
Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

5. Calculate y =
Q

i2S
ai mod n. Then x

2 ⌘ y
2 (mod n).

Compute gcd(x + y, n). Hopefully, a nontrivial factor-
ization of n results.

Take u = log n/ log B so that (if u < (log n)1�")

 (n, B) = (n, n
1/u) = n exp (�(1 + o(1)) log n log u/ log B) .

The number of di↵erent a’s we expect to consider before we
get enough good s(a)’s in the algorithm is

(⇡(B) + 1) exp ((1 + o(1)) log n log u/ log B) .

We also expect  B steps to factor each value of s(a). This
means we should take

B = exp
⇣p

log n

p
log u/

p
2
⌘

= exp
⇣p

log n

p
log log n/2

⌘
,

and the expected running time for Dixon’s Algorithm is around

exp
⇣
2
p

log n

p
log log n

⌘
,

including Gaussian elimination.

Take u = log n/ log B so that (if u < (log n)1�")

 (n, B) = (n, n
1/u) = n exp (�(1 + o(1)) log n log u/ log B) .

The number of di↵erent a’s we expect to consider before we
get enough good s(a)’s in the algorithm is

(⇡(B) + 1) exp ((1 + o(1)) log n log u/ log B) .

We also expect  B steps to factor each value of s(a). This
means we should take

B = exp
⇣p

log n

p
log u/

p
2
⌘

= exp
⇣p

log n

p
log log n/2

⌘
,

and the expected running time for Dixon’s Algorithm is around

exp
⇣
2
p

log n

p
log log n

⌘
,

including Gaussian elimination.

Take u = log n/ log B so that (if u < (log n)1�")

 (n, B) = (n, n
1/u) = n exp (�(1 + o(1)) log n log u/ log B) .

The number of di↵erent a’s we expect to consider before we
get enough good s(a)’s in the algorithm is

(⇡(B) + 1) exp ((1 + o(1)) log n log u/ log B) .

We also expect  B steps to factor each value of s(a). This
means we should take

B = exp
⇣p

log n

p
log u/

p
2
⌘

= exp
⇣p

log n

p
log log n/2

⌘
,

and the expected running time for Dixon’s Algorithm is about

exp
⇣
2
p

log n

p
log log n

⌘
,

including Gaussian elimination.

Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.EXAMPLE

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.

p
7 = 2 +

1

1 +
1

1 +
1

1 +
1

4 +
1

1 + ...

2
p
7 = 5.2915 . . .

Convergents:
2

1
,
3

1
,
5

2
,
8

3
,
37

14
, . . .

Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.

p
7 = 2 +

1

1 +
1

1 +
1

1 +
1

4 +
1

1 + ...

2
p
7 = 5.2915 . . .

Convergents:
2

1
,
3

1
,
5

2
,
8

3
,
37

14
, . . .

Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.

p
7 = 2 +

1

1 +
1

1 +
1

1 +
1

4 +
1

1 + ...

2
p
7 = 5.2915 . . .

Convergents:
2

1
,
3

1
,
5

2
,
8

3
,
37

14
, . . .

Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall aaaaaaaaaaaa
s(a) = a

2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is (2

p
n, B) instead of (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.

A Further Idea

An “early abort” strategy can be combined with the above
ideas to reduce the running time of the algorithms. Given
a, one stops trying to factor s(a) if it has no “small” prime
factors. This leads to a running time of the form

O

⇣
exp

�p
3/2

p
log n

p
log log n

�⌘
.

A Further Idea

An “early abort” strategy can be combined with the above
ideas to reduce the running time of the algorithms. Given
a, one stops trying to factor s(a) if it has no “small” prime
factors. This leads to a running time of the form

O

⇣
exp

�p
3/2

p
log n

p
log log n

�⌘
.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is

O

⇣
exp

�p
9/8

p
log n

p
log log n

�⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is

O

⇣
exp

�p
9/8

p
log n

p
log log n

�⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is

O

⇣
exp

�p
9/8

p
log n

p
log log n

�⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is

O

⇣
exp

�p
9/8

p
log n

p
log log n

�⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

For n fixed, F (x) = (x + bp
nc)2 � n is a fixed quadratic

polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp

nc, then p|s(a).
Otherwise, p - s(a). Therefore, one knows the di↵erent x’s
and hence the di↵erent a’s for which p|s(a) when p is small
and can partially factor the s(a)’s quickly.

The expected running time is O

⇣
exp(

p
9/8

p
log n

p
log log n)

⌘

for the Quadratic Sieve Algorithm.

The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.

Why would this be better than the CFRAC Algorithm?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Theorem (F., Gross) Let f(x) be a polynomial with non-
negative integer coe�cients with f(10) prime. If each of
the coe�cients of f(x) is

 49598666989151226098104244512918,

then f(x) is irreducible. Furthermore, if each coe�cient is

 8592444743529135815769545955936773

and f(x) is reducible, then f(x) is divisible by x
2�20x+101.

Comment: The result is sharp. If either of the big numbers
above is increased by 1, the theorem is no longer true.

Theorem (F., Gross) Let f(x) be a polynomial with non-
negative integer coe�cients with f(10) prime. If each of
the coe�cients of f(x) is

 49598666989151226098104244512918,

then f(x) is irreducible. Furthermore, if each coe�cient is

 8592444743529135815769545955936773

and f(x) is reducible, then f(x) is divisible by x
2�20x+101.

Comment: The result is sharp. If either of the big numbers
above is increased by 1, the theorem is no longer true.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then this
implies both |g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

����
f(z)

zd

���� �
����cd +

cd�1

z

���� �
dX

j=2

b � 1

(b � 1)j
> 1 �

1

b � 2
� 0

z = re
i✓

, r � b � 1, 0 < ✓ < sin�1(1/b) < ⇡/4

Idea: The polynomial f(x) cannot have a root in

D = {z 2 C : |z � b|  1}.

If f(x) = g(x)h(x) with g(x) and h(x) in Z[x], then both
|g(b)| > 1 and |h(b)| > 1.

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: We can use f(x) above and m = b = bn
1/dc.

How long does it take to factor f(x)?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: We can use f(x) above and m = b = bn
1/dc.

How long does it take to factor f(x)?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: We can use f(x) above and m = b = bn
1/dc.

How long does it take to factor f(x)?

Is f(x) monic?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: We can use f(x) above and m = b.

How long does it take to factor f(x)?

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Comment: A variation of the Quadratic Sieve Algorithm
developed by Peter Montgomery reduces the running time
to

O

⇣
exp

�
(1/2)

p
log n

p
log log n

�⌘
.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S

g(m) = y
2 for some y 2 Z

(ii)
Y

g2S

g(↵) = �
2 for some � 2 Z[↵].

Taking x = �(�), we deduce

x
2 ⌘ �(�)2 ⌘ �(�2) ⌘ �

✓ Y

g2S

g(↵)

◆
⌘

Y

g2S

g(m) ⌘ y
2 (mod n).

Thus, we can hope to factor n by computing gcd(x + y, n).

