Dixon's Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon's Algorithm)

- Suppose

$$
\boldsymbol{n}=\boldsymbol{p}_{1}^{e_{1}} \boldsymbol{p}_{2}^{e_{2}} \cdots \boldsymbol{p}_{r}^{e_{r}}
$$

with p_{j} "odd" distinct primes and $e_{j} \in \mathbb{Z}^{+}$.

- Then $x^{2} \equiv 1\left(\bmod p_{j}^{e_{j}}\right)$ has two solutions which implies $x^{2} \equiv 1(\bmod n)$ has 2^{r} solutions.
- If x and y are random and $x^{2} \equiv y^{2}(\bmod n)$, then with probability $\left(2^{r}-2\right) / 2^{r}$ we can factor n (nontrivially) by considering $\operatorname{gcd}(x+y, n)$.

Dixon's Factoring Algorithm

1. Randomly choose a number $a>\sqrt{n}$ and compute $s(a)=a^{2} \bmod n$.
2. A bound $B=B(n)$ is chosen (specified momentarily). Determine if $s(a)$ has a prime factor $>B$. We choose a new a if it does. Otherwise, we obtain a complete factorization of $s(a)$.
3. Let p_{1}, \ldots, p_{t} denote the primes $\leq B$. We continue steps (1) and (2) until we obtain $t+1$ different a 's, say a_{1}, \ldots, a_{t+1}.
4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

Dixon's Factoring Algorithm

4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

For $i \in\{1,2, \ldots, t+1\}$, compute the vectors

$$
\vec{v}_{i}=\langle e(i, 1), e(i, 2), \ldots, e(i, t)\rangle \quad \bmod 2 .
$$

These vectors are linearly dependent modulo 2 . Use Gaussian elimination (or something better) to find a non-empty set $S \subseteq\{1,2, \ldots, t+1\}$ such that $\sum_{i \in S} \vec{v}_{i} \equiv$ $\overrightarrow{0}(\bmod 2)$. Calculate $x \in[0, n-1] \cap \mathbb{Z}$ (in an obvious way) satisfying

$$
\prod_{i \in S} s\left(a_{i}\right) \equiv x^{2} \quad(\bmod n)
$$

4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

For $i \in\{1,2, \ldots, t+1\}$, compute the vectors

$$
\vec{v}_{i}=\langle e(i, 1), e(i, 2), \ldots, e(i, t)\rangle \quad \bmod 2 .
$$

These vectors are linearly dependent modulo 2. Use Gaussian elimination (or something better) to find a non-empty set $S \subseteq\{1,2, \ldots, t+1\}$ such that $\sum_{i \in S} \vec{v}_{i} \equiv$ $\overrightarrow{0}(\bmod 2)$. Calculate $x \in[0, n-1] \cap \mathbb{Z}($ in an obvious way) satisfying

$$
\prod_{i \in S} s\left(a_{i}\right) \equiv x^{2} \quad(\bmod n)
$$

5. Calculate $y=\prod_{i \in S} a_{i} \bmod n$. Then $x^{2} \equiv y^{2}(\bmod n)$. Compute $\operatorname{gcd}(x+y, n)$. Hopefully, a nontrivial factorization of n results.

The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

and the expected running time for Dixon's Algorithm is about

$$
\exp (2 \sqrt{\log n} \sqrt{\log \log n})
$$

including Gaussian elimination.
Comment: This is a rough estimate. A closer analysis would give a running time of

$$
\exp ((2 \sqrt{2}+o(1)) \sqrt{\log n} \sqrt{\log \log n})
$$

With some more work, Pomerance and later Vallée reduced the constant $2 \sqrt{2}$ so that now we know it can be replaced to $\sqrt{4 / 3}$.

The CFRAC Algorithm

Every real number α can be written uniquely as a simple continued fraction

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots .}}}
$$

where $a_{0} \in \mathbb{Z}$ and $a_{j} \in \mathbb{Z}^{+}$for $j \geq 1$. The convergents obtained by truncating the above give approximations a / b to α satisfying

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{2}} .
$$

The CFRAC Algorithm

$$
\begin{array}{r}
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{2}} \\
\left|\alpha^{2}-\frac{a^{2}}{b^{2}}\right| \ll \frac{\alpha}{b^{2}} \\
\left|b^{2} \alpha^{2}-a^{2}\right| \ll \alpha
\end{array}
$$

Comment: Every convergent a / b of \sqrt{n} satisfies

$$
\left|b^{2} n-a^{2}\right|<2 \sqrt{n}
$$

EXAMPLE

The CFRAC Algorithm

$$
\begin{aligned}
& \sqrt{7}=2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{1+\ldots}}}}} \\
& 2 \sqrt{7}=5.2915 \ldots \\
& \text { Convergents: } \frac{2}{1}, \frac{3}{1}, \frac{5}{2}, \frac{8}{3}, \frac{37}{14}, \ldots
\end{aligned}
$$

Comment: Every convergent a / b of \sqrt{n} satisfies

$$
\left|b^{2} n-a^{2}\right|<2 \sqrt{n}
$$

The CFRAC Algorithm

Compute the numerators a_{j} of the convergents of \sqrt{n}. If the corresponding denominators are b_{j}, then $\left|a_{j}^{2}-n b_{j}^{2}\right|<2 \sqrt{n}$. Recall $s(a)=a^{2} \bmod n$. Repeat Dixon's algorithm but now

- Define $s(a)$ to be in $(-n / 2, n / 2]$ with $s(a) \equiv a^{2}$ $(\bmod n)$. Then $\left|s\left(a_{j}\right)\right|<2 \sqrt{n}$.
- Treat -1 (the possible negative sign in $s(a))$ as a prime.

The chance that a_{j} has the property that all its prime divisors are $\leq B$ is $\psi(2 \sqrt{n}, B)$ instead of $\psi(n, B)$. The expected running time is

$$
O(\exp (\sqrt{2} \sqrt{\log n} \sqrt{\log \log n}))
$$

Comment: Brillhart and Morrison (1970) used the CFRAC algorithm to factor $F_{7}=2^{2^{7}}+1$ (having 39 digits).

A Further Idea

An "early abort" strategy can be combined with the above ideas to reduce the running time of the algorithms. Given a, one stops trying to factor $s(a)$ if it has no "small" prime factors. This leads to a running time of the form

$$
O(\exp (\sqrt{3 / 2} \sqrt{\log n} \sqrt{\log \log n}))
$$

The Quadratic Sieve Algorithm

Consider $\boldsymbol{F}(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$.

The Quadratic Sieve Algorithm

Consider $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$. Then $|F(x)| \ll|x| \sqrt{n}$ for $0<|x| \leq \sqrt{n}$.

The Quadratic Sieve Algorithm

Consider $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$. Then $|F(x)| \ll|x| \sqrt{n}$ for $0<|x| \leq \sqrt{n}$. The idea of the quadratic sieve algorithm is to consider a in Dixon's Algorithm to be of the form $a=$ $x+\lfloor\sqrt{n}\rfloor$ with $|x|$ small.

The Quadratic Sieve Algorithm

Consider $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$. Then $|F(x)| \ll|x| \sqrt{n}$ for $0<|x| \leq \sqrt{n}$. The idea of the quadratic sieve algorithm is to consider a in Dixon's Algorithm to be of the form $a=$ $x+\lfloor\sqrt{n}\rfloor$ with $|x|$ small. Here, we allow for $s(a)$ to be negative as in the CFRAC Algorithm.

The Quadratic Sieve Algorithm

Consider $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$. Then $|F(x)| \ll|x| \sqrt{n}$ for $0<|x| \leq \sqrt{n}$. The idea of the quadratic sieve algorithm is to consider a in Dixon's Algorithm to be of the form $a=$ $x+\lfloor\sqrt{n}\rfloor$ with $|x|$ small. Here, we allow for $s(a)$ to be negative as in the CFRAC Algorithm. Thus, $|s(a)| \ll|x| \sqrt{n}$.

Why would this be better than the CFRAC Algorithm?

Why would this be better than the CFRAC Algorithm?
For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve
$(*) \quad F(x) \equiv 0 \quad(\bmod p)$.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve
(*)

$$
F(x) \equiv 0 \quad(\bmod p)
$$

If $(*)$ has one solution, typically it has two, say x_{1} and x_{2}.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve
(*)

$$
F(x) \equiv 0 \quad(\bmod p)
$$

If $(*)$ has one solution, typically it has two, say x_{1} and x_{2}. If $x \equiv x_{1}$ or x_{2} modulo p and $a=x+\lfloor\sqrt{n}\rfloor$, then $p \mid s(a)$.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve

$$
\begin{equation*}
F(x) \equiv 0 \quad(\bmod p) \tag{*}
\end{equation*}
$$

If $(*)$ has one solution, typically it has two, say x_{1} and x_{2}. If $x \equiv x_{1}$ or x_{2} modulo p and $a=x+\lfloor\sqrt{n}\rfloor$, then $p \mid s(a)$. Otherwise, $\boldsymbol{p} \nmid s(\boldsymbol{a})$.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve
(*)

$$
F(x) \equiv 0 \quad(\bmod p)
$$

If $(*)$ has one solution, typically it has two, say x_{1} and x_{2}. If $x \equiv x_{1}$ or x_{2} modulo p and $a=x+\lfloor\sqrt{n}\rfloor$, then $p \mid s(a)$. Otherwise, $p \nmid s(a)$. Therefore, one knows the different x 's and hence the different a 's for which $p \mid s(a)$ when p is small and can partially factor the $s(a)$'s quickly.

The expected running time is

$$
O(\exp (\sqrt{9 / 8} \sqrt{\log n} \sqrt{\log \log n}))
$$

for the Quadratic Sieve Algorithm.

Why would this be better than the CFRAC Algorithm?

For n fixed, $F(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ is a fixed quadratic polynomial that is used to obtain a 's to apply the approach in Dixon's algorithm. For p a small prime, solve

$$
\begin{equation*}
F(x) \equiv 0 \quad(\bmod p) \tag{*}
\end{equation*}
$$

If $(*)$ has one solution, typically it has two, say x_{1} and x_{2}. If $x \equiv x_{1}$ or x_{2} modulo p and $a=x+\lfloor\sqrt{n}\rfloor$, then $p \mid s(a)$. Otherwise, $p \nmid s(a)$. Therefore, one knows the different x 's and hence the different a 's for which $p \mid s(a)$ when p is small and can partially factor the $s(a)$'s quickly.

Comment: A variation of the Quadratic Sieve Algorithm developed by Peter Montgomery reduces the running time to

$$
O(\exp ((1 / 2) \sqrt{\log n} \sqrt{\log \log n}))
$$

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial factorization $f(x)=g(x) h(x)$.

Comment 2: What does this mean if n is a prime?

Theorem (F., Gross) Let $f(x)$ be a polynomial with nonnegative integer coefficients with $f(10)$ prime. If each of the coefficients of $f(x)$ is
$\leq 49598666989151226098104244512918$,
then $f(x)$ is irreducible. Furthermore, if each coefficient is

$$
\leq 8592444743529135815769545955936773
$$

and $f(x)$ is reducible, then $f(x)$ is divisible by $x^{2}-20 x+101$.

Comment: The result is sharp. If either of the big numbers above is increased by 1 , the theorem is no longer true.

The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial factorization $f(x)=g(x) h(x)$.

Comment 2: What does this mean if n is a prime?

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Idea: The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, then both $|g(b)|>1$ and $|h(b)|>1$.

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Idea: The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, then both $|g(b)|>1$ and $|h(b)|>1$.

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Idea: The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, then both $|g(b)|>1$ and $|h(b)|>1$.

The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

$$
\begin{aligned}
& z=r e^{i \theta}, \quad r \geq b-1, \quad 0<\theta<\sin ^{-1}(1 / b)<\pi / 4 \\
& \left|\frac{f(z)}{z^{d}}\right|
\end{aligned}
$$

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

$$
\begin{gathered}
z=r e^{i \theta}, \quad r \geq b-1, \quad 0<\theta<\sin ^{-1}(1 / b)<\pi / 4 \\
\left|\frac{f(z)}{z^{d}}\right| \geq\left|c_{d}+\frac{c_{d-1}}{z}\right|-\sum_{j=2}^{d} \frac{b-1}{(b-1)^{j}} \\
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
\end{gathered}
$$

The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

$$
\begin{aligned}
& z=r e^{i \theta}, \quad r \geq b-1, \quad 0<\theta<\sin ^{-1}(1 / b)<\pi / 4 \\
& \left|\frac{f(z)}{z^{d}}\right| \geq\left|c_{d}+\frac{c_{d-1}}{z}\right|-\sum_{j=2}^{d} \frac{b-1}{(b-1)^{j}}>1-\frac{1}{b-2}
\end{aligned}
$$

The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

$$
\begin{gathered}
z=r e^{i \theta}, \quad r \geq b-1, \quad 0<\theta<\sin ^{-1}(1 / b)<\pi / 4 \\
\left|\frac{f(z)}{z^{d}}\right| \geq\left|c_{d}+\frac{c_{d-1}}{z}\right|-\sum_{j=2}^{d} \frac{b-1}{(b-1)^{j}}>1-\frac{1}{b-2} \geq 0
\end{gathered}
$$

Preliminaries: Let n be a large positive integer, and let be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Idea: The polynomial $f(x)$ cannot have a root in

$$
\mathcal{D}=\{z \in \mathbb{C}:|z-b| \leq 1\}
$$

If $f(x)=g(x) h(x)$ with $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, then both $|g(b)|>1$ and $|h(b)|>1$.

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$.

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$.

Preliminaries: Let \boldsymbol{n} be a large positive integer, and let b be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Comment: We can use $f(x)$ above and $m=b=\left\lfloor n^{1 / d}\right\rfloor$.

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$.

Preliminaries: Let \boldsymbol{n} be a large positive integer, and let b be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

Comment: We can use $f(x)$ above and $m=b=\left\lfloor n^{1 / d}\right\rfloor$.
Is $f(x)$ monic?

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$.

Preliminaries: Let n be a large positive integer, and let b be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$
n=c_{d} b^{d}+c_{d-1} b^{d-1}+\cdots+c_{1} b+c_{0}
$$

for some positive integer d and each $c_{j} \in\{0,1, \ldots, b-1\}$. Set $f(x)=\sum_{j=0}^{d} c_{j} x^{j}$. Then one of the following holds:
(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(ii) The polynomial $f(x)=g(x) h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n=g(b) h(b)$ is a non-trivial factorization of n.

How long does it take to factor $f(x)$?

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$. The mapping $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ with $\phi(g(\alpha))=g(m) \bmod n$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\boldsymbol{\alpha}]$ is.)

The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0(\bmod n)$. The mapping $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ with $\phi(g(\alpha))=g(m) \bmod n$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\alpha]$ is.) The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:
(i) $\prod_{g \in S} g(m)=y^{2}$ for some $y \in \mathbb{Z}$
(ii) $\prod_{g \in S} g(\alpha)=\beta^{2}$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x=\phi(\beta)$, we deduce
$x^{2} \equiv \phi(\beta)^{2} \equiv \phi\left(\beta^{2}\right) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^{2}(\bmod n)$.
Thus, we can hope to factor n by computing $\operatorname{gcd}(x+y, n)$.

