
The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that

factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.
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factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that
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factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that
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Example. In R2
, the lattice formed from the basis h1, 0i and

h0, 1i is the same as the lattice formed from the basis h1, 0i
and h1, 1i. This can be seen geometrically and algebraically.When do we want the test?

Example 2. The lattice L1 with basis h2, 1i and h1, 2i and the

lattice L2 with basis h3, 0i and h3, 1i are such that det L1 =

det L2. But the lattices are quite di↵erent.
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Then for each i 2 {1, . . . , n}, the vectors ~b⇤
1
, . . . ,~b⇤

i span the

same subspace of Rn
as ~b1, . . . ,~bi. In other words,

�
a1

~b⇤
1
+ · · · + ai

~b⇤
i : aj 2 R for 1  j  i

 

=
�
a1

~b1 + · · · + ai
~bi : aj 2 R for 1  j  i

 
.

Furthermore, the vectors ~b⇤
1
, . . . ,~b⇤

n are linearly independent

(hence, non-zero) and pairwise orthogonal (i.e., for distinct i
and j, we have ~b⇤

i ·~b⇤
j = 0).

Hadamard’s Inequality

The value of det L can be viewed as the volume of the polyhe-
dron with edges parallel to and the same length as ~b1, . . . ,~bn.
This volume is independent of the basis that is used for L.
Geometrically (in low dimensions),

det L  k~b1k k~b2k · · · k~bnk.

This is Hadamard’s inequality.

Proof (in any dimensions). Column operations imply

det
�
~b1, . . . ,~bn

�
= det

�
~b⇤

1, . . . ,~b⇤
n

�
.

Since ~b1, . . . ,~bn is a basis for L, we deduce that

(det L)2 = det
�
(~b⇤

1, . . . ,~b⇤
n)

T (~b⇤
1, . . . ,~b⇤

n)
�

=

✓ nY

i=1

k~b⇤
i k

◆2

.

Thus, det L =
Qn

i=1 k~b⇤
i k. So it su�ces to show k~b⇤

i k  k~bik.

The orthogonality of the ~b⇤
i ’s implies

k~bik2 =

����~b
⇤
i +

i�1X

j=1

µij
~b⇤

j

����
2

= k~b⇤
i k2 +

i�1X

j=1

µ2
ijk~b⇤

jk2.

The inequality k~b⇤
i k  k~bik follows.
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Comments: Hermite proved there is a constant cn (depending

only on n) such that for some basis ~b1, . . . ,~bn of L, we have

k~b1k k~b2k · · · k~bnk  cn det L.

It is known that cn  nn
. Minkowski has shown that there

exist n linearly independent vectors ~b0
1
, . . . ,~b0

n in L such that

k~b0
1
k k~b0

2
k · · · k~b0

nk  nn/2
det L,

but ~b0
1
, . . . ,~b0

n is not necessarily a basis for L. Further, we

note that the problem of finding a basis ~b1, . . . ,~bn of L for

which k~b1k · · · k~bnk is minimal is known to be NP-hard.

No one knows a polynomial time algorithm for finding ~b 2 L
with k~bk minimal, but it is not known to be NP-complete.

Lagarias has, however, proved that the problem of finding a

vector ~b 2 L which minimizes the maximal absolute value of

a component is NP-hard.

Hermite’s result implies that there is a constant c0
n, depend-

ing only on n, such that k~bk  c0
n

n
p

det L. It is possible for a

lattice L to contain a vector that is much shorter than this,

but it is known that the best constant c0
n for all lattices L

satisfies p
n/(2e⇡)  c0

n 
p

n/(e⇡).
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