The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For $\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For $\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment:
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
Comment: Different \boldsymbol{A} can determine the same \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different A can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) U V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) .
$$

and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) U V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)
$$

Given that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathbb{R}^{n}, it follows that $U V$ is the identity matrix and $\operatorname{det} V= \pm 1$.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z} .
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) U V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) .
$$

Given that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathbb{R}^{n}, it follows that $U V$ is the identity matrix and $\operatorname{det} V= \pm 1$. The second equation above then implies

$$
\left|\operatorname{det}\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right)\right|=\left|\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)\right| .
$$

and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) \boldsymbol{U} V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)
$$

Given that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathbb{R}^{n}, it follows that $U V$ is the identity matrix and det $V= \pm 1$. The second equation above then implies

$$
\left|\operatorname{det}\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right)\right|=\left|\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)\right| .
$$

We set $\operatorname{det} \mathcal{L}$ to be this common value.

Example. In \mathbb{R}^{2}, the lattice formed from the basis $\langle 1,0\rangle$ and $\langle 0,1\rangle$ is the same as the lattice formed from the basis $\langle 1,0\rangle$ and $\langle 1,1\rangle$. This can be seen geometrically and algebraically.

Example 2. The lattice \mathcal{L}_{1} with basis $\langle 2,1\rangle$ and $\langle 1,2\rangle$ and the lattice \mathcal{L}_{2} with basis $\langle 3,0\rangle$ and $\langle 3,1\rangle$ are such that $\operatorname{det} \mathcal{L}_{1}=$ $\operatorname{det} \mathcal{L}_{2}$. But the lattices are quite different.

and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different \boldsymbol{A} can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A. To see this, observe that if $\vec{b}_{1}, \ldots, \vec{b}_{n}$ and $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ are two bases for \mathcal{L}, there are matrices U and V with integer entries such that

$$
\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right) \boldsymbol{U} V=\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right) V=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)
$$

Given that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathbb{R}^{n}, it follows that $U V$ is the identity matrix and det $V= \pm 1$. The second equation above then implies

$$
\left|\operatorname{det}\left(\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}\right)\right|=\left|\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)\right| .
$$

We set $\operatorname{det} \mathcal{L}$ to be this common value.

The Gram-Schmidt orthogonalization process

Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Then for each $i \in\{1, \ldots, n\}$, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{i}^{*}$ span the same subspace of \mathbb{R}^{n} as $\vec{b}_{1}, \ldots, \vec{b}_{i}$. In other words,

$$
\begin{aligned}
&\left\{a_{1} \vec{b}_{1}^{*}+\cdots+a_{i} \vec{b}_{i}^{*}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\} \\
&=\left\{a_{1} \vec{b}_{1}+\cdots+a_{i} \vec{b}_{i}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\}
\end{aligned}
$$

Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Then for each $i \in\{1, \ldots, n\}$, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{i}^{*}$ span the same subspace of \mathbb{R}^{n} as $\vec{b}_{1}, \ldots, \vec{b}_{i}$. In other words,

$$
\begin{aligned}
\left\{a_{1} \vec{b}_{1}^{*}+\cdots\right. & \left.+a_{i} \vec{b}_{i}^{*}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\} \\
& =\left\{a_{1} \vec{b}_{1}+\cdots+a_{i} \vec{b}_{i}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\}
\end{aligned}
$$

Furthermore, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ are linearly independent (hence, non-zero) and pairwise orthogonal (i.e., for distinct i and j, we have $\vec{b}_{i}^{*} \cdot \vec{b}_{j}^{*}=0$).

Define recursively

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}, \quad \text { for } 1 \leq i \leq n
$$

where

$$
\mu_{i j}=\mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}, \quad \text { for } 1 \leq j<i \leq n
$$

Then for each $i \in\{1, \ldots, n\}$, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{i}^{*}$ span the same subspace of \mathbb{R}^{n} as $\vec{b}_{1}, \ldots, \vec{b}_{i}$. In other words,

$$
\begin{aligned}
\left\{a_{1} \vec{b}_{1}^{*}+\cdots\right. & \left.+a_{i} \vec{b}_{i}^{*}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\} \\
& =\left\{a_{1} \vec{b}_{1}+\cdots+a_{i} \vec{b}_{i}: a_{j} \in \mathbb{R} \text { for } 1 \leq j \leq i\right\}
\end{aligned}
$$

Furthermore, the vectors $\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}$ are linearly independent (hence, non-zero) and pairwise orthogonal (i.e., for distinct i and j, we have $\vec{b}_{i}^{*} \cdot \vec{b}_{j}^{*}=0$).

Hadamard's Inequality

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$.

Hadamard's Inequality

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}.

Hadamard's Inequality

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}. Geometrically (in low dimensions),

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}. Geometrically (in low dimensions),

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}. Geometrically (in low dimensions),

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

This is Hadamard's inequality.

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

The value of $\operatorname{det} \mathcal{L}$ can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This volume is independent of the basis that is used for \mathcal{L}. Geometrically (in low dimensions),

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

This is Hadamard's inequality.

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathcal{L}, we deduce that

$$
(\operatorname{det} \mathcal{L})^{2}=\operatorname{det}\left(\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)^{T}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)\right)=\left(\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|\right)^{2}
$$

$\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|$

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathcal{L}, we deduce that

$$
(\operatorname{det} \mathcal{L})^{2}=\operatorname{det}\left(\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)^{T}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)\right)=\left(\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|\right)^{2}
$$

```
det }\mathcal{L}\leq|\mp@subsup{\vec{b}}{1}{}|||\mp@subsup{\vec{b}}{2}{}|\cdots|\mp@subsup{\vec{b}}{n}{}
```

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathcal{L}, we deduce that

$$
(\operatorname{det} \mathcal{L})^{2}=\operatorname{det}\left(\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)^{T}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)\right)=\left(\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|\right)^{2}
$$

Thus, $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. So it suffices to show $\left\|\vec{b}_{i}^{*}\right\| \leq\left\|\vec{b}_{i}\right\|$.

```
\(\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|\)
```

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathcal{L}, we deduce that

$$
(\operatorname{det} \mathcal{L})^{2}=\operatorname{det}\left(\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)^{T}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)\right)=\left(\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|\right)^{2}
$$

Thus, $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. So it suffices to show $\left\|\vec{b}_{i}^{*}\right\| \leq\left\|\vec{b}_{i}\right\|$. The orthogonality of the \vec{b}_{i}^{*} 's implies

$$
\left\|\vec{b}_{i}\right\|^{2}=\left\|\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}\right\|^{2}=\left\|\vec{b}_{i}^{*}\right\|^{2}+\sum_{j=1}^{i-1} \mu_{i j}^{2}\left\|\vec{b}_{j}^{*}\right\|^{2}
$$

```
\(\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|\)
```

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

Proof (in any dimensions). Column operations imply

$$
\operatorname{det}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)=\operatorname{det}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is a basis for \mathcal{L}, we deduce that

$$
(\operatorname{det} \mathcal{L})^{2}=\operatorname{det}\left(\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)^{T}\left(\vec{b}_{1}^{*}, \ldots, \vec{b}_{n}^{*}\right)\right)=\left(\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|\right)^{2}
$$

Thus, $\operatorname{det} \mathcal{L}=\prod_{i=1}^{n}\left\|\vec{b}_{i}^{*}\right\|$. So it suffices to show $\left\|\vec{b}_{i}^{*}\right\| \leq\left\|\vec{b}_{i}\right\|$. The orthogonality of the \vec{b}_{i}^{*} 's implies

$$
\left\|\vec{b}_{i}\right\|^{2}=\left\|\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}\right\|^{2}=\left\|\vec{b}_{i}^{*}\right\|^{2}+\sum_{j=1}^{i-1} \mu_{i j}^{2}\left\|\vec{b}_{j}^{*}\right\|^{2}
$$

The inequality $\left\|\vec{b}_{i}^{*}\right\| \leq\left\|\vec{b}_{i}\right\|$ follows.

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

It is known that $c_{n} \leq n^{n}$.

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

It is known that $c_{n} \leq n^{n}$. Minkowski has shown that there exist n linearly independent vectors $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ in \mathcal{L} such that

$$
\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\| \leq n^{n / 2} \operatorname{det} \mathcal{L}
$$

but $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ is not necessarily a basis for \mathcal{L}.

$$
\operatorname{det} \mathcal{L} \leq\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\|
$$

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

It is known that $c_{n} \leq n^{n}$. Minkowski has shown that there exist n linearly independent vectors $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ in \mathcal{L} such that

$$
\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\| \leq n^{n / 2} \operatorname{det} \mathcal{L}
$$

but $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ is not necessarily a basis for \mathcal{L}. Further, we note that the problem of finding a basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L} for which $\left\|\vec{b}_{1}\right\| \cdots\left\|\vec{b}_{n}\right\|$ is minimal is known to be NP-hard.

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

It is known that $c_{n} \leq n^{n}$. Minkowski has shown that there exist n linearly independent vectors $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ in \mathcal{L} such that

$$
\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\| \leq n^{n / 2} \operatorname{det} \mathcal{L}
$$

but $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ is not necessarily a basis for \mathcal{L}. Further, we note that the problem of finding a basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L} for which $\left\|\vec{b}_{1}\right\| \cdots\left\|\vec{b}_{n}\right\|$ is minimal is known to be NP-hard.

Hermite's result implies there is a constant c_{n}^{\prime}, depending only on n, such that $\|\vec{b}\| \leq c_{n}^{\prime} \sqrt[n]{\operatorname{det} \mathcal{L}}$.

Comments: Hermite proved there is a constant c_{n} (depending only on n) such that for some basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L}, we have

$$
\left\|\vec{b}_{1}\right\|\left\|\vec{b}_{2}\right\| \cdots\left\|\vec{b}_{n}\right\| \leq c_{n} \operatorname{det} \mathcal{L}
$$

It is known that $c_{n} \leq n^{n}$. Minkowski has shown that there exist n linearly independent vectors $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ in \mathcal{L} such that

$$
\left\|\vec{b}_{1}^{\prime}\right\|\left\|\vec{b}_{2}^{\prime}\right\| \cdots\left\|\vec{b}_{n}^{\prime}\right\| \leq n^{n / 2} \operatorname{det} \mathcal{L}
$$

but $\vec{b}_{1}^{\prime}, \ldots, \vec{b}_{n}^{\prime}$ is not necessarily a basis for \mathcal{L}. Further, we note that the problem of finding a basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathcal{L} for which $\left\|\vec{b}_{1}\right\| \cdots\left\|\vec{b}_{n}\right\|$ is minimal is known to be NP-hard.

Hermite's result implies there is a constant c_{n}^{\prime}, depending only on n, such that $\|\vec{b}\| \leq c_{n}^{\prime} \sqrt[n]{\operatorname{det} \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c_{n}^{\prime} for all lattices \mathcal{L} satisfies

$$
\sqrt{n /(2 e \pi)} \leq c_{n}^{\prime} \leq \sqrt{n /(e \pi)}
$$

Hermite's result implies there is a constant c_{n}^{\prime}, depending only on n, such that $\|\vec{b}\| \leq c_{n}^{\prime} \sqrt[n]{\operatorname{det} \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c_{n}^{\prime} for all lattices \mathcal{L} satisfies

$$
\sqrt{n /(2 e \pi)} \leq c_{n}^{\prime} \leq \sqrt{n /(e \pi)}
$$

No one knows a polynomial time algorithm for finding $\vec{b} \in \mathcal{L}$ with $\|\vec{b}\|$ minimal, but it is not known to be NP-complete.

Hermite's result implies there is a constant c_{n}^{\prime}, depending only on n, such that $\|\vec{b}\| \leq c_{n}^{\prime} \sqrt[n]{\operatorname{det} \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c_{n}^{\prime} for all lattices \mathcal{L} satisfies

$$
\sqrt{n /(2 e \pi)} \leq c_{n}^{\prime} \leq \sqrt{n /(e \pi)}
$$

No one knows a polynomial time algorithm for finding $\vec{b} \in \mathcal{L}$ with $\|\vec{b}\|$ minimal, but it is not known to be NP-complete. Lagarias has, however, proved that the problem of finding a vector $\vec{b} \in \mathcal{L}$ which minimizes the maximal absolute value of a component is NP-hard.

$$
\begin{gathered}
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\|\vec{b}\| \geq \min \left\{\left\|\vec{b}_{1}^{*}\right\|,\left\|\vec{b}_{2}^{*}\right\|, \ldots,\left\|\vec{b}_{n}^{*}\right\|\right\} \\
\vec{b}_{i}=\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i} \vec{b}_{j}^{*}
\end{gathered}
$$

$$
\vec{b}_{i}^{*}=\vec{b}_{i}-\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*}
$$

$$
\begin{gathered}
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow \quad\|\vec{b}\| \geq \min \left\{\left\|\vec{b}_{1}^{*}\right\|,\left\|\vec{b}_{2}^{*}\right\|, \ldots,\left\|\vec{b}_{n}^{*}\right\|\right\} \\
\vec{b}_{i}=\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} \vec{b}_{j}^{*} \quad \mu_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}} \\
\vec{b}=u_{1} \vec{b}_{1}+\cdots+u_{k} \vec{b}_{k}, \quad \text { where each } u_{j} \in \mathbb{Z} \text { and } u_{k} \neq 0 \\
\vec{b}=v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}, \quad \text { where each } v_{j} \in \mathbb{Q} \text { and } v_{k}=u_{k} \\
\|\vec{b}\|^{2}=\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right) \cdot\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right)
\end{gathered}
$$

$$
\vec{b} \in \mathcal{L}, \vec{b} \neq 0 \Longrightarrow\|\vec{b}\| \geq \min \left\{\left\|\vec{b}_{1}^{*}\right\|,\left\|\vec{b}_{2}^{*}\right\|, \ldots,\left\|\vec{b}_{n}^{*}\right\|\right\}
$$

$$
\vec{b}_{i}=\vec{b}_{i}^{*}+\sum_{j=1}^{i-1} \boldsymbol{\mu}_{i j} \vec{b}_{j}^{*} \quad \boldsymbol{\mu}_{i, j}=\frac{\vec{b}_{i} \cdot \vec{b}_{j}^{*}}{\vec{b}_{j}^{*} \cdot \vec{b}_{j}^{*}}
$$

$\vec{b}=u_{1} \vec{b}_{1}+\cdots+u_{k} \vec{b}_{k}, \quad$ where each $u_{j} \in \mathbb{Z}$ and $u_{k} \neq 0$
$\vec{b}=v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}, \quad$ where each $v_{j} \in \mathbb{Q}$ and $v_{k}=u_{k}$

$$
\begin{aligned}
\|\vec{b}\|^{2} & =\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right) \cdot\left(v_{1} \vec{b}_{1}^{*}+\cdots+v_{k} \vec{b}_{k}^{*}\right) \\
& =v_{1}^{2}\left\|\vec{b}_{1}^{*}\right\|^{2}+\cdots+v_{k}^{2}\left\|\vec{b}_{k}^{*}\right\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}
\end{aligned}
$$

$\vec{b} \in \mathcal{L}, k$ as above $\Longrightarrow\|\vec{b}\|^{2} \geq\left\|\vec{b}_{k}^{*}\right\|^{2}$

