Homework: (due November 9 by class time)
Page 20, the one Homework problem there Page 22, Problem (1) and (2)

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p.

$$
f(x) \equiv u(x) v(x) \quad(\bmod p)
$$

Hensel Lifting

Hensel Lifting will produce, for any positive integer \boldsymbol{k}, monic polynomials $u_{k}(x)$ and $v_{k}(x)$ in $\mathbb{Z}[x]$ satisfying

$$
u_{k}(x) \equiv u(x) \quad(\bmod p), \quad v_{k}(x) \equiv v(x) \quad(\bmod p)
$$

and

$$
f(x) \equiv u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k}\right)
$$

$\begin{aligned}> & f:=x^{\wedge} 7+x^{\wedge} 6+2 * x^{\wedge} 3+x^{\wedge} 2+x+1: \\ u: & =x^{\wedge} 4+x+1: v:=x^{\wedge} 3+x^{\wedge} 2+1:\end{aligned}$
$>$ for k from 1 to 20 do
$\mathrm{w}:=\operatorname{expand}\left((\mathrm{f}-\mathrm{u} * \mathrm{v}) / \mathrm{p}^{\wedge} k\right)$:
cf:=cfrac(v/u, quotients`):
m:=nops(cf):
conv:=simplify(nthconver(cf,m-2)):
$\mathrm{a}:=$ numer(conv) mod $\mathrm{p}: \mathrm{b}:=$ denom(conv) $\bmod \mathrm{p}:$
newa:=Rem(a*w,v,x,'q') mod $p:$
newb:=expand(b*w+q*u) mod p :
$u:=s o r t\left(\operatorname{expand}\left(u-p^{\wedge} k * n e w b\right) \bmod p^{\wedge}(k+1)\right):$
$v:=s o r t\left(\operatorname{expand}\left(v-p^{\wedge} k * n e w a\right) \bmod p^{\wedge}(k+1)\right):$ od:
> expand(f-u*v) mod 2^21;
$>$ expand (f-u*v) mod $2^{\wedge} 22 ;$

$$
2097152 x^{6}+2097152 x^{3}+2097152 x^{2}
$$

$>\operatorname{mods}\left(u, 2^{\wedge} 21\right) ;$

$$
x^{4}+2 x^{3}+2 x^{2}+x+1
$$

II: $=$ IOPS (CT):
conv:=simplify(nthconver(cf,m-2)): a:=numer(conv) mod p: b:=denom(conv) mod p: newa:=Rem(a*w,v,x,'q') mod p : newb:=expand(b*w+q*u) mod p : $u:=s o r t\left(\operatorname{expand}\left(u-p^{\wedge} k * n e w b\right) \bmod p^{\wedge}(k+1)\right):$ v:=sort(expand(v-p^k*newa) mod $\left.p^{\wedge}(k+1)\right):$ od:
> expand(f-u*v) mod 2^21;
$>$ expand(f-u*v) mod 2^22;

$$
2097152 x^{6}+2097152 x^{3}+2097152 x^{2}
$$

$>\operatorname{mods}\left(u, 2^{\wedge} 21\right) ;$

$$
x^{4}+2 x^{3}+2 x^{2}+x+1
$$

> mods(v,2^21);

$$
x^{3}-x^{2}+1
$$

> factor(f);

$$
\left(x^{3}-x^{2}+1\right)\left(x^{4}+2 x^{3}+2 x^{2}+x+1\right)
$$

$>f:=x^{\wedge} 12+x^{\wedge} 6+2 * x^{\wedge} 3+x^{\wedge} 2+x+1: p:=2:$

$$
u:=x^{\wedge} 2+x+1: v:=x^{\wedge} 10+x^{\wedge} 9+x^{\wedge} 7+x^{\wedge} 6+1:
$$

$>$ for k from 1 to 20 do
w : =expand (($\mathrm{f}-\mathrm{u} * \mathrm{v}) / \mathrm{p}^{\wedge} k$):
cf:=cfrac(v/u, $q u o t i e n t s `):$
m:=nops(cf):
conv:=simplify(nthconver(cf,m-2)):
a:=numer(conv) mod p: b:=denom(conv) mod p:
newa:=Rem(a*w,v,x,'q') mod $p: \mid$
newb:=expand(b*w+q*u) mod p :
u:=sort(expand(u-p^k*newb) mod p^(k+1)):
$v:=s o r t\left(\operatorname{expand}\left(v-p^{\wedge} k * n e w a\right) \bmod p^{\wedge}(k+1)\right)$:
od:
$>$ expand(f-u*v) mod $\mathbf{2}^{\wedge} 21 ;$
$>$ expand(f-u*v) mod 2^22;

$$
2097152 x^{11}+2097152 x^{9}+2097152 x^{8}+2097152 x^{2}
$$

> mods(u,2^21);

$$
x^{2}-281583 x+231781
$$

newa: $=\operatorname{Rem}\left(a * w, v, x, q^{\prime}\right) \bmod p:$
newb:=expand(b*w+q*u) mod p :
$u:=s o r t\left(\operatorname{expand}\left(u-p^{\wedge} k * n e w b\right) \bmod p^{\wedge}(k+1)\right)$:
$v:=\operatorname{sort}\left(\operatorname{expand}\left(v-p^{\wedge} k * n e w a\right) \bmod p^{\wedge}(k+1)\right)$: od:
> expand(f-u*v) mod 2^21;
$>$ expand(f-u*v) mod 2^22;

$$
2097152 x^{11}+2097152 x^{9}+2097152 x^{8}+2097152 x^{2}
$$

$>\operatorname{mods}\left(u, 2^{\wedge} 21\right)$;

$$
x^{2}-281583 x+231781
$$

> mods(v,2^21);
$x^{10}+281583 x^{9}-368708 x^{8}-419783 x^{7}+683787 x^{6}-568120 x^{5}-848798 x^{4}$

$$
+379542 x^{3}+1032032 x^{2}+1021812 x-229267
$$

> factor(f);

$$
x^{12}+x^{6}+2 x^{3}+x^{2}+x+1
$$

An Inequality of Landau

Definitions and Notations. For

$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j}=a_{n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)
$$

with $a_{n} \neq 0$, we set

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad \text { and } \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

the latter being the Mahler measure of the polynomial $f(x)$.

An Inequality of Landau

Definitions and Notations. For

$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j}=a_{n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)
$$

with $a_{n} \neq 0$, we set

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad \text { and } \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

the latter being the Mahler measure of the polynomial $f(x)$. We also define the reciprocal of $f(x)$ as

$$
\widetilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
$$

An Inequality of Landau

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

$$
\tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
$$

An Inequality of Landau

$$
\begin{gathered}
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\} \\
\widetilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
\end{gathered}
$$

Useful Related Items:

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.
- The reciprocal of f is f in reverse; $\tilde{f}(x)=\sum_{j=0}^{n} a_{n-j} x^{j}$.
- The coefficient of x^{n} in $f(x) \tilde{f}(x)$ is $\|f\|^{2}$.

An Inequality of Landau

$$
\begin{gathered}
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\} \\
\tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
\end{gathered}
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|\boldsymbol{g}\| \leq 2^{\operatorname{deg} g}\|f\|
$$

Comment: So the size of the coefficients of a factor of a polynomial $f(x) \in \mathbb{Z}[x]$ cannot be too large in comparison to the degree and coefficients of $f(x)$.

An Inequality of Landau

$$
\begin{gathered}
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\} \\
\tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
\end{gathered}
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\| .
$$

Comment: So the size of the coefficients of a factor of a polynomial $f(x) \in \mathbb{Z}[x]$ cannot be too large in comparison to the degree and coefficients of $f(x)$. (Note that, for every B, there is an n such that $x^{n}-1$ has a factor with a coefficient larger than \boldsymbol{B}.)

Proof. We begin by proving that for $f(x) \in \mathbb{R}[x]$, (*) $M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)$.

Proof. We begin by proving that for $f(x) \in \mathbb{R}[x]$,
(*)

$$
M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Let

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right)
$$

Proof. We begin by proving that for $f(x) \in \mathbb{R}[x]$,
(*)

$$
M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Let

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right)
$$

Then

$$
\widetilde{w}(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(1-\alpha_{j} x\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j}-x\right)
$$

Proof. We begin by proving that for $f(x) \in \mathbb{R}[x]$,
(*)

$$
M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Let

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right)
$$

Then

$$
\widetilde{w}(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(1-\alpha_{j} x\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j}-x\right)
$$

Therefore,

$$
w(x) \tilde{w}(x)=a_{n}^{2} \prod_{j=1}^{n}\left(x-\alpha_{j}\right) \prod_{j=1}^{n}\left(1-\alpha_{j} x\right)=f(x) \tilde{f}(x)
$$

Proof. We begin by proving that for $f(x) \in \mathbb{R}[x]$,
(*)

$$
M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Let

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right)
$$

Then

$$
\widetilde{w}(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(1-\alpha_{j} x\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j}-x\right)
$$

Therefore,

$$
w(x) \tilde{w}(x)=a_{n}^{2} \prod_{j=1}^{n}\left(x-\alpha_{j}\right) \prod_{j=1}^{n}\left(1-\alpha_{j} x\right)=f(x) \tilde{f}(x)
$$

so that $\|w\|=\|f\|$.

- The coefficient of x^{n} in $f(x) \tilde{f}(x)$ is $\|f\|^{2}$.

$$
\left.w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad \| f\right) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f) \quad\|w\|=\|f\|
$$

$$
\left.w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad \| f\right) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f) \quad\|w\|=\|f\|
$$

The definition of $w(x)$ implies $|w(0)|=M(f)$.

$$
\left.w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad \| f\right) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f) \quad\|w\|=\|f\|
$$

The definition of $w(x)$ implies $|w(0)|=M(f)$. Writing $w(x)=\sum_{j=0}^{n} c_{j} x^{j}$, we obtain

$$
M(f)=\left|c_{0}\right| \leq\left(c_{0}^{2}+c_{1}^{2}+\cdots+c_{n}^{2}\right)^{1 / 2}=\|w\|=\|f\|
$$

establishing the first inequality in $(*)$.

$$
\begin{gathered}
(*) \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f) \\
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\
\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\
\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
\end{gathered}
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$.

$$
M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$.

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$. Hence,

$$
\left|a_{n-k}\right| \leq\binom{ n}{k} M(f)=\binom{n}{n-k} M(f)
$$

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$. Hence,

$$
\left|a_{n-k}\right| \leq\binom{ n}{k} M(f)=\binom{n}{n-k} M(f)
$$

The second inequality in ($*$) now follows from

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2}
$$

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$. Hence,

$$
\left|a_{n-k}\right| \leq\binom{ n}{k} M(f)=\binom{n}{n-k} M(f)
$$

The second inequality in $(*)$ now follows from

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \leq \sum_{j=0}^{n}\left|a_{j}\right|
$$

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$. Hence,

$$
\left|a_{n-k}\right| \leq\binom{ n}{k} M(f)=\binom{n}{n-k} M(f)
$$

The second inequality in $(*)$ now follows from

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \leq \sum_{j=0}^{n}\left|a_{j}\right| \leq \sum_{j=0}^{n}\binom{n}{j} M(f)
$$

$$
w(x)=a_{n} \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right|>1}}\left(x-\alpha_{j}\right) \prod_{\substack{1 \leq j \leq n \\\left|\alpha_{j}\right| \leq 1}}\left(\alpha_{j} x-1\right) \quad\|w\|=\|f\|
$$

For each $k \in\{1,2, \ldots, n\}$, the product of any k of the α_{j} has absolute value $\leq M(f) /\left|a_{n}\right|$. It follows that $\left|a_{n-k}\right| /\left|a_{n}\right|$, which is the sum of the products of the roots taken k at a time, is $\leq\binom{ n}{k} \times M(f) /\left|a_{n}\right|$. Hence,

$$
\left|a_{n-k}\right| \leq\binom{ n}{k} M(f)=\binom{n}{n-k} M(f)
$$

The second inequality in $(*)$ now follows from

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \leq \sum_{j=0}^{n}\left|a_{j}\right| \leq \sum_{j=0}^{n}\binom{n}{j} M(f)=2^{n} M(f)
$$

$$
\text { (*) } \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.

Landau's inequality follows from

$$
\|g\| \leq 2^{\operatorname{deg} g} M(g)
$$

$$
\text { (*) } \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.

Landau's inequality follows from

$$
\|g\| \leq 2^{\operatorname{deg} g} M(g) \leq 2^{\operatorname{deg} g} M(g) M(h)
$$

$$
(*) \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.

Landau's inequality follows from

$$
\begin{aligned}
\|g\| & \leq 2^{\operatorname{deg} g} M(g) \leq 2^{\operatorname{deg} g} M(g) M(h) \\
& =2^{\operatorname{deg} g} M(g h)
\end{aligned}
$$

$$
(*) \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.

Landau's inequality follows from

$$
\begin{aligned}
\|g\| & \leq 2^{\operatorname{deg} g} M(g) \leq 2^{\operatorname{deg} g} M(g) M(h) \\
& =2^{\operatorname{deg} g} M(g h)=2^{\operatorname{deg} g} M(f)
\end{aligned}
$$

$$
\text { (*) } \quad M(f) \leq\|f\| \leq 2^{\operatorname{deg} f} M(f)
$$

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

- If $g(x)$ and $h(x)$ are in $\mathbb{C}[x]$, then $M(g h)=M(g) M(h)$.
- If $g(x)$ is in $\mathbb{Z}[x]$, then $M(g) \geq 1$.

Landau's inequality follows from

$$
\begin{aligned}
\|g\| & \leq 2^{\operatorname{deg} g} M(g) \leq 2^{\operatorname{deg} g} M(g) M(h) \\
& =2^{\operatorname{deg} g} M(g h)=2^{\operatorname{deg} g} M(f) \leq 2^{\operatorname{deg} g}\|f\|
\end{aligned}
$$

An Approach of Zassenhaus

We explain a method for factoring a given $f(x) \in \mathbb{Z}[x]$ with the added assumptions that $f(x)$ is monic and squarefree.

- Set

$$
B=2^{\lfloor(\operatorname{deg} f) / 2\rfloor}\|f\| .
$$

(If $f(x)$ has a nontrivial factor $g(x)$ in $\mathbb{Z}[x]$, it has such a factor of degree $\leq\lfloor(\operatorname{deg} f) / 2\rfloor$ so that by Landau's inequality, we can use B as a bound on $\|g\|$.)

Theorem. If $f(x), g(x)$, and $h(x)$ in $\mathbb{Z}[x]$ are such that $f(x)=g(x) h(x)$, then

$$
\|g\| \leq 2^{\operatorname{deg} g}\|f\|
$$

An Approach of Zassenhaus

We explain a method for factoring a given $f(x) \in \mathbb{Z}[x]$ with the added assumptions that $f(x)$ is monic and squarefree.

- Set

$$
B=2^{\lfloor(\operatorname{deg} f) / 2\rfloor}\|f\| .
$$

(If $f(x)$ has a nontrivial factor $g(x)$ in $\mathbb{Z}[x]$, it has such a factor of degree $\leq\lfloor(\operatorname{deg} f) / 2\rfloor$ so that by Landau's inequality, we can use B as a bound on $\|g\|$.)

- Find a prime p for which $f(x)$ is squarefree modulo p.
- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- Factor $f(x)$ modulo p by Berlekamp's algorithm and use Hensel lifting to obtain the complete factorization of $f(x)$ modulo p^{r}. Given our conditions on $f(x)$, we can take all irreducible factors to be monic and do so.
- Set $B=2^{\lfloor(\operatorname{deg} f) / 2\rfloor}\|f\|$.
- Find a prime p for which $f(x)$ is squarefree modulo p.
- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- Factor $f(x)$ modulo p by Berlekamp's algorithm and use Hensel lifting to obtain the complete factorization of $f(x)$ modulo p^{r}. Given our conditions on $f(x)$, we can take all irreducible factors to be monic and do so.
- Loop through all possible products of irreducible factors of $f(x)$ modulo p^{r} to consider all possible factors $u(x)$ of $f(x)$ modulo p^{r}.
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right]$. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- Set $B=2^{\lfloor(\operatorname{deg} f) / 2\rfloor}\|f\|$.
- Find a prime p for which $f(x)$ is squarefree modulo p.
- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- Factor $f(x)$ modulo p by Berlekamp's algorithm and use Hensel lifting to obtain the complete factorization of $f(x)$ modulo p^{r}. Given our conditions on $f(x)$, we can take all irreducible factors to be monic and do so.
- Loop through all possible products of irreducible factors of $f(x)$ modulo p^{r} to consider all possible factors $u(x)$ of $f(x)$ modulo p^{r}.
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right.$. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- If one of these $u_{0}(x)$ with degree in $[1,(\operatorname{deg} f) / 2]$ divides $f(x)$, we have found a non-trivial factorization of $f(x)$. If no such $u_{0}(x)$ divides $f(x)$, then $f(x)$ is irreducible.
- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- Loop through all possible products of irreducible factors of $f(x)$ modulo p^{r} to consider all possible factors $u(x)$ of $f(x)$ modulo p^{r}.
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right.$]. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- If one of these $u_{0}(x)$ with degree in $[1,(\operatorname{deg} f) / 2]$ divides $f(x)$, we have found a non-trivial factorization of $f(x)$. If no such $u_{0}(x)$ divides $f(x)$, then $f(x)$ is irreducible.
- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right.$. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- If one of these $u_{0}(x)$ with degree in $[1,(\operatorname{deg} f) / 2]$ divides $f(x)$, we have found a non-trivial factorization of $f(x)$. If no such $u_{0}(x)$ divides $f(x)$, then $f(x)$ is irreducible.

Explanation. If $f(x)$ has a monic factor $g(x)$ of degree \leq $(\operatorname{deg} f) / 2$, then necessarily

$$
g(x) \equiv u_{0}(x) \quad\left(\bmod p^{r}\right)
$$

for some $u_{0}(x)$ in the algorithm.

- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right.$]. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- If one of these $u_{0}(x)$ with degree in $[1,(\operatorname{deg} f) / 2]$ divides $f(x)$, we have found a non-trivial factorization of $f(x)$. If no such $u_{0}(x)$ divides $f(x)$, then $f(x)$ is irreducible.

Explanation. If $f(x)$ has a monic factor $g(x)$ of degree \leq $(\operatorname{deg} f) / 2$, then necessarily

$$
g(x) \equiv u_{0}(x) \quad\left(\bmod p^{r}\right)
$$

for some $u_{0}(x)$ in the algorithm. The coefficients of $g(x)$ and $u_{0}(x)$ are all in $\left(-p^{r} / 2, p^{r} / 2\right.$] so that all coefficients of $g(x)-u_{0}(x)$ are divisible by p^{r} and have absolute value $<p^{r}$.

- Set $r \in \mathbb{Z}^{+}$minimal such that $p^{r}>2 B$. (Thus, each coefficient of $g(x)$ as above is in ($\left.-p^{r} / 2, p^{r} / 2\right]$.)
- For each such $u(x)$, consider the polynomial $u_{0}(x) \in$ $\mathbb{Z}[x]$ with $u_{0}(x) \equiv u(x)\left(\bmod p^{r}\right)$ and each coefficient of $u_{0}(x)$ in the interval $\left(-p^{r} / 2, p^{r} / 2\right.$. Check if $u_{0}(x)$ divides $f(x)$ in $\mathbb{Z}[x]$.
- If one of these $u_{0}(x)$ with degree in $[1,(\operatorname{deg} f) / 2]$ divides $f(x)$, we have found a non-trivial factorization of $f(x)$. If no such $u_{0}(x)$ divides $f(x)$, then $f(x)$ is irreducible.

Explanation. If $f(x)$ has a monic factor $g(x)$ of degree \leq $(\operatorname{deg} f) / 2$, then necessarily

$$
g(x) \equiv u_{0}(x) \quad\left(\bmod p^{r}\right)
$$

for some $u_{0}(x)$ in the algorithm. The coefficients of $g(x)$ and $u_{0}(x)$ are all in $\left(-p^{r} / 2, p^{r} / 2\right.$] so that all coefficients of $g(x)-u_{0}(x)$ are divisible by p^{r} and have absolute value $<p^{r}$. Therefore, $g(x)=u_{0}(x)$.

Swinnerton-Dyer's Example

Why is the method of Zassenhaus bad?
Why is the method of Zassenhaus good?

Swinnerton-Dyer's Example

Why is the method of Zassenhaus bad?
Let $a_{1}, a_{2}, \ldots, a_{m}$ be arbitrary squarefree pairwise relatively prime integers >1. Let S_{m} be the set of 2^{m} different m-tuples $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)$ where each $\varepsilon_{j} \in\{1,-1\}$. Then the polynomial

$$
f(x)=\prod_{\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in S_{m}}\left(x-\left(\varepsilon_{1} \sqrt{a_{1}}+\cdots+\varepsilon_{m} \sqrt{a_{m}}\right)\right)
$$

has the properties:
(i) The polynomial $f(x)$ is in $\mathbb{Z}[x]$.
(ii) It is irreducible over the rationals.
(iii) It factors as a product of linear and quadratic polynomials modulo every prime p.

- Loop through all possible products of irreducible factors of $f(x)$ modulo p^{r} to consider all possible factors $u(x)$ of $f(x)$ modulo p^{r}.

Let $a_{1}, a_{2}, \ldots, a_{m}$ be arbitrary squarefree pairwise relatively prime integers >1. Let S_{m} be the set of 2^{m} different m-tuples $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)$ where each $\varepsilon_{j} \in\{1,-1\}$. Then the polynomial

$$
f(x)=\prod_{\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in S_{m}}\left(x-\left(\varepsilon_{1} \sqrt{a_{1}}+\cdots+\varepsilon_{m} \sqrt{a_{m}}\right)\right)
$$

has the properties:
(i) The polynomial $f(x)$ is in $\mathbb{Z}[x]$.
(ii) It is irreducible over the rationals.
(iii) It factors as a product of linear and quadratic polynomials modulo every prime p.

Swinnerton-Dyer's Example

Why is the method of Zassenhaus bad?
Why is the method of Zassenhaus good?

Swinnerton-Dyer's Example

Why is the method of Zassenhaus good?
As we will see, there exists a polynomial time algorithm for factoring polynomials in $\mathbb{Z}[x]$.

Swinnerton-Dyer's Example

Why is the method of Zassenhaus good?
As we will see, there exists a polynomial time algorithm for factoring polynomials in $\mathbb{Z}[x]$. The method of Zassenhaus is not it.

Swinnerton-Dyer's Example

Why is the method of Zassenhaus good?
As we will see, there exists a polynomial time algorithm for factoring polynomials in $\mathbb{Z}[x]$. The method of Zassenhaus is not it. However, his method typically runs faster.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$.

The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász to prove that factoring polynomials in $\mathbb{Z}[x]$ can be done in polynomial time. It is sometimes called the LLL-algorithm or the L^{3}-algorithm.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For $\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For $\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$.

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

Definitions and Notations. Let \mathbb{Q}^{n} denote the set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ with $a_{j} \in \mathbb{Q}$. For
$\vec{b}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \in \mathbb{Q}^{n} \quad$ and $\quad \vec{b}^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in \mathbb{Q}^{n}$, define the usual dot product $\vec{b} \cdot \vec{b}^{\prime}$ by

$$
\vec{b} \cdot \vec{b}^{\prime}=a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\cdots+a_{n} a_{n}^{\prime}
$$

and set

$$
\|\vec{b}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Further, we use A^{T} to denote the transpose of a matrix A, so the rows and columns of A are the same as the columns and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment:
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.
Comment: Different \boldsymbol{A} can determine the same \mathcal{L}.
and rows of A^{T}, respectively. Let $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{Q}^{n}$, and let $A=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$ be the $n \times n$ matrix with column vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$. The lattice \mathcal{L} generated by $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is

$$
\mathcal{L}=\mathcal{L}(A)=\vec{b}_{1} \mathbb{Z}+\cdots+\vec{b}_{n} \mathbb{Z}
$$

We typically want $\vec{b}_{1}, \ldots, \vec{b}_{n}$ to be linearly independent; in this case, $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is called a basis for \mathcal{L}.

Comment: Different A can determine the same \mathcal{L}. But given \mathcal{L}, the value of $|\operatorname{det} A|$ is the same for all such A.

