
Factoring Polynomials
(following Polynomial Notes on web)

Notation. Let p be a prime, and let f(x) 2 Z[x] with f(x) 6⌘ 0
(mod p). We say

u(x) ⌘ v(x) (mod p, f(x))

where u(x) and v(x) are in Z[x], if there exist g(x) and h(x)
in Z[x] such that u(x) = v(x) + f(x)g(x) + p h(x).

Properties:

• If

u(x) ⌘ v(x) (mod p, f(x)) and v(x) ⌘ w(x) (mod p, f(x)),

then u(x) ⌘ w(x) (mod p, f(x)).

• If

u1(x) ⌘ v1(x) (mod p, f(x)) and u2(x) ⌘ v2(x) (mod p, f(x)),

then

u1(x) ± u2(x) ⌘ v1(x) ± v2(x) (mod p, f(x)).
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then u(x) ⌘ v(x) (mod p, f(x)).
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• If the leading coe�cient of f(x) 2 Z[x] is a mod p

(i.e., a is the coe�cient of the highest degree term in
f(x) which is non-zero modulo p), then f(x) ⌘ a g(x)
(mod p) for some monic g(x) 2 Z[x]. Then

u(x) ⌘ v(x) (mod p, f(x)) () u(x) ⌘ v(x) (mod p, g(x)).
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Suppose now that f(x) is monic.

• If u(x) ⌘ v(x) (mod p, f(x)) where u(x) and v(x) are
in Z[x], then there exist unique polynomials g(x) and
h(x) in Z[x] with h(x) ⌘ 0 or deg h < deg f such that
u(x) � v(x) = f(x)g(x) + p h(x).

u(x) � v(x) = f(x)g0(x) + ph0(x)

h0(x) = f(x)q(x) + r(x)

g(x) = g0(x) + pq(x), h(x) = r(x)
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• If deg f = k, then there are precisely p
k distinct residue

classes (mod p, f(x)) with representatives given by the
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{0, 1, . . . , p � 1}.
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Suppose also that f(x) is irreducible modulo p.

• Let a(x) 2 Z[x] with a(x) 6⌘ 0 (mod p, f(x)). Then
9 b(x) 2 Z[x] such that a(x)b(x) ⌘ 1 (mod p, f(x)).

• Arithmetic mod p, f(x) forms a field with p
k elements

where k = deg f .
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What Makes F a Field?

(i) closed under sums and products

(ii) sums and products commute

(iii) associative laws hold

(iv) identity elements exist

(v) inverses exist ⇤a � F with a ⇥= 0

(vi) the distributive law holds
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Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p. For simplicity, we suppose f(x) is
monic and squarefree in modulo p.

Notation. We set n = deg f(x). We use Fp to denote the
field of arithmetic mod p. For w(x) 2 Z[x], define

w(x) modd (p, f(x))

as the unique g(x) 2 Z[x] satisfying deg g  n � 1, with
each coe�cient of g(x) in the set {0, 1, . . . , p�1} and g(x) ⌘
w(x) (mod p, f(x)). We can also view w(x) modd (p, f(x))
as being in Fp[x].

Let A be the matrix with jth column corresponding to the
coe�cients of

x
(j�1)p modd (p, f(x)).

Specifically, write

x
(j�1)p modd (p, f(x)) =

nX

i=1

aijx
i�1 for 1  j  n.

Then we set A = (aij)n⇥n
.
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Suppose ~v = hb1, b2, . . . , bni is in the null space, and set
g(x) =

P
n

j=1 bjx
j�1. Observe that

g(xp) ⌘ g(x) (mod p, f(x)).

Moreover, the g(x) with this property are precisely the g(x)
with coe�cients obtained from the components of vectors ~v

in the null space of B.
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Notation. If u(x) and v(x) are in Z[x] or Fp[x], then

gcd p

�
u(x), v(x)

�

denotes the greatest common divisor of u(x) and v(x) when
computed over the field Fp.

Definition. The greatest common divisor of two polynomials
g(x) and h(x) in Fp[x], with at least one of g(x) or h(x) non-
zero, is the monic polynomial in Fp[x] of largest degree which
divides both g(x) and h(x) and is denoted by gcd(g(x), h(x)).

Theorem. Let f(x) be a monic polynomial in Z[x]. Suppose
f(x) is squarefree in Fp[x]. Let g(x) be a polynomial with
coe�cients obtained from a vector in the null space of B =
A � I as described above. Then

f(x) ⌘
p�1Y

s=0

gcd p

�
g(x) � s, f(x)

�
(mod p).

Comment: If deg g > 0, then the factorization is non-trivial.

Do MAPLE examples.
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Berlekamp’s Method

This algorithm determines the factorization of a polynomial
f(x) modulo a prime p. For simplicity, we suppose f(x) is
monic and squarefree in modulo p.

Notation. We set n = deg f(x). We use Fp to denote the
field of arithmetic mod p. For w(x) 2 Z[x], define

w(x) modd (p, f(x))

as the unique g(x) 2 Z[x] satisfying deg g  n � 1, with
each coe�cient of g(x) in the set {0, 1, . . . , p�1} and g(x) ⌘
w(x) (mod p, f(x)). We can also view w(x) modd (p, f(x))
as being in Fp[x].

Let A be the matrix with jth column corresponding to the
coe�cients of

x
(j�1)p modd (p, f(x)).

Specifically, write

x
(j�1)p modd (p, f(x)) =

nX

i=1

aijx
i�1 for 1  j  n.

Then we set A = (aij)n⇥n
.
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