
Factoring Polynomials

Homework: (due November 9 by class time)
Page 20, the one Homework problem there
Page 22, Problem (1) and (2)



Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p. For simplicity, we suppose f(x) is
monic and squarefree in modulo p.

Notation. We set n = deg f(x). We use Fp to denote the
field of arithmetic mod p. For w(x) 2 Z[x], define

w(x) modd (p, f(x))

as the unique g(x) 2 Z[x] satisfying deg g  n � 1, with
each coe�cient of g(x) in the set {0, 1, . . . , p�1} and g(x) ⌘
w(x) (mod p, f(x)). We can also view w(x) modd (p, f(x))
as being in Fp[x].

Let A be the matrix with jth column corresponding to the
coe�cients of

x
(j�1)p modd (p, f(x)).

Specifically, write

x
(j�1)p modd (p, f(x)) =

nX

i=1

aijx
i�1 for 1  j  n.

Then we set A = (aij)n⇥n
.
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• The vector h1, 0, 0, . . . , 0i will be an eigenvector for A

associated with the eigenvalue 1.

• The set of all such vectors is the null space of B = A�I.

• This null space is spanned by k = n � rank(B) linearly
independent vectors which can be determined by per-
forming row operations on B.
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Suppose ~v = hb1, b2, . . . , bni is in the null space, and set
g(x) =

P
n

j=1 bjx
j�1. Observe that

g(xp) ⌘ g(x) (mod p, f(x)).

Moreover, the g(x) with this property are precisely the g(x)
with coe�cients obtained from the components of vectors ~v

in the null space of B.

g(xp) ⌘
nX

j=1

bjx
(j�1)p ⌘

nX

j=1

bj

nX

i=1

aijx
i�1

⌘
nX

i=1

✓ nX

j=1

bjaij

◆
x

i�1 ⌘
nX

i=1

bix
i�1 ⌘ g(x)
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Notation. If u(x) and v(x) are in Z[x] or Fp[x], then

gcd p

�
u(x), v(x)

�

denotes the greatest common divisor of u(x) and v(x) when
computed over the field Fp.

Definition. The greatest common divisor of two polynomials
g(x) and h(x) in Fp[x], with at least one of g(x) or h(x) non-
zero, is the monic polynomial in Fp[x] of largest degree which
divides both g(x) and h(x) and is denoted by gcd(g(x), h(x)).

Theorem. Let f(x) be a monic polynomial in Z[x]. Suppose
f(x) is squarefree in Fp[x]. Let g(x) be a polynomial with
coe�cients obtained from a vector in the null space of B =
A � I as described above. Then

f(x) ⌘
p�1Y

s=0

gcd p

�
g(x) � s, f(x)

�
(mod p).

Comment: If deg g > 0, then the factorization is non-trivial.

Do MAPLE examples.
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Comments:

• If g(x) is not a constant, then 1  deg(g(x) � s) <

deg f(x) for each s so we get a non-trivial factorization
of f(x) in Fp[x].

• The above will NOT necessarily completely factor f(x)
modulo p.

• One can completely factor f(x) by repeating the above
procedure for each factor obtained from the claim.

• Or take the product of the greatest common divisors of
each factor of f(x) obtained above with h(x) � s (with
0  s  p � 1) where h(x) is obtained from another of
the k vectors spanning the null space of B. This will ob-
tain a new non-trivial factor of f(x) in Fp[x]. Continuing
to use all k vectors will produce a complete factorization
of f(x) in Fp[x].
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Set

uk+1(x) = uk(x) + b(x)pk and vk+1(x) = vk(x) + a(x)pk
.

Then uk+1(x) and vk+1(x) are monic and (modulo p
k)

uk+1(x)vk+1(x) ⌘
�
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��
vk(x) + a(x)pk

�

⌘ uk(x)vk(x) + p
k
�
a(x)u(x) + b(x)v(x)

�

⌘ uk(x)vk(x) + p
k
wk(x)

⌘ uk(x)vk(x) +
�
f(x) � uk(x)vk(x)

�

⌘ f(x) (mod p
k+1).

Comment: A complete factorization of f(x) modulo p
k can

be obtained from a complete factorization of f(x) modulo p

by modifying this idea.

Hensel Lifting

Uses the factorization of f(x) modulo a prime p to produce
a factorization of f(x) modulo p

k for an arbitrary positive
integer k.

f(x) ⌘ u(x)v(x) (mod p)

We only consider f(x) monic and u(x) and v(x) relatively
prime in Fp[x]. We can then take u(x) and v(x) also to be
monic.

Hensel Lifting will produce, for any positive integer k, monic
polynomials uk(x) and vk(x) in Z[x] satisfying

uk(x) ⌘ u(x) (mod p), vk(x) ⌘ v(x) (mod p),

and
f(x) ⌘ uk(x)vk(x) (mod p

k).

Hensel Lifting

The method takes a factorization of f(x) modulo a prime p

and produces a factorization of f(x) modulo p
k for an arbi-

trary positive integer k.

f(x) ⌘ u(x)v(x) (mod p)

We only consider f(x) monic and u(x) and v(x) relatively
prime in Fp[x]. We can then take u(x) and v(x) also to be
monic.

Hensel Lifting will produce, for any positive integer k, monic
polynomials uk(x) and vk(x) in Z[x] satisfying

uk(x) ⌘ u(x) (mod p), vk(x) ⌘ v(x) (mod p),

and
f(x) ⌘ uk(x)vk(x) (mod p

k).

Notation. If u(x) and v(x) are in Z[x] or Fp[x], then

gcd p

�
u(x), v(x)

�

denotes the greatest common divisor of u(x) and v(x) when
computed over the field Fp.

Definition. The greatest common divisor of two polynomials
g(x) and h(x) in Fp[x], with at least one of g(x) or h(x) non-
zero, is the monic polynomial in Fp[x] of largest degree which
divides both g(x) and h(x) and is denoted by gcd(g(x), h(x)).

Theorem. Let f(x) be a monic polynomial in Z[x]. Suppose
f(x) is squarefree in Fp[x]. Let g(x) be a polynomial with
coe�cients obtained from a vector in the null space of B =
A � I as described above. Then

f(x) ⌘
p�1Y

s=0

gcd p

�
g(x) � s, f(x)

�
(mod p).

Comment: If deg g > 0, then the factorization is non-trivial.

Do MAPLE examples.



An Inequality of Landau

Definitions and Notations. For

f(x) =
nX

j=0

ajx
j = an

nY

j=1

(x � ↵j),

with an 6= 0, we set

kfk =

✓ nX

j=0

a2
j

◆1/2

and M(f) = |an|
nY

j=1

max{1, |↵j|},

the latter being the Mahler measure of the polynomial f(x).
We also define the reciprocal of f(x) as

ef(x) = xdeg ff(1/x).

Useful Related Items:

• If g(x) and h(x) are in C[x], then M(gh) = M(g)M(h).

• If g(x) is in Z[x], then M(g) � 1.

• The reciprocal of f is f in reverse; f̃(x) =
nX

j=0

an�jx
j.

• The coe�cient of xn in f(x)f̃(x) is kfk.
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