Homework: (due November 9 by class time)
Page 20, the one Homework problem there Page 22, Problem (1) and (2)

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Notation. We set $n=\operatorname{deg} f(x)$. We use \mathbb{F}_{p} to denote the field of arithmetic $\bmod p$. For $w(x) \in \mathbb{Z}[x]$, define

$$
w(x) \operatorname{modd}(p, f(x))
$$

as the unique $g(x) \in \mathbb{Z}[x]$ satisfying $\operatorname{deg} g \leq n-1$, with each coefficient of $g(x)$ in the set $\{0,1, \ldots, p-1\}$ and $g(x) \equiv$ $w(x)(\bmod p, f(x))$. We can also view $w(x) \operatorname{modd}(p, f(x))$ as being in $\mathbb{F}_{p}[x]$.

Let A be the matrix with j th column corresponding to the coefficients of

$$
x^{(j-1) p} \operatorname{modd}(p, f(x)) .
$$

Specifically, write

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))=\sum_{i=1}^{n} a_{i j} x^{i-1} \quad \text { for } 1 \leq j \leq n
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.

- The vector $\langle 1,0,0, \ldots, 0\rangle$ will be an eigenvector for A associated with the eigenvalue 1.
- The set of all such vectors is the null space of $B=A-I$.
- This null space is spanned by $k=n-\operatorname{rank}(B)$ linearly independent vectors which can be determined by performing row operations on B.

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

Berlekamp's Method

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Suppose $\vec{v}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Comment: If $\operatorname{deg} g>0$, then the factorization is non-trivial.
Do MAPLE examples.

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
\begin{gathered}
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p) \\
g(x)^{p}-g(x) \equiv \prod_{s=0}^{p-1}(g(x)-s) \quad(\bmod p) \\
g(x)^{p} \equiv g\left(x^{p}\right) \quad(\bmod p) \\
\prod_{s=0}^{p-1}(g(x)-s) \equiv 0 \quad(\bmod p, f(x))
\end{gathered}
$$

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
\begin{gathered}
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p) \\
g(x)^{p}-g(x) \equiv \prod_{s=0}^{p-1}(g(x)-s) \quad(\bmod p) \\
g(x)^{p} \equiv g\left(x^{p}\right) \quad(\bmod p) \\
\prod_{s=0}^{p-1}(g(x)-s) \equiv 0 \quad(\bmod p, f(x)) \\
\prod_{s=0}^{p-1}(g(x)-s) \equiv f(x) u(x) \quad(\bmod p)
\end{gathered}
$$

Etc.

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Comments:

- If $g(x)$ isn't constant, then $1 \leq \operatorname{deg}(g(x)-s)<\operatorname{deg} f(x)$ for each s, so we get a non-trivial factorization of $f(x)$ in $\mathbb{F}_{p}[x]$.
- The above will NOT necessarily completely factor $f(x)$ modulo p.

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Comments:

- One can completely factor $f(x)$ by taking the product of the greatest common divisors of each factor of $f(x)$ obtained above with $h(x)-s$ (with $0 \leq s \leq p-1$) where $h(x)$ is obtained from another of the k vectors spanning the null space of B. This will obtain a new non-trivial factor of $f(x)$ in $\mathbb{F}_{p}[x]$. Continuing to use all k vectors will produce a complete factorization of $f(x)$ in $\mathbb{F}_{p}[x]$.

Hensel Lifting

The method takes a factorization of $f(x)$ modulo a prime p and produces a factorization of $f(x)$ modulo p^{k} for an arbitrary positive integer k.

$$
f(x) \equiv u(x) v(x) \quad(\bmod p)
$$

We only consider $f(x)$ monic and $u(x)$ and $v(x)$ relatively prime in $\mathbb{F}_{p}[x]$.

Hensel Lifting

The method takes a factorization of $f(x)$ modulo a prime p and produces a factorization of $f(x)$ modulo p^{k} for an arbitrary positive integer k.

$$
f(x) \equiv u(x) v(x) \quad(\bmod p)
$$

We only consider $f(x)$ monic and $u(x)$ and $v(x)$ relatively prime $\operatorname{deg} u_{k}(x)=\operatorname{deg} u(x), \operatorname{deg} v_{k}(x)=\operatorname{deg} v(x)$ monic

Hensel Lifting will produce, for any positive integer k, monic polynomials $u_{k}(x)$ and $v_{k}(x)$ in $\mathbb{Z}[x]$ satisfying

$$
u_{k}(x) \equiv u(x) \quad(\bmod p), \quad v_{k}(x) \equiv v(x) \quad(\bmod p)
$$

and

$$
f(x) \equiv u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k}\right)
$$

Hensel Lifting will produce, for any positive integer k, monic polynomials $u_{k}(x)$ and $v_{k}(x)$ in $\mathbb{Z}[x]$ satisfying

$$
u_{k}(x) \equiv u(x) \quad(\bmod p), \quad v_{k}(x) \equiv v(x) \quad(\bmod p)
$$

and

$$
f(x) \equiv u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k}\right)
$$

We start with $u_{1}(x)=u(x)$ and $v_{1}(x)=v(x)$.

Hensel Lifting will produce, for any positive integer k, monic polynomials $u_{k}(x)$ and $v_{k}(x)$ in $\mathbb{Z}[x]$ satisfying

$$
u_{k}(x) \equiv u(x) \quad(\bmod p), \quad v_{k}(x) \equiv v(x) \quad(\bmod p)
$$

and

$$
f(x) \equiv u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k}\right)
$$

We start with $u_{1}(x)=u(x)$ and $v_{1}(x)=v(x)$. Now, given $u_{k}(x)$ and $v_{k}(x)$, we explain how to obtain $u_{k+1}(x)$ and $v_{k+1}(x)$. Compute

$$
w_{k}(x) \equiv \frac{1}{p^{k}}\left(f(x)-u_{k}(x) v_{k}(x)\right) \quad(\bmod p)
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

We start with $u_{1}(x)=u(x)$ and $v_{1}(x)=v(x)$. Now, given $u_{k}(x)$ and $v_{k}(x)$, we explain how to obtain $u_{k+1}(x)$ and $v_{k+1}(x)$. Compute

$$
w_{k}(x) \equiv \frac{1}{p^{k}}\left(f(x)-u_{k}(x) v_{k}(x)\right) \quad(\bmod p)
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $u(x)$ and $\boldsymbol{v}(\boldsymbol{x})$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $\boldsymbol{u}(\boldsymbol{x})$ and $\boldsymbol{v}(\boldsymbol{x})$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $a(x)$ and $b(x)$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $u(x)$ and $v(x)$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $a(x)$ and $b(x)$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Then $u_{k+1}(x)$ and $v_{k+1}(x)$ are monic and (modulo p^{k+1})

$$
u_{k+1}(x) v_{k+1}(x) \equiv\left(u_{k}(x)+b(x) p^{k}\right)\left(v_{k}(x)+a(x) p^{k}\right)
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $u(x)$ and $v(x)$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Then $u_{k+1}(x)$ and $v_{k+1}(x)$ are monic and (modulo p^{k+1})

$$
\begin{aligned}
u_{k+1}(x) v_{k+1}(x) & \equiv\left(u_{k}(x)+b(x) p^{k}\right)\left(v_{k}(x)+a(x) p^{k}\right) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k}(a(x) u(x)+b(x) v(x))
\end{aligned}
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $u(x)$ and $v(x)$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Then $u_{k+1}(x)$ and $v_{k+1}(x)$ are monic and (modulo p^{k+1})

$$
\begin{aligned}
u_{k+1}(x) v_{k+1}(x) & \equiv\left(u_{k}(x)+b(x) p^{k}\right)\left(v_{k}(x)+a(x) p^{k}\right) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k}(a(x) u(x)+b(x) v(x)) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k} w_{k}(x)
\end{aligned}
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $\boldsymbol{u}(\boldsymbol{x})$ and $\boldsymbol{v}(\boldsymbol{x})$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Then $u_{k+1}(x)$ and $v_{k+1}(x)$ are monic and (modulo p^{k+1})

$$
\begin{aligned}
u_{k+1}(x) v_{k+1}(x) & \equiv\left(u_{k}(x)+b(x) p^{k}\right)\left(v_{k}(x)+a(x) p^{k}\right) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k}(a(x) u(x)+b(x) v(x)) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k} w_{k}(x) \\
& \equiv u_{k}(x) v_{k}(x)+\left(f(x)-u_{k}(x) v_{k}(x)\right)
\end{aligned}
$$

Observe that $\operatorname{deg} w_{k}(x)<\operatorname{deg} f(x)$ and

$$
p^{k} w_{k}(x) \equiv f(x)-u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k+1}\right)
$$

Since $\boldsymbol{u}(\boldsymbol{x})$ and $\boldsymbol{v}(\boldsymbol{x})$ are relatively prime in $\mathbb{F}_{p}[x]$, we can find $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$ in $\mathbb{F}_{p}[x]$ (depending on k) such that

$$
a(x) u(x)+b(x) v(x) \equiv w_{k}(x) \quad(\bmod p)
$$

One can take $\operatorname{deg} a(x)<\operatorname{deg} v(x)$ and $\operatorname{deg} b(x)<\operatorname{deg} u(x)$. Set

$$
u_{k+1}(x)=u_{k}(x)+b(x) p^{k} \quad \text { and } \quad v_{k+1}(x)=v_{k}(x)+a(x) p^{k}
$$

Then $u_{k+1}(x)$ and $v_{k+1}(x)$ are monic and

$$
\begin{aligned}
u_{k+1}(x) v_{k+1}(x) & \equiv\left(u_{k}(x)+b(x) p^{k}\right)\left(v_{k}(x)+a(x) p^{k}\right) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k}(a(x) u(x)+b(x) v(x)) \\
& \equiv u_{k}(x) v_{k}(x)+p^{k} w_{k}(x) \\
& \equiv u_{k}(x) v_{k}(x)+\left(f(x)-u_{k}(x) v_{k}(x)\right) \\
& \equiv f(x) \quad\left(\bmod p^{k+1}\right)
\end{aligned}
$$

Hensel Lifting

Hensel Lifting will produce, for any positive integer \boldsymbol{k}, monic polynomials $\boldsymbol{u}_{k}(x)$ and $v_{k}(x)$ in $\mathbb{Z}[x]$ satisfying

$$
u_{k}(x) \equiv u(x) \quad(\bmod p), \quad v_{k}(x) \equiv v(x) \quad(\bmod p)
$$

and

$$
f(x) \equiv u_{k}(x) v_{k}(x) \quad\left(\bmod p^{k}\right)
$$

Comment: A complete factorization of $f(x)$ modulo p^{k} can be obtained from a complete factorization of $f(x)$ modulo p by modifying this idea.

Do MAPLE examples.

An Inequality of Landau

Definitions and Notations. For

$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j}=a_{n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)
$$

with $a_{n} \neq 0$, we set

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad \text { and } \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

the latter being the Mahler measure of the polynomial $f(x)$.

An Inequality of Landau

Definitions and Notations. For

$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j}=a_{n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)
$$

with $a_{n} \neq 0$, we set

$$
\|f\|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2} \quad \text { and } \quad M(f)=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

the latter being the Mahler measure of the polynomial $f(x)$. We also define the reciprocal of $f(x)$ as

$$
\widetilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)
$$

