Definitions. Let $f(x)$ and $g(x)$ be functions with domain $[c, \infty)$ for some $c \in \mathbb{R}$ and range \mathbb{R} and \mathbb{R}^{+}, respectively.
$f(x)=O(g(x))(" f(x)$ is big-oh of $g(x) ")$ $\Longleftrightarrow \exists C>0, x_{0}>0$ such that $|f(x)| \leq C g(x), \forall x \geq x_{0}$
$f(x) \ll g(x)(" f(x)$ is less than less than $g(x) ")$

$$
\Longleftrightarrow f(x)=O(g(x))
$$

$f(x) \gg g(x)(" f(x)$ is greater than greater than $g(x) ")$

$$
\Longleftrightarrow g(x)=O(f(x))
$$

$f(x) \asymp g(x)$ ("the asymptotic order of $f(x)$ is $g(x)$ ") $\Longleftrightarrow g(x) \ll f(x) \ll g(x)$ (or write $f(x) \gg \ll g(x)$)
$f(x)=o(g(x))(" f(x)$ is little-oh of $g(x) ") \Longleftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$
$f(x) \sim g(x)(" f(x)$ is aymptotic to $g(x) ") \Longleftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$

Definitions. Let $f(x)$ and $g(x)$ be functions with domain $[c, \infty)$ for some $c \in \mathbb{R}$ and range \mathbb{R} and \mathbb{R}^{+}, respectively.
$f(x)=O(g(x))(" f(x)$ is big-oh of $g(x) ")$
$\Longleftrightarrow \exists C>0, x_{0}>0$ such that $|f(x)| \leq C g(x), \forall x \geq x_{0}$
$f(x) \ll g(x)(" f(x)$ is less than less than $g(x) ")$

$$
\Longleftrightarrow f(x)=O(g(x))
$$

$f(x) \gg g(x)(" f(x)$ is greater than greater than $g(x) ")$

$$
\Longleftrightarrow g(x)=O(f(x))
$$

Note: Analogous definitions exist if the domain is \mathbb{Z}^{+}.

Explicit Example: How quickly can we factor an $n \in \mathbb{Z}^{+}$?

We will want an "algorithm" that runs quickly (in a small number of steps) in comparison to the length of the input. One considers the length of the input n to be $\left\lfloor\log _{2} n\right\rfloor+1$ (corresponding to the number of bits n has). An algorithm runs in polynomial time if the number of steps (or bit operations) it takes is bounded above by a polynomial in the length of the input. An algorithm to factor n in polynomial time would require that it take $O\left((\log n)^{k}\right)$ steps (and that it factor n).

Addition and Subtraction

How fast do we add (or subtract) two numbers n and m ?
How fast can we add (or subtract) two numbers n and m ?
Definition. Let $A(d)$ denote the maximal number of steps required to add two numbers with $\leq d$ bits.

Theorem. $A(d) \asymp d$.
Theorem. $S(d) \asymp d$.

Multiplication

How fast do we multiply two numbers n and m ?
How fast can we multiply two numbers n and m ?

How many steps does it take to multiply a d bit number by 6 ?
How many steps does it take to divide a d bit number by $6 ?$
(if it is divisible by 6)
$O(d)$ for these last two questions

Multiplication

How fast do we multiply two numbers n and m ?
How fast can we multiply two numbers n and m ?
Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

Theorem. $M(d) \ll d^{2}$.

Can we do better? Yes

How can we see "easily" that something better is possible?

Attempt 1

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d belarge, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor a / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From $n m=a_{n} a_{m} 2^{2 r}+\left(a_{n} b_{m}+a_{m} b_{n}\right) 2^{r}+b_{n} b_{m}$, deduce $M(d) \leq 4 M(r+1)+O(r) \leq(4+\varepsilon) M(r+1)$.
- Hence, $M(d) \leq(4+\varepsilon)^{s} M\left(\left(d+2^{s+1}-2\right) / 2^{s}\right)$.
- Take $s \rightarrow\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(4+\varepsilon)^{\log _{2} d}=d^{\log (4+\varepsilon) / \log 2}$.

Attempt 2

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From $n m=$??????????????????????????????????, deduce $M(d) \leq 3 M(r+1)+O(r) \leq(3+\varepsilon) M(r+1)$.
- Hence, $M(d) \leq(3+\varepsilon)^{s} M\left(\left(d+2^{s+1}-2\right) / 2^{s}\right)$.
- Take $s=\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

Attempt 2

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From

$$
n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}
$$

deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.

- Hence, $M(d) \leq(3+\varepsilon)^{s} M\left(\left(d+2^{s+1}-2\right) / 2^{s}\right)$.
- Take $s=\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

Attempt 2

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From

$$
n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}
$$ deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.

- Hence, $M(d) \leq(3+\varepsilon)^{s} M\left(\left(d+2^{s+2}-4\right) / 2^{s}\right)$.
- Take $s=\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

Attempt 2

Definition. Let $M(d)$ denote the number of steps required to multiply two numbers with $\leq d$ bits.

- Suppose $M(d) \gg d^{1.5}$.
- Let d be large, and let $\varepsilon>0$.
- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From
$n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}$,
deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.
- Hence, $M(d) \leq(3+\varepsilon)^{s} M\left(\left(d+2^{s+2}-4\right) / 2^{s}\right)$.
- Take $s=\left\lfloor\log _{2} d\right\rfloor-C$ (with C big). Then $2^{s} \geq d / 2^{C+1}$.
- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

Theorem. $M(d) \ll d^{2}$.

- Conclude, $M(d) \ll(3+\varepsilon)^{\log _{2} d}=d^{\log (3+\varepsilon) / \log 2}$.

$$
\frac{\log 3}{\log 2}=1.5849625
$$

Theorem. $M(d) \ll d^{1.585}$.

HW: Due September 7 (Friday)
Page 3, Problems 1 and 2
Page 5, unnumbered homework (first set)
$($ you may use $(\log 5 / \log 3)+\varepsilon$ instead of $\log 5 / \log 3)$

Idea for Doing Better

- Let n and m have $\leq d$ bits, and write $n=a_{n} \times 2^{r}+b_{n}$ and $m=a_{m} \times 2^{r}+b_{m}$, where $r=\lfloor d / 2\rfloor$ and the a_{j} and b_{j} are integers with $b_{j}<2^{r}$.
- From
$n m=a_{n} a_{m} 2^{2 r}+\left(\left(a_{n}+b_{n}\right)\left(a_{m}+b_{m}\right)-a_{n} a_{m}-b_{n} b_{m}\right) 2^{r}+b_{n} b_{m}$, deduce $M(d) \leq 3 M(r+2)+O(r) \leq(3+\varepsilon) M(r+2)$.

Think in terms of writing

$$
n=a_{n} 2^{2 r}+b_{n} 2^{r}+c_{n} \quad \text { and } \quad m=a_{m} 2^{2 r}+b_{m} 2^{r}+c_{m},
$$

where $r=\lfloor d / 3\rfloor$.

How many multiplications does it take to expand $n m$?

Theorem. For every $\varepsilon>0$, we have $M(d) \lll d^{1+\varepsilon}$.
Theorem. $M(d) \ll d(\log d) \log \log d$.
Theorem. Given distinct numbers $x_{0}, x_{1}, \ldots, x_{k}$ and numbers $y_{0}, y_{1}, \ldots, y_{k}$, there is a unique polynomial f of degree $\leq k$ such that $f\left(x_{j}\right)=y_{j}$ for all j.

Lagrange Interpolation:

$$
f(x)=\sum_{i=0}^{k}\left(\prod_{\substack{0 \leq j \leq k \\ j \neq i}} \frac{x-x_{j}}{x_{i}-x_{j}}\right) y_{i}
$$

Theorem. Given distinct numbers $x_{0}, x_{1}, \ldots, x_{k}$ and numbers $y_{0}, y_{1}, \ldots, y_{k}$, there is a unique polynomial f of degree $\leq k$ such that $f\left(x_{j}\right)=y_{j}$ for all j.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{k} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{k} & x_{k}^{2} & \ldots & x_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{k}
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{k} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{k} & x_{k}^{2} & \cdots & x_{k}^{k}
\end{array}\right)=\prod_{0 \leq i<j \leq k}\left(x_{j}-x_{i}\right)
\end{aligned}
$$

