Homework: (due November 9 by class time)

Page 20, the one Homework problem there
Page 22, Problem (1) and (2)



Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p. For simplicity, we suppose f(x) is
monic and squarefree in modulo p.

Notation. We set n = deg f(x). We use F, to denote the
field of arithmetic mod p. For w(x) € Z[x]|, define

w(x) modd (p, f(x))
as the unique g(x) € Z|x| satisfying degg < n — 1, with

each coefficient of g(«) in the set {0,1,...,p—1} and g(x) =
w(x) (mod p, f(x)). We can also view w(x) modd (p, f(x))

as being in F,[x]|.



Let A be the matrix with 7th column corresponding to the
coefficients of

2V~Y? modd (p, f(x))-
Specifically, write

£ ~VP modd (p, f(x)) = Zaija:i_l for 1 < 3 < n.
i=1

Then we set A = (a;;)

nxn'

e The vector (1,0,0,...,0) will be an eigenvector for A
associated with the eigenvalue 1.

e The set of all such vectors is the null space of B = A—1.

e This null space is spanned by kK = n — rank(B) linearly
independent vectors which can be determined by per-
forming row operations on B.



Suppose U = (bl,bz, .y by) is in the null space, and set
g(x) = 5, bjz’™ Observe that

g(z”) = g(x) (mod p, f(x)).

Moreover, the g(x) with this property are precisely the g(x)

with coeflficients obtained from the components of vectors v
in the null space of B.

Berlekamp’s Method

Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) is squarefree in F,lx]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ]| gedp(g(x) — s, f(x)) (mod p).



Suppose U = (bl,bz, .y by) is in the null space, and set
g(x) = 5, bjz’™ Observe that

g(z”) = g(x) (mod p, f(x)).

Moreover, the g(x) with this property are precisely the g(x)
with coeflficients obtained from the components of vectors v
in the null space of B.

Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) s squarefree in F,[x]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ]| gedp(g(x) — s, f(xz)) (mod p).

Comment: If degg > 0, then the factorization is non-trivial.

Do MAPLE examples.



g(z”) = g(x) (mod p, f(x))

Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) is squarefree in F,[x]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ][ ged,p(g(z) — s, f(x)) (mod p).

g(z)? —g(z) = || (9(x) —s) (mod p)

g(x)? = g(«?) (mod p)

|[ (9(x) —s) =0 (mod p, f(z))



Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) is squarefree in F,lx]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ]] gedp(g(x) — s, f(xz)) (mod p).

g(x)" — g(@) = [] (9(z) —5) (mod p)
9(2)” = g(a?) (mod p)

][] (9(x) —s) =0 (mod p, f(z))

|| (9(®) — s) = f(z)u(z) (mod p)

Etc.



Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) is squarefree in F,lx]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ]] gedp(g(x) — s, f(xz)) (mod p).

Comments:

o If g(x) isn’t constant, then 1 < deg(g(x)—s) < deg f(x)
for each s, so we get a non-trivial factorization of f(x)
in F,[x].

e The above will NOT necessarily completely factor f(x)
modulo p.



Theorem. Let f(x) be a monic polynomzial in Z|x|. Suppose
f(x) is squarefree in F,lx]. Let g(x) be a polynomial with
coefficients obtained from a vector in the null space of B =
A — I as described above. Then

f(x) = ]] gedp(g(x) — s, f(xz)) (mod p).

Comments:

e One can completely factor f(x) by taking the product
of the greatest common divisors of each factor of f(x)
obtained above with h(x) —s (with 0 < s < p—1) where
h(x) is obtained from another of the k vectors spanning
the null space of B. This will obtain a new non-trivial
factor of f(x) in F,[xz]. Continuing to use all k vectors
will produce a complete factorization of f(x) in F,[x]|.



Hensel Lifting

The method takes a factorization of f(x) modulo a prime p
and produces a factorization of f(x) modulo p* for an arbi-

trary positive integer k.
f(x) = u(z)v(xz) (mod p)

We only consider f(x) monic and u(x) and v(x) relatively
prime in F,[x].



Hensel Lifting

The method takes a factorization of f(x) modulo a prime p
and produces a factorization of f(x) modulo p* for an arbi-
trary positive integer k.

f(z) = u(z)v(r) (mod p)

We only consider f(x) monic and u(x) and v(x) relatively
prime

) deg ui(x) = degu(x), degvi(x) = degv(x) to be
monic

Hensel Lifting will produce, for any positive integer k, monic
polynomials ug(x) and vi(x) in Z|x] satisfying

ur(x) = u(x) (mod p), vi(x)=v(x) (mod p),

and

f(z) = u(z)vr(xz) (mod p*).



Hensel Lifting will produce, for any positive integer k, monic
polynomials ug(x) and vi(x) in Z|x] satisfying

ur(x) = u(x) (mod p), wvr(x)=wv(x) (mod p),

and

f(x) = up(x)ve(x) (mod pk).

We start with u;(x) = u(x) and v,(x) = v(x).



Hensel Lifting will produce, for any positive integer k, monic
polynomials ug(x) and vi(x) in Z|x] satisfying

ur(x) = u(x) (mod p), wvr(x)=wv(x) (mod p),

and
f(x) = u(z)vr(xz) (mod p*).

We start with u(x) = u(x) and v;(x) = v(x). Now, given
ug(x) and vi(x), we explain how to obtain ug,1(x) and vi 1 (x).
Compute

wi(@) = = () —w(@u(e))  (mod p)
Observe that deg wy(x) < deg f(x) and

pPwi(x) = f(x) — ur(x)vp(x) (mod p*).



We start with u,(x) = u(x) and v;(x) = v(x). Now, given
ug(x) and vi(x), we explain how to obtain ug,1(x) and vi 1 (x).
Compute

wi(@) = = (F(z) — w(@)un(a)  (mod p).
Observe that deg wi(x) < deg f(x) and
pwi(x) = f(x) — up(z)vr(xz) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x] (depending on k) such that

a(x)u(x) + b(x)v(x) = wr(x) (mod p).

One can take dega(x) < degwv(x) and degb(x) < deg u(x).
Set

upi1(x) = up(x) + b(x)p® and viyi(x) = vi(x) + a(x)p”



Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that

a(x)u(x) + b(x)v(x) = wr(x) (mod p).
One can take dega(x) < degwv(x) and degb(x) < degu(x).
Set
upr1(x) = up(x) + b(x)p® and v (x) = vi(x) + a(x)p”



Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that
a(x)u(x) + b(x)v(x) = wr(x) (mod p).

One can take dega(x) < degwv(x) and degb(x) < degu(x).
Set

upi1(x) = up(x) + b(x)p® and viyi(x) = vi(x) + a(x)p”

Then ugi1(x) and viy1(x) are monic and (modulo p**1)

Up1(2) vk (x) = (u(x) + b(x)p*) (vi(z) + a(z)p*)



Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that
a(x)u(x) + b(x)v(x) = wr(x) (mod p).

One can take dega(x) < degwv(x) and degb(x) < degu(x).
Set

upr1(x) = up(xz) + b(x)p® and v (x) = vi(x) + a(x)p”
Then ugi1(x) and viy1(x) are monic and (modulo p**1)
upet1(2) v (2) = (ur(z) + b(2)p®) (vi(z) + a(z)p”)
= up(x)ve(x) + p” (a(z)u(x) + b(z)v(x))



Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that
a(x)u(x) + b(x)v(x) = wr(x) (mod p).

One can take dega(x) < degwv(x) and degb(x) < degu(x).
Set

upr1(x) = up(xz) + b(x)p® and v (x) = vi(x) + a(x)p”
Then ugi1(x) and viy1(x) are monic and (modulo p**1)
upet1(2) v (2) = (ur(z) + b(2)p®) (vi(z) + a(z)p”)
= uk(z)v(z) + p*(a(z)u(z) + b(z)v(z))

= ug(x)vr(x) + pkwk(w)




Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that

a(x)u(x) + b(x)v(x) = wr(x) (mod p).
One can take dega(x) < degv(x) and degb(x) < degu(x).
Set

upr1(x) = up(xz) + b(x)p® and v (x) = vi(x) + a(x)p”
Then ugy1(x) and vi41(x) are monic and (modulo p*t1)

upt1(2) Vi1 (z) = (ur(z) + b(z)p®) (vi(z) + a(z)p”)
ug(z)vi(z) + p*(a(z)u(z) + b(z)v(z))
ug(z)vi(x) + p*wi(x)

ug(x)vp(z) + (f(z) — up(x)ve(z))




Observe that deg wi(x) < deg f(x) and

pwi(x) = f(x) — ur(z)vr(x) (mod p*).

Since u(x) and v(x) are relatively prime in F,[x|, we can find
a(x) and b(x) in F,[x| (depending on k) such that

a(x)u(x) + b(x)v(x) = wr(x) (mod p).
One can take dega(x) < degv(x) and degb(x) < degu(x).
Set

upi1(®) = up(z) + b(x)p" and  via(z) = vi(z) + a(z)p”.
Then ug,q1(x) and vg.1(x) are monic and

Up+1(2)Vik+1(2) = (ur(z) + b(2)p") (vi(z) + a(z)p)
ur(z)vr(z) + p*(a(z)u(z) + b(z)v(z))
ug(z)vi(x) + p*wi(x)
ur(z)vr(z) + (f(z) — ur(z)ve(z))
= f(z) (mod p"“™).




Hensel Lifting

Hensel Lifting will produce, for any positive integer k, monic
polynomials ug(x) and vi(x) in Z|x] satisfying

up(x) = u(x) (mod p), wvi(x)=v(x) (mod p),

and
f(x) = up(x)vg(x) (mod pk).

Comment: A complete factorization of f(x) modulo p* can
be obtained from a complete factorization of f(x) modulo p
by modifying this idea.

Do MAPLE examples.



An Inequality of Landau

Definitions and Notations. For
fx) =) aj’ =an|[(x— a),
§=0 j=1
with a,, # 0, we set

n 1/2 n
1£1l = (Za?) and  M(f) = |an| [ max{1, ]y},
j=1

7=0

the latter being the Mahler measure of the polynomial f(x).



An Inequality of Landau

Definitions and Notations. For
fx) =) aj’ =an|[(x— a),
§=0 j=1
with a,, # 0, we set

n 1/2 n
1£1l = (Za?) and  M(f) = |an| [ max{1, ]y},
j=1

7=0

the latter being the Mahler measure of the polynomial f(x).
We also define the reciprocal of f(x) as

f(z) = a7l f(1/x).



