This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time.

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L³-algorithm.

Definitions and Notations.

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L³-algorithm.

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$.

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L³-algorithm.

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$, define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\cdots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$, define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\dots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$, define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\cdots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Further, we use A^T to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^T , respectively.

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$,

define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\cdots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Further, we use A^T to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^T , respectively. Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{Q}^n$, and let $A = (\vec{b}_1, \ldots, \vec{b}_n)$ be the $n \times n$ matrix with column vectors $\vec{b}_1, \ldots, \vec{b}_n$. Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$,

define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\dots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Further, we use A^T to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^T , respectively. Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{Q}^n$, and let $A = (\vec{b}_1, \ldots, \vec{b}_n)$ be the $n \times n$ matrix with column vectors $\vec{b}_1, \ldots, \vec{b}_n$. The lattice \mathcal{L} generated by $\vec{b}_1, \ldots, \vec{b}_n$ is

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

Definitions and Notations. Let \mathbb{Q}^n denote the set of vectors $\langle a_1, a_2, \ldots, a_n \rangle$ with $a_j \in \mathbb{Q}$. For $\vec{b} = \langle a_1, a_2, \ldots, a_n \rangle \in \mathbb{Q}^n$ and $\vec{b}' = \langle a'_1, a'_2, \ldots, a'_n \rangle \in \mathbb{Q}^n$,

define the usual dot product $\vec{b} \cdot \vec{b}'$ by

$$ec{b}\cdotec{b}'=a_1a_1'+a_2a_2'+\dots+a_na_n',$$

and set

$$\|ec{b}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Further, we use A^T to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^T , respectively. Let $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{Q}^n$, and let $A = (\vec{b}_1, \ldots, \vec{b}_n)$ be the $n \times n$ matrix with column vectors $\vec{b}_1, \ldots, \vec{b}_n$. The lattice \mathcal{L} generated by $\vec{b}_1, \ldots, \vec{b}_n$ is

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment:

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} .

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A.

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A. To see this, observe that if $\vec{b}_1, \ldots, \vec{b}_n$ and $\vec{b}'_1, \ldots, \vec{b}'_n$ are two bases for \mathcal{L} , there are matrices U and V with integer entries such that

$$ig(ec{b}_1,\ldots,ec{b}_nig)UV=ig(ec{b}_1',\ldots,ec{b}_nig)V=ig(ec{b}_1,\ldots,ec{b}_nig).$$

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A. To see this, observe that if $\vec{b}_1, \ldots, \vec{b}_n$ and $\vec{b}'_1, \ldots, \vec{b}'_n$ are two bases for \mathcal{L} , there are matrices U and V with integer entries such that

$$ig(ec{b}_1,\ldots,ec{b}_nig)UV=ig(ec{b}_1',\ldots,ec{b}_n'ig)V=ig(ec{b}_1,\ldots,ec{b}_nig).$$

Given that $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathbb{R}^n , it follows that UV is the identity matrix and det $V = \pm 1$.

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A. To see this, observe that if $\vec{b}_1, \ldots, \vec{b}_n$ and $\vec{b}'_1, \ldots, \vec{b}'_n$ are two bases for \mathcal{L} , there are matrices U and V with integer entries such that

$$ig(ec{b}_1,\ldots,ec{b}_nig)UV=ig(ec{b}_1',\ldots,ec{b}_n'ig)V=ig(ec{b}_1,\ldots,ec{b}_nig).$$

Given that $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathbb{R}^n , it follows that UV is the identity matrix and det $V = \pm 1$. The second equation above then implies

$$|\detig(ec{b}_1',\ldots,ec{b}_n'ig)|=|\detig(ec{b}_1,\ldots,ec{b}_nig)|.$$

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A. To see this, observe that if $\vec{b}_1, \ldots, \vec{b}_n$ and $\vec{b}'_1, \ldots, \vec{b}'_n$ are two bases for \mathcal{L} , there are matrices U and V with integer entries such that

$$ig(ec{b}_1,\ldots,ec{b}_nig)UV=ig(ec{b}_1',\ldots,ec{b}_n'ig)V=ig(ec{b}_1,\ldots,ec{b}_nig).$$

Given that $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathbb{R}^n , it follows that UV is the identity matrix and det $V = \pm 1$. The second equation above then implies

$$|\det\left(ec{b}_1',\ldots,ec{b}_n'
ight)| = |\det\left(ec{b}_1,\ldots,ec{b}_n
ight)|.$$

We set det \mathcal{L} to be this common value.

Example. In \mathbb{R}^2 , the lattice formed from the basis $\langle 1, 0 \rangle$ and $\langle 0, 1 \rangle$ is the same as the lattice formed from the basis $\langle 1, 0 \rangle$ and $\langle 1, 1 \rangle$. This can be seen geometrically and algebraically.

Example 2. The lattice \mathcal{L}_1 with basis $\langle 2, 1 \rangle$ and $\langle 1, 2 \rangle$ and the lattice \mathcal{L}_2 with basis $\langle 3, 0 \rangle$ and $\langle 3, 1 \rangle$ are such that det $\mathcal{L}_1 = \det \mathcal{L}_2$. But the lattices are quite different.

$$\mathcal{L}=\mathcal{L}(A)=ec{b}_1\mathbb{Z}+\dots+ec{b}_n\mathbb{Z}.$$

We typically want $\vec{b}_1, \ldots, \vec{b}_n$ to be linearly independent; in this case, $\vec{b}_1, \ldots, \vec{b}_n$ is called a basis for \mathcal{L} .

Comment: Different A can determine the same \mathcal{L} . But given \mathcal{L} , the value of $|\det A|$ is the same for all such A. To see this, observe that if $\vec{b}_1, \ldots, \vec{b}_n$ and $\vec{b}'_1, \ldots, \vec{b}'_n$ are two bases for \mathcal{L} , there are matrices U and V with integer entries such that

$$ig(ec{b}_1,\ldots,ec{b}_nig)UV=ig(ec{b}_1',\ldots,ec{b}_n'ig)V=ig(ec{b}_1,\ldots,ec{b}_nig).$$

Given that $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathbb{R}^n , it follows that UV is the identity matrix and det $V = \pm 1$. The second equation above then implies

$$|\det\left(ec{b}_1',\ldots,ec{b}_n'
ight)| = |\det\left(ec{b}_1,\ldots,ec{b}_n
ight)|.$$

We set det \mathcal{L} to be this common value.

The Gram-Schmidt orthogonalization process

Define recursively

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*, \qquad ext{for } 1 \leq i \leq n,$$

where

$$\mu_{ij}=\mu_{i,j}=rac{ec{b}_i\cdotec{b}_j^*}{ec{b}_j^*\cdotec{b}_j^*},$$

for $1 \leq j < i \leq n$.

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*, \qquad ext{for } 1 \leq i \leq n,$$

where

$$\mu_{ij}=\mu_{i,j}=rac{ec{b}_i\cdotec{b}_j^*}{ec{b}_j^*\cdotec{b}_j^*},$$

for
$$1 \leq j < i \leq n$$
.

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*, \qquad ext{for } 1 \leq i \leq n,$$

where

$$\mu_{ij} = \mu_{i,j} = rac{ec{b}_i \cdot ec{b}_j^*}{ec{b}_j^* \cdot ec{b}_j^*}, \qquad ext{for } 1 \leq j < i \leq n.$$

Then for each $i \in \{1, \ldots, n\}$, the vectors $\vec{b}_1^*, \ldots, \vec{b}_i^*$ span the same subspace of \mathbb{R}^n as $\vec{b}_1, \ldots, \vec{b}_i$. In other words,

$$egin{aligned} &\{a_1ec{b}_1^*+\dots+a_iec{b}_i^*:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}\ &=\{a_1ec{b}_1+\dots+a_iec{b}_i:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}. \end{aligned}$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*, \qquad ext{for } 1 \leq i \leq n,$$

where

$$\mu_{ij} = \mu_{i,j} = rac{ec{b}_i \cdot ec{b}_j^*}{ec{b}_j^* \cdot ec{b}_j^*}, \qquad ext{for } 1 \leq j < i \leq n.$$

Then for each $i \in \{1, \ldots, n\}$, the vectors $\vec{b}_1^*, \ldots, \vec{b}_i^*$ span the same subspace of \mathbb{R}^n as $\vec{b}_1, \ldots, \vec{b}_i$. In other words,

$$egin{aligned} &\{a_1ec{b}_1^*+\dots+a_iec{b}_i^*:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}\ &=\{a_1ec{b}_1+\dots+a_iec{b}_i:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}. \end{aligned}$$

Furthermore, the vectors $\vec{b}_1^*, \ldots, \vec{b}_n^*$ are linearly independent (hence, non-zero) and pairwise orthogonal (i.e., for distinct i and j, we have $\vec{b}_i^* \cdot \vec{b}_j^* = 0$).

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*, \qquad ext{for } 1 \leq i \leq n,$$

where

$$\mu_{ij} = \mu_{i,j} = rac{ec{b}_i \cdot ec{b}_j^*}{ec{b}_j^* \cdot ec{b}_j^*}, \qquad ext{for } 1 \leq j < i \leq n.$$

Then for each $i \in \{1, \ldots, n\}$, the vectors $\vec{b}_1^*, \ldots, \vec{b}_i^*$ span the same subspace of \mathbb{R}^n as $\vec{b}_1, \ldots, \vec{b}_i$. In other words,

$$egin{aligned} &\{a_1ec{b}_1^*+\dots+a_iec{b}_i^*:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}\ &=\{a_1ec{b}_1+\dots+a_iec{b}_i:a_j\in\mathbb{R} ext{ for }1\leq j\leq i\}. \end{aligned}$$

Furthermore, the vectors $\vec{b}_1^*, \ldots, \vec{b}_n^*$ are linearly independent (hence, non-zero) and pairwise orthogonal (i.e., for distinct i and j, we have $\vec{b}_i^* \cdot \vec{b}_j^* = 0$).

Hadamard's Inequality

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$.

Hadamard's Inequality

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$. This volume is independent of the basis that is used for \mathcal{L} .

Hadamard's Inequality

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$. This volume is independent of the basis that is used for \mathcal{L} . Geometrically (in low dimensions),

 $\det \mathcal{L} \leq \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|.$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*$$

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$. This volume is independent of the basis that is used for \mathcal{L} . Geometrically (in low dimensions),

$$\det \mathcal{L} \leq \ \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|.$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*$$

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$. This volume is independent of the basis that is used for \mathcal{L} . Geometrically (in low dimensions),

$$\det \mathcal{L} \leq \|\vec{b}_1\| \|\vec{b}_2\| \cdots \|\vec{b}_n\|.$$

This is Hadamard's inequality.

Proof (in any dimensions). Column operations imply

$$\det\left(ec{b}_1,\ldots,ec{b}_n
ight)=\det\left(ec{b}_1^*,\ldots,ec{b}_n^*
ight).$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*$$

The value of det \mathcal{L} can be viewed as the volume of the polyhedron with edges parallel to and the same length as $\vec{b}_1, \ldots, \vec{b}_n$. This volume is independent of the basis that is used for \mathcal{L} . Geometrically (in low dimensions),

$$\det \mathcal{L} \leq \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|.$$

This is Hadamard's inequality.

Proof (in any dimensions). Column operations imply

$$\det\left(ec{b}_1,\ldots,ec{b}_n
ight)=\det\left(ec{b}_1^*,\ldots,ec{b}_n^*
ight).$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathcal{L} , we deduce that

$$(\det\mathcal{L})^2 = \det\left((ec{b}_1^*,\ldots,ec{b}_n^*)^T(ec{b}_1^*,\ldots,ec{b}_n^*)
ight) = \left(\prod_{i=1}^n \|ec{b}_i^*\|
ight)^2.$$

$$\det \mathcal{L} \leq \ \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*$$

$$\detig(ec{b}_1,\ldots,ec{b}_nig) = \detig(ec{b}_1^*,\ldots,ec{b}_n^*ig).$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathcal{L} , we deduce that

$$(\det\mathcal{L})^2 = \det\left((ec{b}_1^*,\ldots,ec{b}_n^*)^T(ec{b}_1^*,\ldots,ec{b}_n^*)
ight) = \left(\prod_{i=1}^n \|ec{b}_i^*\|
ight)^2.$$

$$\det \mathcal{L} \leq \ \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*$$

$$\detig(ec{b}_1,\ldots,ec{b}_nig) = \detig(ec{b}_1^*,\ldots,ec{b}_n^*ig).$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathcal{L} , we deduce that

$$(\det \mathcal{L})^2 = \det \left((ec{b}_1^*, \dots, ec{b}_n^*)^T (ec{b}_1^*, \dots, ec{b}_n^*)
ight) = \left(\prod_{i=1}^n \|ec{b}_i^*\|
ight)^2.$$

Thus, det $\mathcal{L} = \prod_{i=1}^n \|\vec{b}_i^*\|$. So it suffices to show $\|\vec{b}_i^*\| \le \|\vec{b}_i\|$.

$$\det \mathcal{L} \leq \; \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*$$

$$\detig(ec{b}_1,\ldots,ec{b}_nig) = \detig(ec{b}_1^*,\ldots,ec{b}_n^*ig).$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathcal{L} , we deduce that

$$(\det\mathcal{L})^2 = \detig((ec{b}_1^*,\ldots,ec{b}_n^*)^T(ec{b}_1^*,\ldots,ec{b}_n^*)ig) = ig(\prod_{i=1}^n \|ec{b}_i^*\|ig)^2.$$

Thus, det $\mathcal{L} = \prod_{i=1}^{n} \|\vec{b}_{i}^{*}\|$. So it suffices to show $\|\vec{b}_{i}^{*}\| \leq \|\vec{b}_{i}\|$. The orthogonality of the \vec{b}_{i}^{*} 's implies

$$\|ec{b}_i\|^2 = \left\|ec{b}_i^* + \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*
ight\|^2 = \|ec{b}_i^*\|^2 + \sum_{j=1}^{i-1} \mu_{ij}^2 \|ec{b}_j^*\|^2.$$

$$\det \mathcal{L} \leq \; \|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\|$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*$$

$$\detig(ec{b}_1,\ldots,ec{b}_nig) = \detig(ec{b}_1^*,\ldots,ec{b}_n^*ig).$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is a basis for \mathcal{L} , we deduce that

$$(\det\mathcal{L})^2 = \detig((ec{b}_1^*,\ldots,ec{b}_n^*)^T(ec{b}_1^*,\ldots,ec{b}_n^*)ig) = ig(\prod_{i=1}^n \|ec{b}_i^*\|ig)^2.$$

Thus, det $\mathcal{L} = \prod_{i=1}^{n} \|\vec{b}_{i}^{*}\|$. So it suffices to show $\|\vec{b}_{i}^{*}\| \leq \|\vec{b}_{i}\|$. The orthogonality of the \vec{b}_{i}^{*} 's implies

$$\|ec{b}_i\|^2 = \left\|ec{b}_i^* + \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*
ight\|^2 = \|ec{b}_i^*\|^2 + \sum_{j=1}^{i-1} \mu_{ij}^2\|ec{b}_j^*\|^2.$$

The inequality $\|\vec{b}_i^*\| \leq \|\vec{b}_i\|$ follows.

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have $\|\vec{b}_1\| \|\vec{b}_2\| \cdots \|\vec{b}_n\| \leq c_n \det \mathcal{L}.$

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have $\|\vec{b}_1\| \|\vec{b}_2\| \cdots \|\vec{b}_n\| \leq c_n \det \mathcal{L}.$

It is known that $c_n \leq n^n$.

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have $\|\vec{b}_1\| \|\vec{b}_2\| \cdots \|\vec{b}_n\| \leq c_n \det \mathcal{L}.$

It is known that $c_n \leq n^n$. Minkowski has shown that there exist *n* linearly independent vectors $\vec{b}'_1, \ldots, \vec{b}'_n$ in \mathcal{L} such that

$$\|ec{b}_1'\|\,\|ec{b}_2'\|\cdots\|ec{b}_n'\|\leq n^{n/2}\det\mathcal{L},$$

but $\vec{b}'_1, \ldots, \vec{b}'_n$ is not necessarily a basis for \mathcal{L} .

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have $\|\vec{b}_1\| \|\vec{b}_2\| \cdots \|\vec{b}_n\| < c_n \det \mathcal{L}.$

It is known that $c_n \leq n^n$. Minkowski has shown that there exist *n* linearly independent vectors $\vec{b}'_1, \ldots, \vec{b}'_n$ in \mathcal{L} such that

$$\|ec{b}_1'\|\,\|ec{b}_2'\|\cdots\|ec{b}_n'\|\leq n^{n/2}\det\mathcal{L},$$

but $\vec{b}'_1, \ldots, \vec{b}'_n$ is not necessarily a basis for \mathcal{L} . Further, we note that the problem of finding a basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} for which $\|\vec{b}_1\| \cdots \|\vec{b}_n\|$ is minimal is known to be NP-hard.

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have

$$\|ec{b}_1\| \, \|ec{b}_2\| \cdots \|ec{b}_n\| \leq c_n \det \mathcal{L}.$$

It is known that $c_n \leq n^n$. Minkowski has shown that there exist *n* linearly independent vectors $\vec{b}'_1, \ldots, \vec{b}'_n$ in \mathcal{L} such that

 $\|ec{b}_1'\|\,\|ec{b}_2'\|\cdots\|ec{b}_n'\|\leq n^{n/2}\det\mathcal{L},$

but $\vec{b}'_1, \ldots, \vec{b}'_n$ is not necessarily a basis for \mathcal{L} . Further, we note that the problem of finding a basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} for which $\|\vec{b}_1\| \cdots \|\vec{b}_n\|$ is minimal is known to be NP-hard.

Hermite's result implies there is a constant c'_n , depending only on n, such that $\|\vec{b}\| \leq c'_n \sqrt[n]{\det \mathcal{L}}$.

Comments: Hermite proved there is a constant c_n (depending only on n) such that for some basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} , we have

$$\|ec{b}_1\|\,\|ec{b}_2\|\cdots\|ec{b}_n\|\leq c_n\det\mathcal{L}.$$

It is known that $c_n \leq n^n$. Minkowski has shown that there exist *n* linearly independent vectors $\vec{b}'_1, \ldots, \vec{b}'_n$ in \mathcal{L} such that

 $\|ec{b}_1'\|\,\|ec{b}_2'\|\cdots\|ec{b}_n'\|\leq n^{n/2}\det\mathcal{L},$

but $\vec{b}'_1, \ldots, \vec{b}'_n$ is not necessarily a basis for \mathcal{L} . Further, we note that the problem of finding a basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathcal{L} for which $\|\vec{b}_1\| \cdots \|\vec{b}_n\|$ is minimal is known to be NP-hard.

Hermite's result implies there is a constant c'_n , depending only on n, such that $\|\vec{b}\| \leq c'_n \sqrt[n]{\det \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c'_n for all lattices \mathcal{L} satisfies

$$\sqrt{n/(2e\pi)} \leq c'_n \leq \sqrt{n/(e\pi)}.$$

Hermite's result implies there is a constant c'_n , depending only on n, such that $\|\vec{b}\| \leq c'_n \sqrt[n]{\det \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c'_n for all lattices \mathcal{L} satisfies

$$\sqrt{n/(2e\pi)} \leq c'_n \leq \sqrt{n/(e\pi)}.$$

No one knows a polynomial time algorithm for finding $\vec{b} \in \mathcal{L}$ with $\|\vec{b}\|$ minimal, but it is not known to be NP-complete.

Hermite's result implies there is a constant c'_n , depending only on n, such that $\|\vec{b}\| \leq c'_n \sqrt[n]{\det \mathcal{L}}$. A lattice \mathcal{L} can contain a vector that is much shorter than this, but it is known that the best constant c'_n for all lattices \mathcal{L} satisfies

$$\sqrt{n/(2e\pi)} \leq c'_n \leq \sqrt{n/(e\pi)}.$$

No one knows a polynomial time algorithm for finding $\vec{b} \in \mathcal{L}$ with $\|\vec{b}\|$ minimal, but it is not known to be NP-complete. Lagarias has, however, proved that the problem of finding a vector $\vec{b} \in \mathcal{L}$ which minimizes the maximal absolute value of a component is NP-hard.

$ec{b}\in\mathcal{L}, \ ec{b} eq 0 \ \Longrightarrow \ ec{b}ec{b}ec{b} \geq \min\{ec{b}_1^*ec{v}, ec{b}_2^*ec{v}, \ldots, ec{b}_n^*ec{v}\}\}$

$$ec{b}_i = ec{b}_i^* + \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^*$$

$$ec{b}_i^* = ec{b}_i - \sum_{j=1}^{i-1} \mu_{ij} ec{b}_j^*$$

$$ec{b}\in\mathcal{L}, \ ec{b}
eq 0 \ \Longrightarrow \ ec{b}ec{b}ec{b} \geq \min\{ec{b}_1^*ec{v}, ec{b}_2^*ec{v}, \ldots, ec{b}_n^*ec{v}
vec\}$$

$$ec{b}_i = ec{b}_i^* + \sum_{j=1}^{i-1} \mu_{ij}ec{b}_j^* \qquad \qquad \mu_{i,j} = rac{ec{b}_i \cdot ec{b}_j^*}{ec{b}_j^* \cdot ec{b}_j^*}$$

 $ec{b} = u_1ec{b}_1 + \dots + u_kec{b}_k, \quad ext{where each } u_j \in \mathbb{Z} ext{ and } u_k
eq 0$

 $ec{b} = v_1ec{b}_1^* + \dots + v_kec{b}_k^*, \quad ext{ where each } v_j \in \mathbb{Q} ext{ and } v_k = u_k$

 $\|ec{b}\|^2 = ig(v_1ec{b}_1^* + \dots + v_kec{b}_k^*ig) \cdot ig(v_1ec{b}_1^* + \dots + v_kec{b}_k^*ig)$

$ec{b}\in\mathcal{L},\ ec{b} eq 0 \implies \|ec{b}\|\geq\min\{\|ec{b}_1^*\|,\|ec{b}_2^*\|,\dots,\|ec{b}_n^*\|\}$

$$ec{b}_{i} = ec{b}_{i}^{*} + \sum_{j=1}^{i-1} \mu_{ij} ec{b}_{j}^{*} \qquad \mu_{i,j} = rac{ec{b}_{i} \cdot ec{b}_{j}^{*}}{ec{b}_{j}^{*} \cdot ec{b}_{j}^{*}}$$

 $ec{b} = u_1ec{b}_1 + \dots + u_kec{b}_k, \quad ext{ where each } u_j \in \mathbb{Z} ext{ and } u_k
eq 0$

$$ec{b} = v_1ec{b}_1^* + \dots + v_kec{b}_k^*, \quad ext{ where each } v_j \in \mathbb{Q} ext{ and } v_k = u_k$$

$$egin{aligned} \|ec{b}\|^2 &= ig(v_1ec{b}_1^*+\dots+v_kec{b}_k^*ig)\cdotig(v_1ec{b}_1^*+\dots+v_kec{b}_k^*ig)\ &= v_1^2\|ec{b}_1^*\|^2+\dots+v_k^2\|ec{b}_k^*\|^2 \geq \|ec{b}_k^*\|^2 \end{aligned}$$

 $ec{b} \in \mathcal{L}, \ k ext{ as above } \implies \|ec{b}\|^2 \geq \|ec{b}_k^*\|^2$

 $(\mathbf{*})$