The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen
Lenstra, Hendrik Lenstra and Laszlé Lovasz to prove that
factoring polynomials in Z[x| can be done in polynomial time.
It is sometimes called the LLL-algorithm or the L3-algorithm.

Definitions and Notations. Let Q™ denote the set of vectors
(a1,a2,...,a,) with a; € Q. For

b= {(aj,as...,a,) €EQ" and b = (a),al,...,a.) Q"
define the usual dot product b-b by

"X / / / /
b-b = aja; + aza, + -+ + ana,,

and set

Ibll = \/a 4 a3 + - - - 4 a2.



Definitions and Notations. Let Q" denote the set of vectors
(a1,a2,...,ay,) with a; € Q. For

b= (a,as,...,a,) €Q" and b = (aj,al,...,a ) € Q",
define the usual dot product b-b by

"N / / / /
b-b =aia; +aza,+---+ aza,,

and set

Ibll = \/a 4 a3 + - - - 4 a2.

Further, we use A! to denote the transpose of a matrix A,
so the rows and columns of A are the same as the columns

and rows of A', respectively. Let 51, ‘e ,l_;n e Q", and let
A = (bl, ey bn) be the n X n matrix with column vectors
51, ey Bn The lattice £ generated by 51, ey En is

L=L(A)=bZ+---+b,Z.

We typically want 61, ‘e ,En to be linearly independent; in
this case, by,...,b, 1s called a basis for L.



and rows of A!, respectively. Let 51, ‘e ,En e Q", and let

A = (bl, .o l_; ) be the n X n matrix with column vectors
b1 b The lattice £ generated by bl, - En is

L =L(A) zblz—l—---—l—an.
We typically want 51, .o ,En to be linearly independent; in
this case, b;,...,b, 1s called a basis for L.

Comment: Different A can determine the same £. But given
L, the value of | det A| is the same for all such A. To see this,
observe that if by,...,b, and b’l, .. b;;, are two bases for L,
there are matrices U and V with integer entries such that

—

(b1y-e-,bn) UV = (b,...,b )V = (bry...,bn).

—

Given that 51, ...,b, 1s a basis for R", it follows that UV is
the identity matrix and detV = x=1. The second equation

above then implies
| det (b),...,b )| = |det (bi,...,by)|

We set det L to be this common value.



Example. In R?, the lattice formed from the basis (1,0) and
(0,1) is the same as the lattice formed from the basis (1, 0)
and (1,1). This can be seen geometrically and algebraically.

Example 2. The lattice £, with basis (2,1) and (1, 2) and the

lattice L2 with basis (3,0) and (3,1) are such that det £, =
det L>. But the lattices are quite different.









The Gram-Schmidt orthogonalization process

Define recursively

i—1
g;kzgz—zuzjg;k, fOI‘lSiS’n,

j=1
where

b; - b’ o

Wij = Mij = == for 1 <y <1< n.
b* . b*
jo

Then for each 2 € {1,...,n}, the vectors I}{, cees 5;" span the
same subspace of R" as 51, cees I_J; In other words,

lapb* + -+ +ab’ 1aj ERfor 1 < j < i}
:{a151+---+aigi:ajERforlngi}.

Furthermore, the vectors I_f{, cees E’;‘; are linearly independent
(hence, non-zero) and pairwise orthogonal (i.e., for distinct 2

and 7, we have E’;" - g;k = 0).



Hadamard’s Inequality

The value of det L can be viewed as the volume of the polyhe-
dron with edges parallel to and the same length as bl, . bn.
This volume is independent of the basis that is used for L.
Geometrically (in low dimensions),

det £ < ||by|| ||b2]| - - - [|brl]-



where each u; € Z and uy # 0

b= wub + -+ upby,

b — vlg’{ + ...+ vkgz, where each v; € Q and v = uy

||I_)’||2 — (vlg* e vkg*) . (vlg* e vkEZ)
= Vb |I° + - - - + vpllbgll® > |b} ]I

() b c L, k as above ||b||2 > ||b ||2



—_

Definition. Let b1, .., b, be a basis for a lattice £, and let
b’{, : b* be the correspondmg basis in R"™ obtained from the
Gram-Schmldt orthogonalization process, with p;; as defined

—_

before. Then we say that 51, ..., b, 1s reduced if both of the
following hold

1
(1)‘Hzg|<5 for1<jy3<21<mn

(ii) ||BF + pii1br |2 > = ||b 2 forl<i<m.

Comment: The main part of the work of Lenstra, Lenstra
and Lovasz establishes an algorithm that runs in polynomial
time that constructs a reduced basis of £ from an arbitrary

basis 51,...,gn of L.



—_

Definition. Let b1, .., b, be a basis for a lattice £, and let
b’{, : b* be the correspondmg basis in R"™ obtained from the
Gram-Schmldt orthogonalization process, with p;; as defined

—_

before. Then we say that 51, ..., b, 1s reduced if both of the
following hold

1
(1)‘Hzg|<5 for1<jy3<21<mn

(ii) ||BF + pii1br |2 > = ||b 2 forl<i<m.

Comment: The main part of the work of Lenstra, Lenstra
and Lovasz establishes an algorithm that runs in polynomial
time that constructs a reduced basis of £ from an arbitrary
basis 51,. .o ,En of L. We do not give this algorithm, but
instead give a little more background and then explain how
a reduced basis can be used to factor a polynomial f(x).



In the notation of the definition,
be L, b#A0 = |by] <2"D72|p].

Thus, b, is not far from being the shortest vector in L.

167 11* + —Ilb P> 0165+ by 1P > —IIb all?
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Definition. Let bl, .., b, be a basis for a lattice L, and let
b;‘, : b* be the correspondmg basis in R"™ obtained from the
Gram-Schmldt orthogonalization process, with p;; as defined

before. Then we say that 51, ..., b, 1s reduced if both of the
following hold

1 L
(1)\um|<§ for1<j<i1<mn

() 155 + pogaBi 12> 1B, 1P for 1< i <.



In the notation of the definition,

be L, b#0 = [by <2072 J

Thus, 51 is not far from being the shortest vector in L.
167 11* + —Ilb P > 167+ piiaby |1 > —IIb Il

= 15711 > (1/2)115;_, II”

B0 > S IBI for1<j<i<n
2 2 2 Tx(12 112
B2 > B2 > o B > B2 = o B

() b c L, k as above — ||b||2 > ||b ||2



b #
E
?
0 1
- p—

1572
2> —
B P
for 1 <
<7< <
<n




be L, b#0 = |bifl <20V/2|b]

Let x1,Z>,...,x; be t linearly independent vectors in £. Then

1b;11 < 20V max{|| & ||, | &, .-, |&l} for 1 < j <t

157 11* >

> 5B5l? for1<j<i<n

1—1 2 1—1
1b:]1> = |6 + > pizbl|| = 167117 4+ > p,1165117
1=1

j=1
112 7% 12 17:—1 7% 12 % |2 ]‘i—l T—7 11 5* 12
(1> < 116711 + — > 1165112 < 1BF]12 + — > 2777y ]
4+ 4+
J=1 j=1
1 . - . —
= (145 - 2) )15 < 2B

1B; 11> < 207H||b%)|> < 277|B7]|2 for 1< j<i<nm



be L, b#0 = |bifl <20V/2|b]

Let 1, Z>,...,x; bet linearly independent vectors in L. 'IV
16511 < 2 V2max{|| & ||, | &2, ..., |&]} for 1 <j <t

165117 < 277H|b5]1* < 277H|B;||* for 1< j <i<m

() bec L, kasabove = |b]|> > ||b}||?
m(j)
T; = Z wjibi,  Ujm) #0, m(1l) <m(2) <--- < m(t)
=1

m(j) > jfor 1 <j <t

12;]1% > ||b%, for 1 <j <t

(J)”2

165117 < 2mD=H|by, ) I < 277 H|E])? for 1< G <t



15,17 < 2B < 2B for 1< <i<n

Recall det £ = ], ||bF]|-



517 < 2 [B? < 2B for1<j<i<m
Recall det £ =[], ||bf]|. We obtain

[T 1eall* < T] 2 1165117 = 2" Y72 (det £)*.
1=1 1=1



517 < 2 [B? < 2B for1<j<i<m
Recall det £ =[], ||bf]|. We obtain
L1152 < [[ 2112 = 27272 (det £

Thus, from Hadamard’s inequality, we obtain
27Dy || [|ba | - - [1Ball < det £ < ||BY ([B]] - - - 1|5, |

for any basis 5’1, cees l_)zz of L.



517 < 2 [B? < 2B for1<j<i<m
Recall det £ =[], ||bf]|. We obtain
L1152 < [[ 2112 = 27272 (det £

Thus, from Hadamard’s inequality, we obtain

27" DA by | |Ba| - - - [1Ball < det £ < |[B]] (1B ]| - - - 1|6, |
for any basis 5’1, cees l_)zz of L.
Comment: Recall that finding a basis 5’1, e 95;7, for which

the product on the right is minimal is NP-hard. The above
implies that a reduced basis is close to being such a basis.



Goal: Find a non-trivial factorization of a given f(x) € Z|x]
or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor

f(x) into irreducibles modulo p* where p is a prime and k €
77" is large (using Berlekamp’s algorithm and Hensel lifting).
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77" is large (using Berlekamp’s algorithm and Hensel lifting).
Suppose h(x) is a monic irreducible factor of f(x) mod p*.



Goal: Find a non-trivial factorization of a given f(x) € Z|x]
or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor
f(x) into irreducibles modulo p* where p is a prime and k €
77" is large (using Berlekamp’s algorithm and Hensel lifting).
Suppose h(x) is a monic irreducible factor of f(x) mod p*.
Let ho(x) denote an irreducible factor of f(x) in Z[x] such
that hg(x) is divisible by h(x) modulo p*.



Goal: Find a non-trivial factorization of a given f(x) € Z|x]
or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor
f(x) into irreducibles modulo p* where p is a prime and k €
77" is large (using Berlekamp’s algorithm and Hensel lifting).
Suppose h(x) is a monic irreducible factor of f(x) mod p*.
Let ho(x) denote an irreducible factor of f(x) in Z[x] such
that hg(x) is divisible by h(x) modulo p*. (Note that the
greatest common divisor of the coefficients of ho(x) is 1.)

New Goal: Show how one can determine hg(x) using h(x)
and without worrying about other factors of f(x) modulo p*.

Why would this improve on the Zassenhaus approach?

What i1s the lattice we want to use”?



What i1s the lattice we want to use”?

h(x) monic irreducible factor of f(x) modulo p*
ho(z)|f(z) in Z[z], h(z)|ho(z) modulo p*

¢ =degh, me {l,£+1,...,n— 1}
m is the possible degree of hy(x)

w(x) = apx™ + -+ a1x + ag € Z|x]

“— g:(&o,al,...,am> EZm_l_l

Define £ to be the lattice in Z™™! spanned by the vectors

associated with
)

pkxj_l for 1 <3</

wi(ax) = < .
(@) \h(a:)a:]_*'z_1 for 0 +1< 3 <m+1.




Define £ to be the lattice in Z™™! spanned by the vectors

assocliated with
)

pkmj_l for 1 <3</

Wi (L) = < .
(@) \h(az)az?_e_l fort +1<j3<m+1.

Example

> f = x*14-4*x*"3+2*x*"2+x-3;
f:=xl4—4x3+2x2+x—3
> Factor (f) mod 151;
2 2 2
(™ +129x +44) (x” +147x+92) (x

+127x+31) (x" +24x° + 91 x° + 81 %"
+30x +20x" +2x+34) (x + 26)

m =5



Define £ to be the lattice in Z™'! spanned by the vectors
assoclated with

(phgi—1 for 1< 3<%
(h(z)x? =t for £+1<j<m+1.

w;(x) = «

(x* + 129 x + 44) (x* + 147 x 4+ 92) (x°

+127x+31) (x" +24x° + 91 ¥ + 81 %
+30x +20x" + 2 x + 34) (x + 26)

(151, 0,0,0,0, 0)
(0,151, 0,0,0, 0)
(44,129, 1,0, 0, 0)
(0, 44,129, 1, 0, 0)
(0,0, 44,129, 1, 0)
(0,0,0,44,129, 1)



Example

=> Factor(f) mod 151;

Claim: The lattice L is exactly
the vectors corresponding to
w(x) € Zlx] that are divisi-
ble by h(x) modulo p*.

> £ = x*14-4*x*34+2*x"2+x-3;
f:=x14—4x3—l—2x2—|—x—3

(x* + 129 x + 44) (x* + 147 x 4+ 92) (x°
+127x+31) (x" +24x° 4+ 91 % + 81 %
+30x +20x" + 2 x + 34) (x + 26)

(151, 0,0,0,0, 0)
(0,151, 0,0,0, 0)
(44,129, 1,0, 0, 0)
(0, 44,129, 1, 0, 0)
(0,0, 44,129, 1, 0)
(0,0,0,44,129, 1)



Example

> £ = x*14-4*x"34+2*x"2+x-3;
f:=x14—4x3—|—2x2—|—x—3
> Factor (f) mod 151;
2 2 2
(" +129x+44) (¥ + 147x +92) (x

+127x4+31) (x" +24x° 4+ 91 % + 81 %
+30x 4+ 20x" + 2 x + 34) (x + 26)

(151,0,0,0,0,0)
Claim: The lattice L is exactly (0,151, 0,0, 0, 0
the vectors corresponding to
w(x) € Z|x| that are divisi- (44,129, 1,0,0,0)
ble by h(a:)_’modulo p*. Hence, (0,44,129,1,0,0)
the vector by corresponding to (0,0,44,129, 1, 0)

ho(m) is in L.
(0,0,0,44,129,1)



> £ = x*14-4*x"*3+2
f:=x14—4x3 + 2

+127x+31) (x +2

Claim: The lattice L is exactly
the vectors corresponding to
w(x) € Zlx] that are divisi-
ble by h(x) modulo p*. Hence,
the vector 50 corresponding to

ho(x) is in L.

*xMN24x-3;
x2+x—3

=> Factor (f) mod 151;
(x* + 129 x +44) (x* 4+ 147 x + 92) (°

4x6+91x5—|—81x4

+30x +20x" + 2x 4 34) (x + 26)

We will show that in fact if

p¥ is large and bl, : bm+1

is a reduced basis for L
with

by = (@g, A1y ..y Q)
then
bo = (ao/d,ai/d,...,an/d),

where d = gcd(agy ..., am).



(151,0,0, 0,0, 0) > £ s

(0,151, 0,0, 0, 0)

X"14-4*x"34+2*x"2+x-3;
f:=xl4—4x3—|-2x2—|-x—3
_> Factor (f) mod 151;

(44,129, 1,0, 0, 0) (x* + 129x 4+ 44) (x* + 147 x + 92) (°
(0,44,129,1, 0, 0) +127x+31) (x" +24x° +91x° + 81"
(0,0,44,129, 1, 0) +30x° +20x" +2x+34) (x + 26)

(0,0,0,44,129, 1)

Claim: The lattice L is exactly
the vectors corresponding to
w(x) € Zlx] that are divisi-
ble by h(x) modulo p*. Hence,
the vector 50 corresponding to

ho(x) is in L.
(Go to Maple.)

We will show that in fact if

p¥ is large and b1, : bm+1

is a reduced basis for L
with

by = (@g, A1y ..y Q)
then
bo = (ao/d,ai/d,...,an/d),

where d = gcd(agy ..., am).



