
Big-Oh & Little-Oh Notation (as well as ⌧, �, ⇠, ⇣)

Definitions and Notations. Let f(x) and g(x) be functions
with domain [c, 1) for some c 2 R and range R and R+,
respectively.

f(x) = O(g(x)) (“f(x) is big-oh of g(x)”)

() 9 C > 0, x0 > 0 such that |f(x)|  Cg(x), 8 x � x0

f(x) ⌧ g(x) (“f(x) is less than less than g(x)”)

() f(x) = O(g(x))

f(x) � g(x) (“f(x) is greater than greater than g(x)”)

() g(x) = O(f(x))

f(x) ⇣ g(x) (“the asymptotic order of f(x) is g(x)”)

() g(x) ⌧ f(x) ⌧ g(x) (or write f(x) �⌧ g(x))

f(x) = o(g(x)) (“f(x) is little-oh of g(x)”) () lim
x!1

f(x)

g(x)
= 0

f(x) ⇠ g(x) (“f(x) is aymptotic to g(x)”) () lim
x!1

f(x)

g(x)
= 1

Analogous definitions exist if the domain is in the set of pos-
itive integers.
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[c, 1) for some c 2 R and range R and R+, respectively.

... ... ... ... ...

Note: Analogous definitions exist if the domain is Z+.

Examples

1. log (1 + (1/n)) = O(1/n)

2. A positive integer n in base b contains ⇣ log n digits.

3. 1 + 2 + · · · + n ⇠
n

2

2

4. If f is a polynomial of degree k, then f(n) = O(nk).

5. (r + 1)⇡ ⇠ r
⇡
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The kinds of questions are addressing in this course:

• What is a good computational approach for ...?

• How fast can we ...?

• How do we justify this?

Here, we may be referring to basic arithmetic operations,
computing gcd’s, primality testing, factoring integers, fac-
toring polynomials, etc.

Explicit Example: How quickly can we factor an n 2 Z+?

We will want an “algorithm” that runs quickly (in a small
number of steps) in comparison to the length of the input.
One considers the length of the input n to be blog2 nc + 1
(corresponding to the number of bits n has). An algorithm
runs in polynomial time if the number of steps (or bit op-
erations) it takes is bounded above by a polynomial in the
length of the input. An algorithm to factor n in polynomial
time would require that it take O

�
(log n)k

�
steps (and that

it factor n).
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Addition and Subtraction

How fast do we add (or subtract) two numbers n and m?

How fast can we add (or subtract) two numbers n and m?

Definition. Let A(d) denote the number of steps required to
add two numbers with  d bits.

Theorem. A(d) ⇣ d.
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Theorem. S(d) ⇣ d.

Definition. Let A(d) denote the maximal number of steps
required to add two numbers with  d bits.



Multiplication

How fast do we multiply two numbers n and m?

How fast can we multiply two numbers n and m?

Definition. Let M(d) denote the number of steps required to
multiply two numbers with  d bits.

Theorem. M(d) ⌧ d
2.

Can we do better? Yes

How can we see “easily” that something better is possible?

• Suppose M(d) � d
1.5.

• Let d be large, and let " > 0.

• Let n and m have  d bits, and write n = an ⇥ 2r + bn

and m = am ⇥ 2r + bm, where r = bd/2c and the aj and
bj are integers with bj < 2r.

• From nm = anbn22r + (anbm + ambn)2r + bnbm, deduce
M(d)  4M(r + 1) + O(r)  (4 + ")M(r + 1).

• Hence, M(d)  (4 + ")s
M

�
(d + 2s+1 � 2)/2s

�
.

• Take s = blog2 dc � C (with C big). Then 2s � d/2C+1.

• Conclude, M(d) ⌧ (4 + ")log2 d = d
log(4+")/ log 2.

Theorem. M(d) ⌧ d (log d) log log d.
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How many steps does it take to multiply a d bit number by 6?

How many steps does it take to divide a d bit number by 6?

(if it is divisible by 6)
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O(d) for these last two questions
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