
Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
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e2
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with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).
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1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.
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For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S
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Take u = log n/ log B so that (if u < (log n)1�")

 (n, B) =  (n, n
1/u) = n exp (�(1 + o(1)) log n log u/ log B) .

The number of di↵erent a’s we expect to consider before we
get enough good s(a)’s in the algorithm is

(⇡(B) + 1) exp ((1 + o(1)) log n log u/ log B) .

We also expect  B steps to factor each value of s(a). This
means we should take

B = exp
⇣p

log n

p
log u/

p
2
⌘
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⇣p

log n

p
log log n/2

⌘
,

and the expected running time for Dixon’s Algorithm is around
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⇣
2
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p
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⌘
,

including Gaussian elimination.
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Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.



The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.
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p
7 = 2 +

1
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1
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1
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1

4 +
1

1 + ...

2
p
7 = 5.2915 . . .

Convergents:
2

1
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1
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2
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3
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, . . .

Comment: This is a rough estimate. A closer analysis would
give a running time of

exp
�
(2
p
2 + o(1))

p
logn

p
log logn

�
.

With some more work, Pomerance and later Vallée reduced the
constant 2

p
2 so that now we know it can be replaced to

p
4/3.
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Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).
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The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction
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1
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A Further Idea

An “early abort” strategy can be combined with the above
ideas to reduce the running time of the algorithms. Given
a, one stops trying to factor s(a) if it has no “small” prime
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The Quadratic Sieve Algorithm

Consider F (x) = (x + bp
nc)2 � n. Then |F (x)| ⌧ |x|pn

for 0 < |x|  p
n. The idea of the quadratic sieve algorithm

is to consider a in Dixon’s Algorithm to be of the form a =
x+bp

nc with |x| small. Here, we allow for s(a) to be negative
as in the CFRAC Algorithm. Thus, |s(a)| ⌧ |x|pn.
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polynomial that is used to obtain a’s to apply the approach
in Dixon’s algorithm. For p a small prime, solve

(⇤) F (x) ⌘ 0 (mod p).

If (⇤) has one solution, typically it has two, say x1 and x2.
If x ⌘ x1 or x2 modulo p and a = x + bp
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The Number Field Sieve

Preliminaries: Let n be a large positive integer, and let b be
an integer � 3 smaller than n. Suppose we write n in base
b, so

n = cdb
d + cd�1b

d�1 + · · · + c1b + c0,

for some positive integer d and each cj 2 {0, 1, . . . , b � 1}.
Set f(x) =

P
d

j=0 cjx
j. Then one of the following holds:

(i) The polynomial f(x) is irreducible over Q[x].

(ii) The polynomial f(x) = g(x)h(x) for g(x) and h(x) in Z[x],
and n = g(b)h(b) is a non-trivial factorization of n.

Comment 1: The conclusion (ii) holds for every non-trivial
factorization f(x) = g(x)h(x).

Comment 2: What does this mean if n is a prime?
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Let f be an irreducible monic polynomial in Z[x]. Let ↵ be a
root of f . Let m be an integer for which f(m) ⌘ 0 (mod n).
The mapping � : Z[↵] ! Zn with �(g(↵)) = g(m) mod n for
all g(x) 2 Z[x] is a homomorphism. (Recall what Z[↵] is.)
The idea is to find a set S of polynomials g(x) 2 Z[x] such
that both of the following hold:

(i)
Y

g2S
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2 for some y 2 Z
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Thus, we can hope to factor n by computing gcd(x + y, n).
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How long does it take to factor f(x)?
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