The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$.

Preliminaries: Let \boldsymbol{n} be a large positive integer, and let b be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Comment: We can use $f(x)$ above and $m=b=\left\lfloor n^{1 / d}\right\rfloor$.

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$. The mapping $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ with $\phi(g(\alpha))=g(m) \bmod n$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\boldsymbol{\alpha}]$ is.)

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$. The mapping $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ with $\phi(g(\alpha))=g(m) \bmod n$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\alpha]$ is.) The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:
(i) $\prod_{g \in S} g(m)=y^{2}$ for some $y \in \mathbb{Z}$
(ii) $\prod_{g \in S} g(\alpha)=\beta^{2}$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x=\phi(\beta)$, we deduce
$x^{2} \equiv \phi(\beta)^{2} \equiv \phi\left(\beta^{2}\right) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^{2}(\bmod n)$.
Thus, we can hope to factor n by computing $\operatorname{gcd}(x+y, n)$.

The Number Field Sieve

The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:
(i) $\prod_{g \in S} g(m)=y^{2}$ for some $y \in \mathbb{Z}$
(ii) $\prod_{g \in S} g(\alpha)=\beta^{2}$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x=\phi(\beta)$, we deduce

$$
x^{2} \equiv \phi(\beta)^{2} \equiv \phi\left(\beta^{2}\right) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^{2}(\bmod n)
$$

What do we choose for the $g(x)$?
Take $g(x)$ of the form $a-b x$ where $|a| \leq D$ and $0<b \leq D$.

What do we choose for the $g(x)$?
Take $g(x)$ of the form $a-b x$ where $|a| \leq D$ and $0<b \leq D$. We want $g(m)$ to have only small prime factors. This is done by first choosing b and then, with b fixed, letting a vary and sieving to determine the a for which $g(m)$ has only small prime factors.

$$
\begin{aligned}
& \text { (i) } \prod_{g \in S} g(m)=y^{2} \text { for some } y \in \mathbb{Z} \\
& \text { (ii) } \prod_{g \in S} g(\alpha)=\beta^{2} \text { for some } \beta \in \mathbb{Z}[\alpha] .
\end{aligned}
$$

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?

What do we choose for the $g(x)$?
Take $g(x)$ of the form $a-b x$ where $|a| \leq D$ and $0<b \leq D$. We want $g(m)$ to have only small prime factors. This is done by first choosing b and then, with b fixed, letting a vary and sieving to determine the a for which $g(m)$ has only small prime factors.

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?
Let $\alpha_{1}, \ldots, \alpha_{d}$ be the distinct roots of $f(x)$ with $\alpha=\alpha_{1}$. We consider the norm map $\mathrm{N}(g(\alpha))=g\left(\alpha_{1}\right) \cdots g\left(\alpha_{d}\right)$, where $g(x) \in \mathbb{Z}[x]$. It has the two properties:

- If $g(x)$ and $h(x)$ are in $\mathbb{Z}[x]$, then

$$
\mathrm{N}(g(\alpha) h(\alpha))=\mathrm{N}(g(\alpha)) \mathrm{N}(h(\alpha))
$$

- If $g(x) \in \mathbb{Z}[x]$, then $N(g(\alpha)) \in \mathbb{Z}$.

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?
Let $\alpha_{1}, \ldots, \alpha_{d}$ be the distinct roots of $f(x)$ with $\alpha=\alpha_{1}$. We consider the norm map $\mathrm{N}(g(\alpha))=g\left(\alpha_{1}\right) \cdots g\left(\alpha_{d}\right)$, where $g(x) \in \mathbb{Z}[x]$. It has the two properties:

- If $g(x)$ and $h(x)$ are in $\mathbb{Z}[x]$, then

$$
\mathrm{N}(g(\alpha) h(\alpha))=\mathrm{N}(g(\alpha)) \mathrm{N}(h(\alpha))
$$

- If $g(x) \in \mathbb{Z}[x]$, then $N(g(\alpha)) \in \mathbb{Z}$.

Observe that the norm of a square in $\mathbb{Z}[\boldsymbol{\alpha}]$ is a square in \mathbb{Z}. On the other hand,

$$
\begin{aligned}
\mathrm{N}(a-b \alpha) & =b^{d} \prod_{j=1}^{d}\left(\frac{a}{b}-\alpha_{j}\right)=b^{d} f(a / b) \\
& =a^{d}+c_{d-1} a^{d-1} b+\cdots+c_{1} a b^{d-1}+c_{0} b^{d}
\end{aligned}
$$

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?
Observe that the norm of a square in $\mathbb{Z}[\boldsymbol{\alpha}]$ is a square in \mathbb{Z}. On the other hand,

$$
\begin{aligned}
\mathrm{N}(a-b \alpha) & =b^{d} \prod_{j=1}^{d}\left(\frac{a}{b}-\alpha_{j}\right)=b^{d} f(a / b) \\
& =a^{d}+c_{d-1} a^{d-1} b+\cdots+c_{1} a b^{d-1}+c_{0} b^{d}
\end{aligned}
$$

The idea is to try to obtain a set S of pairs (a, b) as above. As we force the product $\Pi(a-b m)$ to be a square (products over $(a, b) \in S)$, we also force $\prod\left(a^{d}+c_{d-1} a^{d-1} b+\cdots+c_{0} b^{d}\right)$ to be a square.

This can be done by working with a matrix of exponents, in the prime factorizations of the above, modulo 2 similar to what is done in Dixon's algorithm.

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$. The mapping $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ with $\phi(g(\alpha))=g(m) \bmod n$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\alpha]$ is.) The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:
(i) $\prod_{g \in S} g(m)=y^{2}$ for some $y \in \mathbb{Z}$
(ii) $\prod_{g \in S} g(\alpha)=\beta^{2}$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x=\phi(\beta)$, we deduce
$x^{2} \equiv \phi(\beta)^{2} \equiv \phi\left(\beta^{2}\right) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^{2}(\bmod n)$.
Thus, we can hope to factor n by computing $\operatorname{gcd}(x+y, n)$.

The Number Field Sieve

The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:
(i) $\prod_{g \in S} g(m)=y^{2}$ for some $y \in \mathbb{Z}$
(ii) $\prod_{g \in S} g(\alpha)=\beta^{2}$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x=\phi(\beta)$, we deduce
$x^{2} \equiv \phi(\beta)^{2} \equiv \phi\left(\beta^{2}\right) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^{2}(\bmod n)$.

Note that we have obtained $\prod_{g \in S} g(\alpha)$ having a square norm.
Sadly, this does not mean that it is a square in $\mathbb{Z}[\boldsymbol{\alpha}]$. But it is a start. How do we finish up?

The Number Field Sieve

Comment 1: The running time for the number field sieve is $\exp \left(c(\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)$ where $c=4 /\left(3^{2 / 3}\right)$ will do.

Comment 2: In 1993, Lenstra, Lenstra, Manasse, and Pollard used the number field sieve to factor $F_{9}=2^{2^{9}}+1$.

Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows.

Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows. Find two large primes p and q. Compute $n=p q$. If you are secretive about your choices for p and q and they are large enough, then you can tell the world what n is and you will know something no one else in the world knows, namely how n factors.

Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows. Find two large primes p and q. Compute $n=p q$. If you are secretive about your choices for p and q and they are large enough, then you can tell the world what n is and you will know something no one else in the world knows, namely how n factors. You also know what $\phi(n)=(p-1)(q-1)$ is.

The Rest:

- Choose $s \in \mathbb{Z}^{+}$(the "encrypting exponent") with $\operatorname{gcd}(s, \phi(n))=1$.
- Publish n and s in the personals.
- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for $\mathrm{b}, \ldots, 26$ for z , 27 for a comma, 28 for a period, and whatever else you might want.

Example. $M=0805121215$

The Rest:

- Choose $s \in \mathbb{Z}^{+}$(the "encrypting exponent") with $\operatorname{gcd}(s, \phi(n))=1$.
- Publish n and s in the personals.
- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for $\mathrm{b}, \ldots, 26$ for z , 27 for a comma, 28 for a period, and whatever else you might want.
- Tell the person to publish (back in the personals) the value of $E=M^{s} \bmod n$. (The person should be told to make sure that $M^{s}>n$ by adding extra blanks if necessary and that $M<n$ by breaking up a message into two or more messages if necessary.)

The Rest:

- Choose $s \in \mathbb{Z}^{+}$(the "encrypting exponent") with $\operatorname{gcd}(s, \phi(n))=1$.
- Publish n and s in the personals.
- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for $\mathrm{b}, \ldots, 26$ for z , 27 for a comma, 28 for a period, and whatever else you might want.
- Tell the person to publish (back in the personals) the value of $E=M^{s} \bmod n$. (The person should be told to make sure that $M^{s}>n$ by adding extra blanks if necessary and that $M<n$ by breaking up a message into two or more messages if necessary.)

The Rest:

- Choose $s \in \mathbb{Z}^{+}$(the "encrypting exponent") with $\operatorname{gcd}(s, \phi(n))=1$.
- Publish n and s in the personals.
- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for $b, \ldots, 26$ for z , 27 for a comma, 28 for a period, and whatever else you might want.
- Tell the person to publish (back in the personals) the valư

What ca and you expect me to compute $\phi(\phi(n)) ? \bmod n ?$
Calculate t with $s t \equiv 1(\bmod \phi(n))\left(\right.$ one can use $t \equiv s^{\phi(\phi(n))-1}$ $\bmod \phi(n))$. Then compute $E^{t} \bmod n$. This will be the same as M modulo n (unless p or \boldsymbol{q} divides M, which isn't likely).

Certified signatures

Basic Set-Up. Imagine person A has published n and s in the personals, person B is corresponding with person A in the personals, and person C gets jealous. C decides to send A a message in the personals that reads something like, "Dear A, I think you are a jerk. Your dear friend, B." This of course would make A very upset with B and would make C very happy. What would be nice is if there were a way for B to sign his messages so that A can see the signature and know whether a message supposedly from B is really from B.

Certified signatures

- B has his very own n and s which he has shared with at least A. Call them n^{\prime} and s^{\prime}, and let the corresponding t be t^{\prime}.
- B informs A of some signature S that B will use.
- At the end of B 's encrypted message E, he gives A the number $T=S^{t^{\prime}} \bmod n^{\prime}$. This is part of E.
- After \boldsymbol{A} decodes the message, he computes $\boldsymbol{T}^{s^{\prime}} \bmod \boldsymbol{n}^{\prime}$ (remember n^{\prime} and s^{\prime} are public). The result will be S.

Comment: Since only B knows t^{\prime}, only B can determine T, and A will know that the message really came from B.

Factoring Polynomials

Notation. Let p be a prime, and let $f(x) \in \mathbb{Z}[x]$ with $f(x) \not \equiv 0$ $(\bmod p)$. We say

$$
u(x) \equiv v(x)(\bmod p, f(x))
$$

where $u(x)$ and $v(x)$ are in $\mathbb{Z}[x]$, if there exist $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$ such that $u(x)=v(x)+f(x) g(x)+p h(x)$.

Properties:

- If
$u(x) \equiv v(x)(\bmod p, f(x))$ and $v(x) \equiv w(x)(\bmod p, f(x))$, then $u(x) \equiv w(x)(\bmod p, f(x))$.

Properties:

- If
$u(x) \equiv v(x)(\bmod p, f(x))$ and $v(x) \equiv w(x)(\bmod p, f(x))$, then $u(x) \equiv w(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) \pm u_{2}(x) \equiv v_{1}(x) \pm v_{2}(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) u_{2}(x) \equiv v_{1}(x) v_{2}(x)(\bmod p, f(x))$.
- If $u(x) \equiv v(x)(\bmod p)$ or $u(x) \equiv v(x)(\bmod f(x))$, then $u(x) \equiv v(x)(\bmod p, f(x))$.

Properties:

- If
$u(x) \equiv v(x)(\bmod p, f(x))$ and $v(x) \equiv w(x)(\bmod p, f(x))$, then $u(x) \equiv w(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) \pm u_{2}(x) \equiv v_{1}(x) \pm v_{2}(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) u_{2}(x) \equiv v_{1}(x) v_{2}(x)(\bmod p, f(x))$.
- If $u(x) \equiv v(x)(\bmod p)$ or $u(x) \equiv v(x)(\bmod f(x))$, then $u(x) \equiv v(x)(\bmod p, f(x))$.

Properties:

- If
$u(x) \equiv v(x)(\bmod p, f(x))$ and $v(x) \equiv w(x)(\bmod p, f(x))$, then $u(x) \equiv w(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) \pm u_{2}(x) \equiv v_{1}(x) \pm v_{2}(x)(\bmod p, f(x))$.
- If
$u_{1}(x) \equiv v_{1}(x)(\bmod p, f(x))$ and $u_{2}(x) \equiv v_{2}(x)(\bmod p, f(x))$, then $u_{1}(x) u_{2}(x) \equiv v_{1}(x) v_{2}(x)(\bmod p, f(x))$.
- If $u(x) \equiv v(x)(\bmod p)$ or $u(x) \equiv v(x)(\bmod f(x))$, then $u(x) \equiv v(x)(\bmod p, f(x))$.
- We have $u(x) \equiv 0(\bmod p, f(x))$ if and only if $f(x)$ is a factor of $u(x)$ modulo p.

