Factoring Polynomials

Notation. Let p be a prime, and let $f(x) \in \mathbb{Z}[x]$ with $f(x) \not \equiv 0$ $(\bmod p)$. We say

$$
u(x) \equiv v(x)(\bmod p, f(x))
$$

where $u(x)$ and $v(x)$ are in $\mathbb{Z}[x]$, if there exist $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$ such that $u(x)=v(x)+f(x) g(x)+p h(x)$.

Properties:

- If
$u(x) \equiv v(x)(\bmod p, f(x))$ and $v(x) \equiv w(x)(\bmod p, f(x))$, then $u(x) \equiv w(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) \pm u_{2}(x) \equiv v_{1}(x) \pm v_{2}(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) u_{2}(x) \equiv v_{1}(x) v_{2}(x)(\bmod p, f(x))$.
- If $u(x) \equiv v(x)(\bmod p)$ or $u(x) \equiv v(x)(\bmod f(x))$, then $u(x) \equiv v(x)(\bmod p, f(x))$.
- We have $u(x) \equiv 0(\bmod p, f(x))$ if and only if $f(x)$ is a factor of $u(x)$ modulo p.
- If the leading coefficient of $f(x) \in \mathbb{Z}[x]$ is $a \bmod p$ (i.e., a is the coefficient of the highest degree term in $f(x)$ which is non-zero modulo p), then $f(x) \equiv \operatorname{ag}(x)$ $(\bmod p)$ for some monic $g(x) \in \mathbb{Z}[x]$. Then
$u(x) \equiv v(x)(\bmod p, f(x)) \Longleftrightarrow u(x) \equiv v(x)(\bmod p, g(x))$.
Suppose now that $f(x)$ is monic.
- If $u(x) \equiv v(x)(\bmod p, f(x))$ where $u(x)$ and $v(x)$ are in $\mathbb{Z}[x]$, then there exist unique polynomials $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$ with $h(x) \equiv 0$ or $\operatorname{deg} h<\operatorname{deg} f$ such that $u(x)-v(x)=f(x) g(x)+p h(x)$.

$$
\begin{gathered}
u(x)-v(x)=f(x) g_{0}(x)+p h_{0}(x) \\
h_{0}(x)=f(x) q(x)+r(x) \\
g(x)=g_{0}(x)+p q(x), \quad h(x)=r(x)
\end{gathered}
$$

- If $u(x)$ in $\mathbb{Z}[x$ $\boldsymbol{h}(\boldsymbol{x})$ is
(i) closed under sums and products
(ii) sums and products commute
- If deg classes polync $\{0,1$.
(iii) associative laws hold
(iv) identity elements exist
(v) inverses exist $\forall a \in F$ with $a \neq 0$ (vi) the distributive law holds
- Let $a(x) \in \mathbb{Z}[x]$ with $a(x) \not \equiv 0(\bmod p, f(x))$. Then $\exists b(x) \in \mathbb{Z}[x]$ such that $a(x) b(x) \equiv 1(\bmod p, f(x))$.
- Arithmetic mod $p, f(x)$ forms a field with p^{k} elements where $k=\operatorname{deg} f$.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Notation. We set $n=\operatorname{deg} f(x)$.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Notation. We set $n=\operatorname{deg} f(x)$. We use \mathbb{F}_{p} to denote the field of arithmetic $\bmod p$.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Notation. We set $n=\operatorname{deg} f(x)$. We use \mathbb{F}_{p} to denote the field of arithmetic $\bmod p$. For $w(x) \in \mathbb{Z}[x]$, define

$$
w(x) \operatorname{modd}(p, f(x))
$$

as the unique $g(x) \in \mathbb{Z}[x]$ satisfying $\operatorname{deg} g \leq n-1$, with each coefficient of $g(x)$ in the set $\{0,1, \ldots, p-1\}$ and $g(x) \equiv$ $w(x)(\bmod p, f(x))$.

Berlekamp's Method

This algorithm determines the factorization of a polynomial $f(x)$ modulo a prime p. For simplicity, we suppose $f(x)$ is monic and squarefree in modulo p.

Notation. We set $n=\operatorname{deg} f(x)$. We use \mathbb{F}_{p} to denote the field of arithmetic $\bmod p$. For $w(x) \in \mathbb{Z}[x]$, define

$$
w(x) \operatorname{modd}(p, f(x))
$$

as the unique $g(x) \in \mathbb{Z}[x]$ satisfying $\operatorname{deg} g \leq n-1$, with each coefficient of $g(x)$ in the set $\{0,1, \ldots, p-1\}$ and $g(x) \equiv$ $w(x)(\bmod p, f(x))$. We can also view $w(x) \operatorname{modd}(p, f(x))$ as being in $\mathbb{F}_{p}[x]$.

Berlekamp's Method

Let A be the matrix with j th column corresponding to the coefficients of

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))
$$

Specifically, write

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))=\sum_{i=1}^{n} a_{i j} x^{i-1} \quad \text { for } 1 \leq j \leq n
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.

Observations

- The vector $\langle 1,0,0, \ldots, 0\rangle$ will be an eigenvector for A associated with the eigenvalue 1.

Let A be the matrix with j th column corresponding to the coefficients of

$$
x^{(j-1) p} \operatorname{modd}(p, f(x)) .
$$

Specifically, write

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))=\sum_{i=1}^{n} a_{i j} x^{i-1} \quad \text { for } 1 \leq j \leq n
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.
Observations

- The vector $\langle 1,0,0, \ldots, 0\rangle$ will be an eigenvector for A associated with the eigenvalue 1.
- The set of all such vectors is the null space of $B=A-I$.
- This null space is spanned by $k=n-\operatorname{rank}(B)$ linearly independent vectors which can be determined by performing row operations on B.

Example. $f(x)=x^{4}+x^{3}+x+1$ and $p=2$

Let A be the matrix with j th column corresponding to the coefficients of

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))
$$

Specifically, write

$$
x^{(j-1) p} \operatorname{modd}(p, f(x))=\sum_{i=1}^{n} a_{i j} x^{i-1} \quad \text { for } 1 \leq j \leq n
$$

Thnancont 1 \quad| $x^{0} \operatorname{modd}(2, f(x))$ | $=1$ |
| ---: | :--- |
| $x^{2} \operatorname{modd}(2, f(x))$ | $=x^{2}$ |
| $x^{4} \operatorname{modd}(2, f(x))$ | $=x^{3}+x+1$ |
| $x^{6} \operatorname{modd}(2, f(x))$ | $=x^{5}+x^{3}+x^{2} \operatorname{modd}(2, f(x))$ |
| | $=x^{4}+x^{3}+x \operatorname{modd}(2, f(x))=1$ |

forming row operations on B.

Example. $f(x)=x^{4}+x^{3}+x+1$ and $p=2$

$$
\begin{aligned}
x^{0} \operatorname{modd}(2, f(x)) & =1 \\
x^{2} \operatorname{modd}(2, f(x)) & =x^{2} \\
x^{4} \operatorname{modd}(2, f(x)) & =x^{3}+x+1 \\
x^{6} \operatorname{modd}(2, f(x)) & =x^{5}+x^{3}+x^{2} \operatorname{modd}(2, f(x)) \\
& =x^{4}+x^{3}+x \operatorname{modd}(2, f(x))=1
\end{aligned}
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.
$A=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
.. , 0\rangle will be an eigenvector for A eigenvalue 1.
ectors is the null space of $B=A-I$.
anned by $k=n-\operatorname{rank}(B)$ linearly which can be determined by per-
forming row operations on B.

Example. $f(x)=x^{4}+x^{3}+x+1$ and $p=2$

$$
\begin{aligned}
x^{0} \operatorname{modd}(2, f(x)) & =1 \\
x^{2} \operatorname{modd}(2, f(x)) & =x^{2} \\
x^{4} \operatorname{modd}(2, f(x)) & =x^{3}+x+1 \\
x^{6} \operatorname{modd}(2, f(x)) & =x^{5}+x^{3}+x^{2} \operatorname{modd}(2, f(x)) \\
& =x^{4}+x^{3}+x \operatorname{modd}(2, f(x))=1
\end{aligned}
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad B=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

genvector for A
ce of $B=A-I$.
ank (B) linearly ermined by per-

Example. $f(x)=x^{4}+x^{3}+x+1$ and $p=2$

$$
\begin{aligned}
x^{0} \operatorname{modd}(2, f(x)) & =1 \\
x^{2} \operatorname{modd}(2, f(x)) & =x^{2} \\
x^{4} \operatorname{modd}(2, f(x)) & =x^{3}+x+1 \\
x^{6} \operatorname{modd}(2, f(x)) & =x^{5}+x^{3}+x^{2} \operatorname{modd}(2, f(x)) \\
& =x^{4}+x^{3}+x \operatorname{modd}(2, f(x))=1
\end{aligned}
$$

Then we set $A=\left(a_{i j}\right)_{n \times n}$.

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
B=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example. $f(x)=x^{4}+x^{3}+x+1$ and $p=2$

$$
\begin{aligned}
x^{0} \operatorname{modd}(2, f(x)) & =1 \\
x^{2} \operatorname{modd}(2, f(x)) & =x^{2} \\
x^{4} \operatorname{modd}(2, f(x)) & =x^{3}+x+1 \\
x^{6} \operatorname{modd}(2, f(x)) & =x^{5}+x^{3}+x^{2} \operatorname{modd}(2, f(x)) \\
& =x^{4}+x^{3}+x \operatorname{modd}(2, f(x))=1
\end{aligned}
$$

$A=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$

$$
B=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

 Null space is spanned by $\langle 1,0,0,0\rangle$ and $\langle 0,1,1,1\rangle$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $\boldsymbol{g}(\boldsymbol{x})=\sum_{j=1}^{n} \boldsymbol{b}_{j} x^{j-1}$.

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

$$
g\left(x^{p}\right) \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

$$
g\left(x^{p}\right) \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p} \equiv \sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} a_{i j} x^{i-1}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

$$
\begin{aligned}
g\left(x^{p}\right) & \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p} \equiv \sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} a_{i j} x^{i-1} \\
& \equiv \sum_{i=1}^{n}\left(\sum_{j=1}^{n} b_{j} a_{i j}\right) x^{i-1}
\end{aligned}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

$$
\begin{aligned}
g\left(x^{p}\right) & \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p} \equiv \sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} a_{i j} x^{i-1} \\
& \equiv \sum_{i=1}^{n}\left(\sum_{j=1}^{n} b_{j} a_{i j}\right) x^{i-1} \equiv \sum_{i=1}^{n} b_{i} x^{i-1}
\end{aligned}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

$$
\begin{aligned}
g\left(x^{p}\right) & \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p} \equiv \sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} a_{i j} x^{i-1} \\
& \equiv \sum_{i=1}^{n}\left(\sum_{j=1}^{n} b_{j} a_{i j}\right) x^{i-1} \equiv \sum_{i=1}^{n} b_{i} x^{i-1} \equiv g(x)
\end{aligned}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

$$
\begin{aligned}
g\left(x^{p}\right) & \equiv \sum_{j=1}^{n} b_{j} x^{(j-1) p} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x^{i-1} \\
& \left.\equiv \sum_{i=1}^{n}\left(\sum_{j=1}^{n} b_{j} a_{i j}\right) x^{i-1} \equiv \sum_{i=1}^{n} b_{i} x^{i-1}\right): g(x)
\end{aligned}
$$

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

Notation. If $u(x)$ and $v(x)$ are in $\mathbb{Z}[x]$ or $\mathbb{F}_{p}[x]$, then

$$
\operatorname{gcd}_{p}(u(x), v(x))
$$

denotes the greatest common divisor of $u(x)$ and $v(x)$ when computed over the field \mathbb{F}_{p}.

Definition. The greatest common divisor of two polynomials $g(x)$ and $h(x)$ in $\mathbb{F}_{p}[x]$, with at least one of $g(x)$ or $h(x)$ nonzero, is the monic polynomial in $\mathbb{F}_{p}[x]$ of largest degree which divides both $g(x)$ and $h(x)$ and is denoted by $\operatorname{gcd}(g(x), h(x))$.

Suppose $\overrightarrow{\boldsymbol{v}}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

Berlekamp's Method

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Suppose $\vec{v}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ is in the null space, and set $g(x)=\sum_{j=1}^{n} b_{j} x^{j-1}$. Observe that

$$
g\left(x^{p}\right) \equiv g(x) \quad(\bmod p, f(x))
$$

Moreover, the $g(x)$ with this property are precisely the $g(x)$ with coefficients obtained from the components of vectors \vec{v} in the null space of B.

Theorem. Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. Suppose $f(x)$ is squarefree in $\mathbb{F}_{p}[x]$. Let $g(x)$ be a polynomial with coefficients obtained from a vector in the null space of $B=$ A-I as described above. Then

$$
f(x) \equiv \prod_{s=0}^{p-1} \operatorname{gcd}_{p}(g(x)-s, f(x)) \quad(\bmod p)
$$

Comment: If $\operatorname{deg} g>0$, then the factorization is non-trivial.
Do MAPLE examples.

