Homework: (due November 9 by class time)

Page 20, the one Homework problem there
Page 22, Problem (1) and (2)



Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p.

f(z) = u(z)v(z) (mod p)
Hensel Lifting

Hensel Lifting will produce, for any positive integer k, monic
polynomials uy(x) and vg(x) in Z[x] satisfying

ur(x) = u(x) (mod p), wvr(x)=v(x) (mod p),

and

f(x) = up(x)ve(x) (mod pk).



> Fi1=X"7+X"6+2%X"3+X"2+Xx+1:

U:=X"4+x+1: v:=x"3+x"2+1:

for k from 1 to 20 do
w:=expand( (f-uxv)/p~k):
cf:=cfrac(v/u, quotients ):
m:=nops(cf):
conv:=simplify(nthconver(cf,m-2)):
a:=numer(conv) mod p: b:=denom(conv) mod p:
newa:=Rem(axw,v,Xx,'q') mod p:
newb : =expand (b*xw+qxu) mod p:
u:=sort(expand(u-p~kxnewb) mod p~(k+1l)):
v:=sort(expand(v-p~kxnewa) mod p~(k+1l)):

od:
> expand(f-uxv) mod 2721;

>

> expand (f-uxv) mod 2722;
2097152 x° + 2097152 x> + 2097152 x°

i> mods (u,27°21):;

A2 2 x4 1

'il



. =nops\C1 ).
conv:=simplify(nthconver(cf,m-2)):
a:=numer(conv) mod p: b:=denom(conv) mod p:

|
\'

newa:=Rem(a*xw,v,Xx,"'q"') mod p:
newb : =expand (bxw+qxu) mod p:

u:=sort(expand(u-p~kxnewb) mod p~(k+1l)):
v:=sort(expand(v-p~kxnewa) mod p~(k+1l)):

od:
expand (f-uxv) mod 2721;

expand (f-uxv) mod 2722;

2097152 x° + 2097152 X° + 2097152 x°

mods (u,27°21):;

A2 2 x4 1

mods (v, 2721);

factor(fT);
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> Fi1=X"124X"6+2%X"3+X"2+X+1: p:=2:
i U:=x"2+x+1: v:=x"10+x"9+x*7+x"6+1:
> for k from 1 to 20 do

w:=expand( (f-uxv)/p~k):

cf:=cfrac(v/u, quotients ):

m:=nops(cf):

conv:=simplify(nthconver(cf,m-2)):

a:=numer(conv) mod p: b:=denom(conv) mod p:

newa:=Rem(a*w,Vv,X,'q"') mod p:

newb : =expand (bxw+g*u) mod p:

u:=sort(expand(u-p~kxnewb) mod p~(k+1l)):

v:=sort(expand(v-p~kxnewa) mod p~(k+1l)):
od:

S expand (f-uxv) mod 2721;

> expand (f-uxv) mod 2722;
2097152 x'' 4+ 2097152 ¥ + 2097152 x° + 2097152 x°

i> mods (u,2721);

x> — 281583 x + 231781
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newa:=Rem(a*w,Vv,X,'q"') mod p:

newb : =expand (bxw+q*u) mod p:

u:=sort(expand(u-p~kxnewb) mod p”~(k+1l)):

v:=sort(expand(v-p~kknewa) mod p~(k+l)):
od:

> expand (f-uxv) mod 2721;

> expand (f-uxv) mod 2722;

2097152 x'' 4+ 2097152 ¥ + 2097152 x° + 2097152 ¥

> mods (u,2°21);

X — 281583 x + 231781

> mods (v,2°21):

0 4281583 X — 368708 x° — 419783 x” + 683787 x° — 568120 x° — 848798 x*

1+ 379542 x> + 1032032 x° + 1021812 x — 229267

> factor(f):
2 1




An Inequality of Landau

Definitions and Notations. For
fx) =) aj’ =an|[(x— a),
§=0 j=1
with a,, # 0, we set

n 1/2 n
1£1l = (Za?) and  M(f) = |an| [ max{1, ]y},
j=1

7=0

the latter being the Mahler measure of the polynomial f(x).



An Inequality of Landau

Definitions and Notations. For
fx) =) aj’ =an|[(x— a),
§=0 j=1
with a,, # 0, we set

n 1/2 n
1£1l = (Za?) and  M(f) = |an| [ max{1, ]y},
j=1

7=0

the latter being the Mahler measure of the polynomial f(x).
We also define the reciprocal of f(x) as

f(z) = a7l f(1/x).



An Inequality of Landau

n 1/2 n
171 = (Zai) M) = lan] T max{1, ol

3=0

f(z) = a7/ f(1/x)



An Inequality of Landau

1/2 n
171 = (Zai) M) = lanl T max{1, o1}

n
3=0

f(x) = a8 f(1/x)

Useful Related Items:

o If g(x) and h(x) are in C|x|, then M (gh) = M (g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

e The reciprocal of f is f in reverse; f(a:) = Z an_;xd.
j=0
e The coefficient of " in f(z)f(x) is | £1I7.



An Inequality of Landau

n 1/2 n
171 = (Zai) M) = lanl T max{1, o1}

j=0

f(x) = a8 f(1/x)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(z) = g(x)h(x), then

1g]l < 2989 7|
Comment: So the size of the coeflicients of a factor of a

polynomial f(x) € Z|x] cannot be too large in comparison to
the degree and coefficients of f(x).



An Inequality of Landau

n 1/2 n
171 = (Zai) M) = lanl T max{1, o1}

j=0

f(x) = a8 f(1/x)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 2959] | £|l.

Comment: So the size of the coefficients of a factor of a
polynomial f(x) € Z|x] cannot be too large in comparison to
the degree and coefficients of f(x). (Note that, for every B,
there is an n such that ™ — 1 has a factor with a coefficient

larger than B.)



Proof. We begin by proving that for f(x) € R|x],
(*) M(f) < |IfIl < 2987 M(f).



Proof. We begin by proving that for f(x) € R|x],
(*) M(f) < |IfIl < 2987 M(f).
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1<j<n 1<j<n
|aj|>1 ;<1



Proof. We begin by proving that for f(x) € R|x],

(*)

Let

Then

M(f) < |IfIl < 2987 M(f).

w(x) = an, H (x — o) H (ajxr — 1).

1<j<n 1<j<n
|aj|>1 ;<1

w(x) = ay, H (1 —a;x) H (a; — ).

1<)<n 1<j<n
|aj|>1 o<1



Proof. We begin by proving that for f(x) € R|x],

(*) M(f) < |Ifll < 2987 M(f).
Let
w(x) = an, H (x — o) H (ajxr — 1).
1<j<n 1<j<n
|aj|>1 ;<1
Then
w(x) = an, H (1 —a;x) H (a; — ).
1<j<n 1<j<n
|aj|>1 o<1
Therefore,

w(x)w(x) = a H(az — ;) H(1 — a;x) = f(z)f(x).



Proof. We begin by proving that for f(x) € R|x],

(*) M(f) < |Ifll < 2987 M(f).
Let
w(x) = an, H (x — o) H (ajxr — 1).
1<j<n 1<j<n
|aj|>1 ;<1
Then
w(x) = an, H (1 —a;x) H (a; — ).
1<j<n 1<j<n
|aj|>1 o<1
Therefore,

w(x)w(x) = a H(:p — ;) H(1 — a;x) = f(x)f(x),

so that [|w|| = || f||.




(%) M(f) < |IfIl < 2987 M(f)

w(x) = an, H (x — o) H (ajx — 1)

1<y<n 1<y<n
|aj|>1 | |<1



(%) M(f) < |IfIl < 2987 M(f)

w(@) =an [[ (@—ey) ][] (eyz—1) lw]]

1<y<n 1<y<n
|aj|>1 | |<1

The definition of w(x) implies |w(0)| = M(f).



(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

I<j<n I<j<n
|aj|>1 | |<1
The definition of w(x) implies |w(0)] = M(f). Writing
w(x) = Z c;x’, we obtain
j=0
M(f) = leol < (5 + ¢+ + )% = |lwll = [IF]]

establishing the first inequality in ().



(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

1<y<n 1<y<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|ax]|-

M(f) = |an| | | max{1, |ay[}
j=1




(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

1<y<n 1<y<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|a,|. It follows that |a,_|/|ax|,
which is the sum of the products of the roots taken k at a

time, is < () X M(f)/|ax|.
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(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

1<y<n 1<y<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|a,|. It follows that |a,_|/|ax|,
which is the sum of the products of the roots taken k at a

time, is < (}) X M(f)/|an|. Hence,

a k| < (Z’)M(f) = (n’jk)M(ﬂ-

The second inequality in (%) now follows from

151l = (iaﬁ)m

7=0



(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

1<y<n 1<y<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|a,|. It follows that |a,_|/|ax|,
which is the sum of the products of the roots taken k at a

time, is < (}) X M(f)/|an|. Hence,

a k| < (Z’)M(f) = (n’jk)M(ﬂ-

The second inequality in (%) now follows from

n 1/2 n
1£1l = (Zag) <3 ay

7=0 7=0



(%) M(f) < |IfIl < 2987 M(f)

wz)=a, || (@-a;) [] (ejz—1) lw]l = |I£]

1<y<n 1<y<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|a,|. It follows that |a,_|/|ax|,
which is the sum of the products of the roots taken k at a

time, is < (}) X M(f)/|an|. Hence,

a k| < (Z’)M(f) = (n’jk)M(ﬂ-

The second inequality in (%) now follows from

1= (3a2) " <Y lal < > ()M

7=0 7=0



0 M@ <l <2
w@)=a, [[ @—a)) ] (ayz—1) |l = |1£]

1<)<n 1<)<n
|aj|>1 | |<1
For each kK € {1,2,...,n}, the product of any k of the «;

has absolute value < M (f)/|a,|. It follows that |a,_|/|ax|,
which is the sum of the products of the roots taken k at a

time, is < (}) X M(f)/|an|. Hence,

a k| < (Z’)M(f) = (n’jk)M(ﬂ-

The second inequality in (%) now follows from

11l = (iai)l/zsi|aj|§ y (")pa(s) =M (),

7=0 7=0 7=0



(%) M(f) < |IfIl < 2987 M(f)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 29=9]|£|l.

e If g(x) and h(x) are in C|x|, then M (gh) = M(g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

Landau’s inequality follows from

lgll < 29°¢9M (g)



(%) M(f) < |IfIl < 2987 M(f)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 29=9]|£|l.

e If g(x) and h(x) are in C|x|, then M (gh) = M(g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

Landau’s inequality follows from

gl < 29°89M (g) < 2989M (g) M (h)



(%) M(f) < |IfIl < 2987 M(f)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 29=9]|£|l.

e If g(x) and h(x) are in C|x|, then M (gh) = M(g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

Landau’s inequality follows from

gl < 29°89M (g) < 2989M (g) M (h)

= 2990 (gh)



(%) M(f) < |IfIl < 2987 M(f)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 29=9]|£|l.

e If g(x) and h(x) are in C|x|, then M (gh) = M(g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

Landau’s inequality follows from

gl < 29°89M (g) < 2989M (g) M (h)

= 29590 (gh) = 29 M (f)



(%) M(f) < |IfIl < 2987 M(f)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 29=9]|£|l.

e If g(x) and h(x) are in C|x|, then M (gh) = M(g)M (h).

o If g(x) is in Z[x|, then M (g) > 1.

Landau’s inequality follows from

gl < 29°89M (g) < 2989M (g) M (h)

= 2989 M (gh) = 2590 (f) < 27| f]. [



An Approach of Zassenhaus

We explain a method for factoring a given f(x) € Z[|x| with
the added assumptions that f(x) is monic and squarefree.

® Set
B = 2ldee 2] 111

(If f(x) has a nontrivial factor g(x) in Z[x], it has such
a factor of degree < |(deg f)/2] so that by Landau’s
inequality, we can use B as a bound on ||g]|.)

Theorem. If f(x), g(x), and h(x) in Z|x] are such that
f(x) = g(x)h(x), then
lgll < 2959 |£|l.



An Approach of Zassenhaus

We explain a method for factoring a given f(x) € Z[|x| with
the added assumptions that f(x) is monic and squarefree.

® Set
B = 2ldee 2] 111

(If f(x) has a nontrivial factor g(x) in Z[x], it has such
a factor of degree < |(deg f)/2] so that by Landau’s
inequality, we can use B as a bound on ||g]|.)

e Find a prime p for which f(x) is squarefree modulo p.

e Set » € Z™ minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p"/2].)

e Factor f(x) modulo p by Berlekamp’s algorithm and
use Hensel lifting to obtain the complete factorization
of f(x) modulo p". Given our conditions on f(x), we
can take all irreducible factors to be monic and do so.



e Set B = 2l f)/2]) £

e Find a prime p for which f(x) is squarefree modulo p.

e Set r € Z1 minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p"/2].)

e Factor f(x) modulo p by Berlekamp’s algorithm and
use Hensel lifting to obtain the complete factorization
of f(x) modulo p". Given our conditions on f(x), we
can take all irreducible factors to be monic and do so.

e Loop through all possible products of irreducible factors
of f(x) modulo p” to consider all possible factors u(x)
of f(x) modulo p".

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if ug(x)
divides f(x) in Z|x].



e Set B = 2Mdesf)/2l) £,

e Find a prime p for which f(x) is squarefree modulo p.

e Set » € Z" minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p" /2].)

e Factor f(x) modulo p by Berlekamp’s algorithm and
use Hensel lifting to obtain the complete factorization

of f(x) modulo p”". Given our conditions on f(x), we
can take all irreducible factors to be monic and do so.

e Loop through all possible products of irreducible factors
of f(x) modulo p" to consider all possible factors u(x)
of f(x) modulo p".

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if uo(x)
divides f(x) in Z[x].

e If one of these ug(x) with degree in [1, (deg f) /2] divides

f(x), we have found a non-trivial factorization of f(x).
If no such ug(x) divides f(x), then f(x) is irreducible.



e Set » € Z™ minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p"/2].)

e Loop through all possible products of irreducible factors
of f(x) modulo p” to consider all possible factors u(x)
of f(x) modulo p".

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if ug(x)
divides f(x) in Z|x].

e If one of these ug(x) with degree in [1, (deg f) /2] divides
f(x), we have found a non-trivial factorization of f(x).
If no such ug(x) divides f(x), then f(x) is irreducible.



e Set » € Z" minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p" /2].)

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if ug(x)
divides f(x) in Z|x].

e If one of these ug(x) with degree in [1, (deg f)/2] divides
f(x), we have found a non-trivial factorization of f(x).

If no such ug(x) divides f(x), then f(x) is irreducible.

Explanation. If f(x) has a monic factor g(x) of degree <
(deg f)/2, then necessarily

g(x) = up(x) (mod p"),

for some ug(x) in the algorithm.



e Set » € Z" minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p" /2].)

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if ug(x)
divides f(x) in Z|x].

e If one of these ug(x) with degree in [1, (deg f)/2] divides
f(x), we have found a non-trivial factorization of f(x).
If no such ug(x) divides f(x), then f(x) is irreducible.

Explanation. If f(x) has a monic factor g(x) of degree <
(deg f)/2, then necessarily

g(x) = up(x) (mod p"),

for some wug(x) in the algorithm. The coefficients of g(x)
and ug(x) are all in (—p"/2,p" /2] so that all coefficients of
g(x) —ug(x) are divisible by p" and have absolute value < p".



e Set » € Z" minimal such that p” > 2B. (Thus, each
coefficient of g(x) as above is in (—p"/2,p" /2].)

e For each such u(x), consider the polynomial ug(x) €
Z|x] with ug(x) = u(x) (mod p") and each coefficient
of ug(x) in the interval (—p"/2,p"/2]. Check if ug(x)
divides f(x) in Z|x].

e If one of these ug(x) with degree in [1, (deg f)/2] divides
f(x), we have found a non-trivial factorization of f(x).
If no such ug(x) divides f(x), then f(x) is irreducible.

Explanation. If f(x) has a monic factor g(x) of degree <
(deg f)/2, then necessarily

g(x) = up(x) (mod p"),

for some wug(x) in the algorithm. The coefficients of g(x)
and ug(x) are all in (—p"/2,p" /2] so that all coefficients of
g(x) —ug(x) are divisible by p" and have absolute value < p".
Therefore, g(x) = uo(x).
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Swinnerton-Dyer’s Example

Why is the method of Zassenhaus bad?

Let a1,a-,...,a,, be arbitrary squarefree pairwise relatively
prime integers > 1. Let S,,, be the set of 2 different m-tuples
(€15++.5Em) Where each €; € {1, —1}. Then the polynomial

f@)= ]| (@-(avai+ - +envan))

(517'"9€m)€Sm

has the properties:
(i) The polynomial f(x) is in Z[x].
(ii) It is irreducible over the rationals.

(iii) It factors as a product of linear and quadratic polynomials
modulo every prime p.



e Loop through all possible products of irreducible factors

of f(x) modulo p” to consider all possible factors u(x)
of f(x) modulo p".

Let a1,a-,...,a,, be arbitrary squarefree pairwise relatively
prime integers > 1. Let S,,, be the set of 2 different m-tuples
(€15++.5Em) Where each €; € {1, —1}. Then the polynomial

f@)= ]| (@-(avai+ - +envan))

(61,...,€m)€Sm

has the properties:
(i) The polynomial f(x) is in Z[x].
(ii) It is irreducible over the rationals.

(iii) It factors as a product of linear and quadratic polynomials
modulo every prime p.
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Why is the method of Zassenhaus good?

As we will see, there exists a polynomial time algorithm for
factoring polynomials in Z[x]|.
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As we will see, there exists a polynomial time algorithm for
factoring polynomials in Z[x]. The method of Zassenhaus is
not it.



Swinnerton-Dyer’s Example

Why is the method of Zassenhaus good?

As we will see, there exists a polynomial time algorithm for
factoring polynomials in Z[x]. The method of Zassenhaus is
not it. However, his method typically runs faster.



The Lattice Base Reduction Algorithm

This is a method which was developed in 1982 by Arjen
Lenstra, Hendrik Lenstra and Laszlé Lovasz to prove that
factoring polynomials in Z[x| can be done in polynomial time.
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factoring polynomials in Z[x| can be done in polynomial time.
It is sometimes called the LLL-algorithm or the L3-algorithm.

Definitions and Notations.
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