
The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that

factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.
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Comment: Di↵erent A can determine the same L. But given

L, the value of | det A| is the same for all such A. To see this,

observe that if ~b1, . . . ,~bn and ~b0
1
, . . . ,~b0

n are two bases for L,

there are matrices U and V with integer entries such that

�
~b1, . . . ,~bn

�
UV =

�
~b0

1
, . . . ,~b0

n

�
V =

�
~b1, . . . ,~bn

�
.

Given that ~b1, . . . ,~bn is a basis for Rn
, it follows that UV is

the identity matrix and det V = ±1. The second equation

above then implies

| det
�
~b0

1
, . . . ,~b0

n

�
| = | det

�
~b1, . . . ,~bn

�
|.

We set det L to be this common value.
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Example. In R2
, the lattice formed from the basis h1, 0i and

h0, 1i is the same as the lattice formed from the basis h1, 0i
and h1, 1i. This can be seen geometrically and algebraically.When do we want the test?

Example 2. The lattice L1 with basis h2, 1i and h1, 2i and the

lattice L2 with basis h3, 0i and h3, 1i are such that det L1 =

det L2. But the lattices are quite di↵erent.







The Gram-Schmidt orthogonalization process

Define recursively

~b⇤
i = ~bi �

i�1X

j=1

µij
~b⇤

j , for 1  i  n,

where

µij = µi,j =

~bi ·~b⇤
j

~b⇤
j ·~b⇤

j

, for 1  j < i  n.

Then for each i 2 {1, . . . , n}, the vectors ~b⇤
1
, . . . ,~b⇤

i span the

same subspace of Rn
as ~b1, . . . ,~bi. In other words,

�
a1

~b⇤
1
+ · · · + ai

~b⇤
i : aj 2 R for 1  j  i

 

=
�
a1

~b1 + · · · + ai
~bi : aj 2 R for 1  j  i

 
.

Furthermore, the vectors ~b⇤
1
, . . . ,~b⇤

n are linearly independent

(hence, non-zero) and pairwise orthogonal (i.e., for distinct i
and j, we have ~b⇤

i ·~b⇤
j = 0).
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Hadamard’s Inequality

The value of det L can be viewed as the volume of the polyhe-

dron with edges parallel to and the same length as ~b1, . . . ,~bn.

As indicated by the above remarks, this volume is indepen-

dent of the basis. Geometrically (in low dimensions), it is

apparent that

det L  k~b1k k~b2k · · · k~bnk

This is Hadamard’s inequality.

Proof (in any dimensions). Column operations imply

det
�
~b1, . . . ,~bn

�
= det

�
~b⇤

1
, . . . ,~b⇤

n

�
.

Since ~b1, . . . ,~bn is a basis for L, we deduce that

(det L)
2
= det

�
(~b⇤

1
, . . . ,~b⇤

n)
T
(~b⇤

1
, . . . ,~b⇤

n)
�

=

✓ nY

i=1

k~b⇤
i k

◆2

.

Thus, det L =
Qn

i=1
k~b⇤

i k. So it su�ces to show k~b⇤
i k  k~bik.

The orthogonality of the ~b⇤
i ’s implies

k~bik2
=

����~b
⇤
i +

i�1X

j=1

µij
~b⇤

j

����
2

= k~b⇤
i k2

+

i�1X

j=1

µ2

ijk~b⇤
jk2.

The inequality k~b⇤
i k  k~bik follows.
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~b 2 L, ~b 6= 0 =) k~bk � min{k~b⇤
1
k, k~b⇤

2
k, . . . , k~b⇤

nk}
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i +

i�1X

j=1

µij
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j

µij = µi,j =

~bi ·~b⇤
j

~b⇤
j ·~b⇤

j

, for 1  j < i  n.

~b = u1
~b1 + · · · + uk

~bk, where each uj 2 Z and uk 6= 0

~b = v1
~b⇤

1
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k, where each vj 2 Q and vk = uk
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�
v1
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1
+ · · · + vk
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k

�
·
�
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1
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In the notation of the definition,

~b 2 L, ~b 6= 0 =) k~b1k  2
(n�1)/2k~bk.

Thus, ~b1 is not far from being the shortest vector in L.
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Definition. Let ~b1, . . . ,~bn be a basis for a lattice L, and let

~b⇤
1
, . . . ,~b⇤

n be the corresponding basis in Rn
obtained from the

Gram-Schmidt orthogonalization process, with µij as defined

before. Then we say that ~b1, . . . ,~bn is reduced if both of the

following hold

(i) kµijk 
1

2
for 1  j < i  n

(ii) k~b⇤
i + µi,i�1

~b⇤
i�1

k2 �
3

4
k~b⇤

i�1
k2

for 1 < i  n.

Comment: The main part of the work of Lenstra, Lenstra

and Lovász establishes an algorithm that runs in polynomial

time that constructs a reduced basis of L from an arbitrary

basis ~b1, . . . ,~bn of L. We do not give this algorithm, but

instead give a little more background and then explain how

a reduced basis can be used to factor a polynomial f(x).
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Hadamard’s Inequality

The value of det L can be viewed as the volume of the polyhe-

dron with edges parallel to and the same length as ~b1, . . . ,~bn.

This volume is independent of the basis that is used for L.

Geometrically (in low dimensions),

det L  k~b1k k~b2k · · · k~bnk.

This is Hadamard’s inequality.
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n for which

the product on the right is minimal is NP-hard. The above

implies that a reduced basis is close to being such a basis.
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Goal: Find a non-trivial factorization of a given f(x) 2 Z[x]

or show no such factorization exists.

Initial Idea: Begin as in the Zassenhaus algorithm. Factor

f(x) into irreducibles modulo pk
where p is a prime and k 2

Z+
is large (using Berlekamp’s algorithm and Hensel lifting).

Suppose h(x) is a monic irreducible factor of f(x) mod pk
.

Let h0(x) denote an irreducible factor of f(x) in Z[x] such

that h0(x) is divisible by h(x) modulo pk
. (Note that the

greatest common divisor of the coe�cients of h0(x) is 1.)

New Goal: Show how one can determine h0(x) using h(x)

and without worrying about other factors of f(x) modulo pk
.

Why would this improve on the Zassenhaus approach?
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What is the lattice we want to use?

h(x) monic irreducible factor of f(x) modulo pk

h0(x)|f(x) in Z[x], h(x)|h0(x) modulo pk

` = deg h, m 2 {`, ` + 1, . . . , n� 1}

m is the possible degree of h0(x)

w(x) = amxm
+ · · · + a1x + a0 2 Z[x]

 ! ~b = ha0, a1, . . . , ami 2 Zm+1

Define L to be the lattice in Zm+1
spanned by the vectors

associated with

wj(x) =

(
pkxj�1

for 1  j  `

h(x)xj�`�1
for ` + 1  j  m + 1.
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Claim: The lattice L is exactly

the vectors corresponding to

w(x) 2 Z[x] of degree 
m which can be expressed as

some multiple of h(x) mod pk
.

Hence, ~b0 2 L, where ~b0 corre-

sponds to h0(x).

(Go to Maple.)

We will show that in fact if

pk
is large and ~b1, . . . ,~bm+1 is

a reduced basis for L, then

~b0 = ~b#

1
, where~b#

1
is the vector

obtained by dividing the com-

ponents of ~b1 by the greatest

common divisor of these com-

ponents.


