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The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).
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Comment: We can use f(x) above and m = b = bn
1/dc.

How long does it take to factor f(x)?
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Thus, we can hope to factor n by computing gcd(x + y, n).
What do we choose for the g(x)?

We take the g(x) to be of the form a� bx where |a|  D and
0 < b  D.

We want g(m) to have only small prime factors. This is done
by first choosing b and then, with b fixed, letting a vary and
sieving to determine the a for which g(m) has only small
prime factors.

How do we obtain the desired square in Z[↵]?

Let ↵1, . . . , ↵d be the distinct roots of f(x) with ↵ = ↵1.
We consider the norm map N(g(↵)) = g(↵1) · · · g(↵d), where
g(x) 2 Z[x]. It has the two properties:

• If g(x) and h(x) are in Z[x], then

N (g(↵)h(↵)) = N (g(↵)) N (h(↵)) .

• If g(x) 2 Z[x], then N (g(↵)) 2 Z.
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Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to
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The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?
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Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to
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The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
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j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?
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Note that we have obtained
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g2S

g(↵) having a square norm.

Sadly, this does not mean that it is a square in Z[↵]. But it
is a start. How do we finish up?
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Public-Key Encryption

Problem: How do you communicate with someone you have
never met before through the personals without anyone else
understanding the private material you are sharing with this
stranger.

Initial Idea: Take advantage of something you know that no
one else knows. Find two large primes p and q. Compute
n = pq. If you are secretive about your choices for p and
q and they are large enough, then you can tell the world
what n is and you will know something no one else in the
world knows, namely how n factors. You also know what
�(n) = (p � 1)(q � 1) is.
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The Rest:

• Choose s 2 Z+ (the “encrypting exponent”) with
gcd(s, �(n)) = 1.

• Publish n and s in the personals.

• Tell them that to form a message M , concatenate the
symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z,
27 for a comma, 28 for a period, and whatever else you
might want.

• Tell the person to publish (back in the personals) the
value of E = M

s mod n. (The person should be told
to make sure that M

s
> n by adding extra blanks if

necessary and that M < n by breaking up a message
into two or more messages if necessary.)
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�(�(n))�1

mod �(n)). Then compute E
t mod n. This will be the same

as M modulo n (unless p or q divides M , which isn’t likely).
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An outsider can’t compute �(n),
and you expect me to compute �(�(n))?



Certified signatures

Basic Set-Up. Imagine person A has published n and s in the
personals, person B is corresponding with person A in the
personals, and person C gets jealous. C decides to send A a
message in the personals that reads something like, “Dear A,
I think you are a jerk. Your dear friend, B.” This of course
would make A very upset with B and would make C very
happy. What would be nice is if there were a way for B to
sign his messages so that A can see the signature and know
whether a message supposedly from B is really from B.
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Idea.

• B has his very own n and s which he has shared with at
least A. Call them n

0 and s
0, and let the corresponding

t be t
0.

• B informs A of some signature S that B will use.

• At the end of B’s encrypted message E, he gives A the
number T = S

t
0

mod n
0. This is part of E.

• After A decodes the message, he computes T
s
0

mod n
0

(remember n
0 and s

0 are public). The result will be S.

Comment: Since only B knows t
0, only B could have de-

termined T and A will know that the message really came
from B.
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Factoring Polynomials
(following Polynomial Notes on web)

Notation. Let p be a prime, and let f(x) 2 Z[x] with f(x) 6⌘ 0
(mod p). We say

u(x) ⌘ v(x) (mod p, f(x))

where u(x) and v(x) are in Z[x], if there exist g(x) and h(x)
in Z[x] such that u(x) = v(x) + f(x)g(x) + p h(x).

Properties:

• If

u(x) ⌘ v(x) (mod p, f(x)) and v(x) ⌘ w(x) (mod p, f(x)),

then u(x) ⌘ w(x) (mod p, f(x)).

• If

u1(x) ⌘ v1(x) (mod p, f(x)) and u2(x) ⌘ v2(x) (mod p, f(x)),

then

u1(x) ± u2(x) ⌘ v1(x) ± v2(x) (mod p, f(x)).
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