left|\operatorname{det}\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right)\right|=\left|\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)\right| .
$$

We set $\operatorname{det} \mathcal{L}$ to be this common value.

Example. In \mathbb{R}^{2}, the lattice formed from the basis $\langle 1,0\rangle$ and $\langle 0,1\rangle$ is the same as the lattice formed from the basis $\langle 1,0\rangle$ and $\langle 1,1\rangle$. This can be seen geometrically and algebraically.

Example 2. The lattice \mathcal{L}_{1} with basis $\langle 2,1\rangle$ and $\langle 1,2\rangle$ and the lattice \mathcal{L}_{2} with basis $\langle 3,0\rangle$ and $\langle 3,1\rangle$ are such that $\operatorname{det} \mathcal{L}_{1}=$ $\operatorname{det} \mathcal{L}_{2}$. But the lattices are quite different.

The Gram-Schmidt orthogonalization process
Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Then for each $i \in\{1, \ldots, n\}$, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{i}^{*}$ span the same subspace of \mathbb{R}^{n} as $\vec{b}_{1}, \ldots, \vec{b}_{i}$. In other words,

$$
\begin{aligned}
\left\{a_{1} \vec{b}_{1}^{*}+\cdots\right. & \left.+a_{i} \vec{b}_{i}^{*}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\} \\
& =\left\{a_{1} \vec{b}_{1}+\cdots+a_{i} \vec{b}_{i}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\}
\end{aligned}
$$

Furthermore, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ are linearly independent (hence, non-zero) and pairwise orthogonal (i.e., for distinct i and j, we have $\vec{b}_{i}^{*} \cdot \vec{b}_{j}^{*}=0$).

Hadamard's Inequality

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}. Geometrically (in low dimensions),

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

$$
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\|\vec{b}\| \geq \min \left\{\left\|\vec{b}_{1}^{*}\right\|,\left\|\vec{b}_{2}^{*}\right\|, \ldots,\left\|\overrightarrow{\vec{b}}_{n}^{*}\right\|\right\}
$$

$$
\vec{b}_{i}=\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

$$
\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}
$$

$\vec{b}=u_{1} \vec{b}_{1}+\cdots+u_{k} \vec{b}_{k}, \quad$ where each $u_{j} \in \mathbb{Z}$ and $u_{k} \neq 0$

$$
\vec{b}=v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}, \quad \text { where each } v_{j} \in \mathbb{Q} \text { and } v_{k}=u_{k}
$$

$$
\begin{aligned}
\|\vec{b}\|^{2} & =\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right) \cdot\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right) \\
& =v_{1}^{2}\left\|\vec{b}_{B}^{*}\right\|^{2}+\cdots+v_{k}^{2}\left\|\vec{b}_{k}^{*}\right\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}
\end{aligned}
$$

$\vec{b} \in \mathcal{L}, k$ as above $\Longrightarrow\|\vec{b}\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}$

Definition. Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a basis for a lattice \mathcal{L}, and let $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ be the corresponding basis in \mathbb{R}^{n} obtained from the Gram-Schmidt orthogonalization process, with $\mu_{i j}$ as defined before. Then we say that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is reduced if both of the following hold
(i) $\left|\mu_{i j}\right| \leq \frac{1}{2} \quad$ for $1 \leq j<i \leq n$
(ii) $\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \quad$ for $1<i \leq n$.

Comment: The main part of the work of Lenstra, Lenstra and Lovász establishes an algorithm that runs in polynomial time that constructs a reduced basis of \mathcal{L} from an arbitrary basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}.

Definition. Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a basis for a lattice \mathcal{L}, and let $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ be the corresponding basis in \mathbb{R}^{n} obtained from the Gram-Schmidt orthogonalization process, with $\mu_{i j}$ as defined before. Then we say that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is reduced if both of the following hold
(i) $\left|\mu_{i j}\right| \leq \frac{1}{2} \quad$ for $1 \leq j<i \leq n$
(ii) $\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \quad$ for $1<i \leq n$.

Comment: The main part of the work of Lenstra, Lenstra and Lovász establishes an algorithm that runs in polynomial time that constructs a reduced basis of \mathcal{L} from an arbitrary basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}. We do not give this algorithm, but instead give a little more background and then explain how a reduced basis can be used to factor a polynomial $f(x)$.

In the notation of the definition,

$$
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \quad \Longrightarrow \quad\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\|
$$

Thus, \vec{b}_{1} is not far from being the shortest vector in \mathcal{L}.

$$
\left\|\vec{b}_{i}^{*}\right\|^{2}+\frac{1}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \geq\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2}
$$

Definition. Let $\vec{b}_{1}, \ldots, \vec{b}_{n}$ be a basis for a lattice \mathcal{L}, and let $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ be the corresponding basis in \mathbb{R}^{n} obtained from the Gram-Schmidt orthogonalization process, with $\mu_{i j}$ as defined before. Then we say that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is reduced if both of the following hold
(i) $\left|\mu_{i j}\right| \leq \frac{1}{2} \quad$ for $1 \leq j<i \leq n$
(ii) $\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \quad$ for $1<i \leq n$.

In the notation of the definition,

$$
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\|
$$

Thus, \vec{b}_{1} is not far from being the shortest vector in \mathcal{L}.

$$
\begin{gathered}
\left\|\vec{b}_{i}^{*}\right\|^{2}+\frac{1}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \geq\left\|\vec{b}_{i}^{*}+\mu_{i, i-1} \vec{b}_{i-1}^{*}\right\|^{2} \geq \frac{3}{4}\left\|\vec{b}_{i-1}^{*}\right\|^{2} \\
\Longrightarrow\left\|\vec{b}_{i}^{*}\right\|^{2} \geq(1 / 2)\left\|\vec{b}_{i-1}^{*}\right\|^{2} \\
\left\|\vec{b}_{i}^{*}\right\|^{2} \geq \frac{1}{2^{i-j}}\left\|\vec{b}_{j}^{*}\right\|^{2} \quad \text { for } 1 \leq j<i \leq n \\
\|\vec{b}\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2} \geq \frac{1}{2^{k-1}}\left\|\vec{b}_{1}^{*}\right\|^{2} \geq \frac{1}{2^{n-1}}\left\|\vec{b}_{1}^{*}\right\|^{2}=\frac{1}{2^{n-1}}\left\|\vec{b}_{1}\right\|^{2} \\
\vec{b} \in \mathcal{L}, k \text { as above } \Longrightarrow\|\vec{b}\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}
\end{gathered}
$$

(*)

$$
\begin{aligned}
& \vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow \quad\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\| \\
& \left\|\vec{b}_{i}^{*}\right\|^{2} \geq \frac{1}{2^{i-j}}\left\|\vec{b}_{j}^{*}\right\|^{2} \quad \text { for } 1 \leq j<i \leq n
\end{aligned}
$$

$\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\|$
Let $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{t}$ be t linearly independent vectors in \mathcal{L}. Then

$$
\left\|\vec{b}_{j}\right\| \leq 2^{(n-1) / 2} \max \left\{\left\|\vec{x}_{1}\right\|,\left\|\vec{x}_{2}\right\|, \ldots,\left\|\vec{x}_{t}\right\|\right\} \quad \text { for } 1 \leq j \leq t .
$$

$$
\begin{gathered}
\left\|\vec{b}_{i}^{*}\right\|^{2} \geq \frac{1}{2^{i-j}}\left\|\vec{b}_{j}^{*}\right\|^{2} \quad \text { for } 1 \leq j<i \leq n \\
\left\|\vec{b}_{i}\right\|^{2}=\left\|\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}\right\|^{2}=\left\|\vec{b}_{i}^{*}\right\|^{2}+\sum_{j=1}^{i-1} \mu_{i j}^{2}\left\|\vec{b}_{j}^{*}\right\|^{2} \\
\left\|\vec{b}_{i}\right\|^{2} \leq\left\|\vec{b}_{i}^{*}\right\|^{2}+\frac{1}{4} \sum_{j=1}^{i-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq\left\|\vec{b}_{i}^{*}\right\|^{2}+\frac{1}{4} \sum_{j=1}^{i-1} 2^{i-j}\left\|\vec{b}_{i}^{*}\right\|^{2} \\
=\left(1+\frac{1}{4}\left(2^{i}-2\right)\right)\left\|\vec{b}_{i}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \\
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
\end{gathered}
$$

$\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\left\|\vec{b}_{1}\right\| \leq 2^{(n-1) / 2}\|\vec{b}\|$
Let $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{t}$ be t linearly independent vectors in \mathcal{L}. Th 1

$$
\left\|\vec{b}_{j}\right\| \leq 2^{(n-1) / 2} \max \left\{\left\|\vec{x}_{1}\right\|,\left\|\vec{x}_{2}\right\|, \ldots,\left\|\vec{x}_{t}\right\|\right\} \quad \text { for } 1 \leq j \leq t
$$

$$
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
$$

$(*) \quad \vec{b} \in \mathcal{L}, k$ as above $\Longrightarrow\|\vec{b}\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}$

$$
\begin{gathered}
\vec{x}_{j}=\sum_{i=1}^{m(j)} u_{j i} \vec{b}_{i}, \quad u_{j m(j)} \neq 0, \quad m(1) \leq m(2) \leq \cdots \leq m(t) \\
m(j) \geq j \text { for } 1 \leq j \leq t \\
\left\|\vec{x}_{j}\right\|^{2} \geq\left\|\vec{b}_{m(j)}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq t \\
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{m(j)-1}\left\|\vec{b}_{m(j)}^{*}\right\|^{2} \leq 2^{n-1}\left\|\vec{x}_{j}\right\|^{2} \quad \text { for } 1 \leq j \leq t
\end{gathered}
$$

$$
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
$$

Recall $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$.

$$
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
$$

Recall $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. We obtain

$$
\prod_{i=1}^{n}\left\|\vec{b}_{i}\right\|^{2} \leq \prod_{i=1}^{n} 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2}=2^{n(n-1) / 2}(\operatorname{det} \mathcal{L})^{2} .
$$

$$
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
$$

Recall $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. We obtain

$$
\prod_{i=1}^{n}\left\|\vec{b}_{i}\right\|^{2} \leq \prod_{i=1}^{n} 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2}=2^{n(n-1) / 2}(\operatorname{det} \mathcal{L})^{2} .
$$

Thus, from Hadamard's inequality, we obtain

$$
2^{-n(n-1) / 4}\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq \operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\|
$$

for any basis $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ of \mathcal{L}.

$$
\left\|\vec{b}_{j}\right\|^{2} \leq 2^{j-1}\left\|\vec{b}_{j}^{*}\right\|^{2} \leq 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2} \quad \text { for } 1 \leq j \leq i \leq n
$$

Recall $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. We obtain

$$
\prod_{i=1}^{n}\left\|\vec{b}_{i}\right\|^{2} \leq \prod_{i=1}^{n} 2^{i-1}\left\|\vec{b}_{i}^{*}\right\|^{2}=2^{n(n-1) / 2}(\operatorname{det} \mathcal{L})^{2} .
$$

Thus, from Hadamard's inequality, we obtain

$$
2^{-n(n-1) / 4}\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq \operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\|
$$

for any basis $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ of \mathcal{L}.
Comment: Recall that finding a basis $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ for which the product on the right is minimal is NP-hard. The above implies that a reduced basis is close to being such a basis.

Goal: Find a non-trivial factorization of a given $f(x) \in \mathbb{Z}[x]$ or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor $f(x)$ into irreducibles modulo p^{k} where p is a prime and $k \in$ \mathbb{Z}^{+}is large (using Berlekamp's algorithm and Hensel lifting).

Goal: Find a non-trivial factorization of a given $f(x) \in \mathbb{Z}[x]$ or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor $f(x)$ into irreducibles modulo p^{k} where p is a prime and $k \in$ \mathbb{Z}^{+}is large (using Berlekamp's algorithm and Hensel lifting). Suppose $h(x)$ is a monic irreducible factor of $f(x) \bmod p^{k}$.

Goal: Find a non-trivial factorization of a given $f(x) \in \mathbb{Z}[x]$ or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor $f(x)$ into irreducibles modulo p^{k} where p is a prime and $k \in$ \mathbb{Z}^{+}is large (using Berlekamp's algorithm and Hensel lifting). Suppose $h(x)$ is a monic irreducible factor of $f(x) \bmod p^{k}$. Let $h_{0}(x)$ denote an irreducible factor of $f(x)$ in $\mathbb{Z}[x]$ such that $h_{0}(x)$ is divisible by $h(x)$ modulo p^{k}.

Goal: Find a non-trivial factorization of a given $f(x) \in \mathbb{Z}[x]$ or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor $f(x)$ into irreducibles modulo p^{k} where p is a prime and $k \in$ \mathbb{Z}^{+}is large (using Berlekamp's algorithm and Hensel lifting). Suppose $h(x)$ is a monic irreducible factor of $f(x) \bmod p^{k}$. Let $h_{0}(x)$ denote an irreducible factor of $f(x)$ in $\mathbb{Z}[x]$ such that $h_{0}(x)$ is divisible by $h(x)$ modulo p^{k}. (Note that the greatest common divisor of the coefficients of $h_{0}(x)$ is 1.)

New Goal: Show how one can determine $h_{0}(x)$ using $h(x)$ and without worrying about other factors of $f(x)$ modulo p^{k}.

Why would this improve on the Zassenhaus approach?
What is the lattice we want to use?

What is the lattice we want to use?

$h(x)$ monic irreducible factor of $f(x)$ modulo p^{k}

$$
h_{0}(x) \mid f(x) \text { in } \mathbb{Z}[x], h(x) \mid h_{0}(x) \text { modulo } p^{k}
$$

$$
\ell=\operatorname{deg} h, m \in\{\ell, \ell+1, \ldots, n-1\}
$$

m is the possible degree of $h_{0}(x)$

$$
\begin{aligned}
& w(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x] \\
& \longleftrightarrow \vec{b}=\left\langle a_{0}, a_{1}, \ldots, a_{m}\right\rangle \in \mathbb{Z}^{m+1}
\end{aligned}
$$

Define \mathcal{L} to be the lattice in \mathbb{Z}^{m+1} spanned by the vectors associated with

$$
w_{j}(x)= \begin{cases}p^{k} x^{j-1} & \text { for } 1 \leq j \leq \ell \\ h(x) x^{j-\ell-1} & \text { for } \ell+1 \leq j \leq m+1\end{cases}
$$

Define \mathcal{L} to be the lattice in \mathbb{Z}^{m+1} spanned by the vectors associated with

$$
w_{j}(x)= \begin{cases}p^{k} x^{j-1} & \text { for } 1 \leq j \leq \ell \\ h(x) x^{j-\ell-1} & \text { for } \ell+1 \leq j \leq m+1\end{cases}
$$

Example

$$
\left[\begin{array}{c}
>\mathrm{f}:=\mathbf{x}^{\wedge} 14-4 * \mathbf{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+\mathbf{x}-3 ; \\
f:=x^{14}-4 x^{3}+2 x^{2}+x-3 \\
>\text { Factor (f) mod } 151 ; \\
\left(x^{2}+129 x+44\right)\left(x^{2}+147 x+92\right)\left(x^{2}\right. \\
+127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right. \\
\left.+30 x^{3}+20 x^{2}+2 x+34\right)(x+26) \\
m=5
\end{array}\right.
$$

Define \mathcal{L} to be the lattice in \mathbb{Z}^{m+1} spanned by the vectors associated with

$$
w_{j}(x)= \begin{cases}p^{k} x^{j-1} & \text { for } 1 \leq j \leq \ell \\ h(x) x^{j-\ell-1} & \text { for } \ell+1 \leq j \leq m+1\end{cases}
$$

$$
\begin{aligned}
\left(x^{2}\right. & +129 x+44)\left(x^{2}+147 x+92\right)\left(x^{2}\right. \\
& +127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right. \\
& \left.+30 x^{3}+20 x^{2}+2 x+34\right)(x+26)
\end{aligned}
$$

$$
\langle 151,0,0,0,0,0\rangle
$$

$$
\langle 0,151,0,0,0,0\rangle
$$

$$
\langle 44,129,1,0,0,0\rangle
$$

$$
\langle 0,44,129,1,0,0\rangle
$$

$$
\langle 0,0,44,129,1,0\rangle
$$

$$
\langle 0,0,0,44,129,1\rangle
$$

Example

$$
\begin{aligned}
& >\mathrm{f}:=\mathbf{x}^{\wedge} 14-4 * \mathbf{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+\mathbf{x}-3 \\
& f:=x^{14}-4 x^{3}+2 x^{2}+x-3 \\
& >\text { Factor }(\mathrm{f}) \bmod 151 ; \\
& \left(\begin{array}{l}
\left.x^{2}+129 x+44\right)\left(x^{2}+147 x+92\right)\left(x^{2}\right. \\
\quad+127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right. \\
\left.\quad+30 x^{3}+20 x^{2}+2 x+34\right)(x+26)
\end{array}\right.
\end{aligned}
$$

Claim: The lattice \mathcal{L} is exactly the vectors corresponding to $\boldsymbol{w}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ that are divisible by $h(x)$ modulo p^{k}.
$\langle 151,0,0,0,0,0\rangle$
$\langle 0,151,0,0,0,0\rangle$
$\langle 44,129,1,0,0,0\rangle$
$\langle 0,44,129,1,0,0\rangle$
$\langle 0,0,44,129,1,0\rangle$
$\langle 0,0,0,44,129,1\rangle$

Example

$$
\left.\begin{array}{l}
>\mathrm{f}:=\mathbf{x}^{\wedge} 14-4 * \mathbf{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+\mathbf{x}-3 ; \\
f:=x^{14}-4 x^{3}+2 x^{2}+x-3
\end{array}\right] \begin{aligned}
& >\text { Factor }(\mathrm{f}) \bmod 151 ; \\
& \left(x^{2}+129 x+44\right)\left(x^{2}+147 x+92\right)\left(x^{2}\right. \\
& \quad+127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right. \\
& \left.\quad+30 x^{3}+20 x^{2}+2 x+34\right)(x+26)
\end{aligned}
$$

$\langle 151,0,0,0,0,0\rangle$

Claim: The lattice \mathcal{L} is exactly the vectors corresponding to $w(x) \in \mathbb{Z}[x]$ that are divisible by $h(x)$ modulo p^{k}. Hence, the vector \vec{b}_{0} corresponding to $h_{0}(x)$ is in \mathcal{L}.
$\langle 44,129,1,0,0,0\rangle$
$\langle 0,44,129,1,0,0\rangle$
$\langle 0,0,44,129,1,0\rangle$
$\langle 0,0,0,44,129,1\rangle$

$$
\begin{aligned}
& >\mathrm{f}:=\mathrm{x}^{\wedge} 14-4 * \mathrm{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+\mathrm{x}-3 ; \\
& \quad f:=x^{14}-4 x^{3}+2 x^{2}+x-3 \\
& >\text { Factor }(\mathrm{f}) \bmod 151 ; \\
& \left(x^{2}+129 x+44\right)\left(x^{2}+147 x+92\right)\left(x^{2}\right. \\
& \quad+127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right. \\
& \left.\quad+30 x^{3}+20 x^{2}+2 x+34\right)(x+26)
\end{aligned}
$$

We will show that in fact if p^{k} is large and $\vec{b}_{1}, \ldots, \vec{b}_{m+1}$
Claim: The lattice \mathcal{L} is exactly the vectors corresponding to $\boldsymbol{w}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ that are divisible by $h(x)$ modulo p^{k}. Hence, the vector \vec{b}_{0} corresponding to $h_{0}(x)$ is in \mathcal{L}.

$\langle 151,0,0,0,0,0\rangle$	$\begin{aligned} >\mathrm{f}: & =\mathrm{x}^{\wedge} 14-4 * \mathbf{x}^{\wedge} 3+2 * \mathbf{x}^{\wedge} 2+\mathrm{x}-3 ; \\ & f:=x^{14}-4 x^{3}+2 x^{2}+x-3 \end{aligned}$
$\langle 0,151,0,0,0,0\rangle$	> Factor (f) mod 151;
$\langle 44,129,1,0,0,0\rangle$	$\left(x^{2}+129 x+44\right)\left(x^{2}+147 x+92\right)\left(x^{2}\right.$
$\langle 0,44,129,1,0,0\rangle$	$+127 x+31)\left(x^{7}+24 x^{6}+91 x^{5}+81 x^{4}\right.$
$\langle 0,0,44,129,1,0\rangle$	$\left.+30 x^{3}+20 x^{2}+2 x+34\right)(x+26)$

We will show that in fact if p^{k} is large and $\vec{b}_{1}, \ldots, \vec{b}_{m+1}$ is a reduced basis for \mathcal{L} with

$$
b_{1}=\left\langle a_{0}, a_{1}, \ldots, a_{m}\right\rangle
$$

then
$\vec{b}_{0}=\left\langle a_{0} / d, a_{1} / d, \ldots, a_{m} / d\right\rangle$,
(Go to Maple.)
Claim: The lattice \mathcal{L} is exactly the vectors corresponding to $\boldsymbol{w}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ that are divisible by $h(x)$ modulo p^{k}. Hence, the vector \vec{b}_{0} corresponding to $h_{0}(x)$ is in \mathcal{L}.

