
Factoring Polynomials

Homework: (due November 9 by class time)
Page 20, the one Homework problem there
Page 22, Problem (1) and (2)



Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p. For simplicity, we suppose f(x) is
monic and squarefree in modulo p.

Notation. We set n = deg f(x). We use Fp to denote the
field of arithmetic mod p. For w(x) 2 Z[x], define

w(x) modd (p, f(x))

as the unique g(x) 2 Z[x] satisfying deg g  n � 1, with
each coe�cient of g(x) in the set {0, 1, . . . , p�1} and g(x) ⌘
w(x) (mod p, f(x)). We can also view w(x) modd (p, f(x))
as being in Fp[x].

Let A be the matrix with jth column corresponding to the
coe�cients of

x
(j�1)p modd (p, f(x)).

Specifically, write

x
(j�1)p modd (p, f(x)) =

nX

i=1

aijx
i�1 for 1  j  n.

Then we set A = (aij)n⇥n
.
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Hensel Lifting

Uses the factorization of f(x) modulo a prime p to produce
a factorization of f(x) modulo p

k for an arbitrary positive
integer k.

f(x) ⌘ u(x)v(x) (mod p)

We only consider f(x) monic and u(x) and v(x) relatively
prime in Fp[x]. We can then take u(x) and v(x) also to be
monic.

Hensel Lifting will produce, for any positive integer k, monic
polynomials uk(x) and vk(x) in Z[x] satisfying

uk(x) ⌘ u(x) (mod p), vk(x) ⌘ v(x) (mod p),

and
f(x) ⌘ uk(x)vk(x) (mod p

k).
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An Inequality of Landau

Definitions and Notations. For

f(x) =
nX

j=0

ajx
j = an

nY

j=1

(x � ↵j),

with an 6= 0, we set

kfk =

✓ nX

j=0

a2
j

◆1/2

and M(f) = |an|
nY

j=1

max{1, |↵j|},

the latter being the Mahler measure of the polynomial f(x).
We also define the reciprocal of f(x) as

ef(x) = xdeg ff(1/x).

Useful Related Items:

• If g(x) and h(x) are in C[x], then M(gh) = M(g)M(h).

• If g(x) is in Z[x], then M(g) � 1.

• The reciprocal of f is f in reverse; f̃(x) =
nX

j=0

an�jx
j.

• The coe�cient of xn in f(x)f̃(x) is kfk.
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Theorem. If f(x), g(x), and h(x) in Z[x] are such that
f(x) = g(x)h(x), then

kgk  2deg gkfk.
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Theorem. If f(x), g(x), and h(x) in Z[x] are such that
f(x) = g(x)h(x), then

kgk  2deg gkfk.

Comment: So the size of the coe�cients of a factor of a
polynomial f(x) 2 Z[x] cannot be too large in comparison to
the degree and coe�cients of f(x). (Note that, for every B,
there is an n such that xn � 1 has a factor with a coe�cient
larger than B.)
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Proof. We begin by proving that for f(x) 2 R[x],
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(1 � ↵jx)
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(↵j � x).

Therefore,
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j=1

(1 � ↵jx) = f(x)f̃(x),

so that kwk = kfk.
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Useful Related Items:

• If g(x) and h(x) are in C[x], then M(gh) = M(g)M(h).

• If g(x) is in Z[x], then M(g) � 1.
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Factoring Polynomials

Homework: (due November 9 by class time)
Page 20, the one Homework problem there
Page 22, Problem (1) and (2)
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establishing the first inequality in (⇤).
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For each k 2 {1, 2, . . . , n}, the product of any k of the ↵j

has absolute value  M(f)/|an|. It follows that |an�k|/|an|,
which is the sum of the products of the roots taken k at a

time, is 
�n

k

�
⇥ M(f)/|an|. Hence,

|an�k| 
✓

n

k

◆
M(f) =

✓
n

n � k

◆
M(f).
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✓ nX

j=0

a2

j

◆1/2


nX

j=0

|aj| 
nX
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✓
n

j

◆
M(f) = 2

nM(f).
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to consider all possible factors u(x)

of f(x) modulo pr
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• For each such u(x), consider the polynomial u0(x) 2
Z[x] with u0(x) ⌘ u(x) (mod pr

) and each coe�cient

of u0(x) in the interval (�pr/2, pr/2]. Check if u0(x)

divides f(x) in Z[x].

• If one of these u0(x) with degree in [1, (deg f)/2] divides

f(x), we have found a non-trivial factorization of f(x).

If no such u0(x) divides f(x), then f(x) is irreducible.

Explanation. If f(x) has a monic factor g(x) of degree 
(deg f)/2, then necessarily

g(x) ⌘ u0(x) (mod pr
),

for some u0(x) in the algorithm. The coe�cients of g(x)

and u0(x) are all in (�pr/2, pr/2] so that all coe�cients of

g(x)�u0(x) are divisible by pr
and have absolute value < pr

.

Therefore, g(x) = u0(x).
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Swinnerton-Dyer’s Example

Why is the method of Zassenhaus bad?

Why is the method of Zassenhaus good?

Let a1, a2, . . . , am be arbitrary squarefree pairwise relatively

prime integers > 1. Let Sm be the set of 2
m

di↵erent m-tuples

("1, . . . , "m) where each "j 2 {1, �1}. Then the polynomial

f(x) =

Y

("1,...,"m)2Sm

�
x � ("1

p
a1 + · · · + "m

p
am)

�

has the properties:

(i) The polynomial f(x) is in Z[x].

(ii) It is irreducible over the rationals.

(iii) It factors as a product of linear and quadratic polynomials

modulo every prime p.
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The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that

factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.
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factoring polynomials in Z[x] can be done in polynomial time.

It is sometimes called the LLL-algorithm or the L
3
-algorithm.

Definitions and Notations. Let Qn
denote the set of vectors

ha1, a2, . . . , ani with aj 2 Q. For

~b = ha1, a2, . . . , ani 2 Qn
and ~b0

= ha0
1
, a0

2
, . . . , a0

ni 2 Qn,

define the usual dot product ~b ·~b0
by

~b ·~b0
= a1a

0
1
+ a2a

0
2
+ · · · + ana0

n,

and set

k~bk =

q
a2

1
+ a2

2
+ · · · + a2

n.

Further, we use AT
to denote the transpose of a matrix A,

so the rows and columns of A are the same as the columns

and rows of AT
, respectively. Let ~b1, . . . ,~bn 2 Qn

, and let

A =
�
~b1, . . . ,~bn

�
be the n ⇥ n matrix with column vectors

~b1, . . . ,~bn. The lattice L generated by ~b1, . . . ,~bn is

L = L(A) = ~b1Z + · · · +~bnZ.

We typically want ~b1, . . . ,~bn to be linearly independent; in

this case, ~b1, . . . ,~bn is called a basis for L.



The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen

Lenstra, Hendrik Lenstra and László Lovász to prove that
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Comment: Di↵erent A can determine the same L. But given

L, the value of | det A| is the same for all such A. To see this,

observe that if ~b1, . . . ,~bn and ~b0
1
, . . . ,~b0

n are two bases for L,

there are matrices U and V with integer entries such that

�
~b1, . . . ,~bn

�
UV =

�
~b0

1
, . . . ,~b0

n

�
V =

�
~b1, . . . ,~bn

�
.

Given that ~b1, . . . ,~bn is a basis for Rn
, it follows that UV is

the identity matrix and det V = ±1. The second equation

above then implies

| det
�
~b0

1
, . . . ,~b0

n

�
| = | det

�
~b1, . . . ,~bn

�
|.

We set det L to be this common value.
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