Dixon's Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon's Algorithm)

- Suppose

$$
\boldsymbol{n}=\boldsymbol{p}_{1}^{e_{1}} \boldsymbol{p}_{2}^{e_{2}} \cdots \boldsymbol{p}_{r}^{e_{r}}
$$

with p_{j} "odd" distinct primes and $e_{j} \in \mathbb{Z}^{+}$.

- Then $x^{2} \equiv 1\left(\bmod p_{j}^{e_{j}}\right)$ has two solutions which implies $x^{2} \equiv 1(\bmod n)$ has 2^{r} solutions.
- If x and y are random and $x^{2} \equiv y^{2}(\bmod n)$, then with probability $\left(2^{r}-2\right) / 2^{r}$ we can factor n (nontrivially) by considering $\operatorname{gcd}(x+y, n)$.

Dixon's Factoring Algorithm

1. Randomly choose a number $a>\sqrt{n}$ and compute $s(a)=a^{2} \bmod n$.
2. A bound $B=B(n)$ is chosen (specified momentarily). Determine if $s(a)$ has a prime factor $>B$. We choose a new a if it does. Otherwise, we obtain a complete factorization of $s(a)$.
3. Let p_{1}, \ldots, p_{t} denote the primes $\leq B$. We continue steps (1) and (2) until we obtain $t+1$ different a 's, say a_{1}, \ldots, a_{t+1}.
4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

Dixon's Factoring Algorithm

4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

For $i \in\{1,2, \ldots, t+1\}$, compute the vectors

$$
\vec{v}_{i}=\langle e(i, 1), e(i, 2), \ldots, e(i, t)\rangle \quad \bmod 2 .
$$

These vectors are linearly dependent modulo 2 . Use Gaussian elimination (or something better) to find a non-empty set $S \subseteq\{1,2, \ldots, t+1\}$ such that $\sum_{i \in S} \vec{v}_{i} \equiv$ $\overrightarrow{0}(\bmod 2)$. Calculate $x \in[0, n-1] \cap \mathbb{Z}$ (in an obvious way) satisfying

$$
\prod_{i \in S} s\left(a_{i}\right) \equiv x^{2} \quad(\bmod n)
$$

4. From the above, we have the factorizations

$$
s\left(a_{i}\right)=p_{1}^{e(i, 1)} p_{2}^{e(i, 2)} \cdots p_{t}^{e(i, t)} \quad \text { for } i \in\{1,2, \ldots, t+1\}
$$

For $i \in\{1,2, \ldots, t+1\}$, compute the vectors

$$
\vec{v}_{i}=\langle e(i, 1), e(i, 2), \ldots, e(i, t)\rangle \quad \bmod 2 .
$$

These vectors are linearly dependent modulo 2. Use Gaussian elimination (or something better) to find a non-empty set $S \subseteq\{1,2, \ldots, t+1\}$ such that $\sum_{i \in S} \vec{v}_{i} \equiv$ $\overrightarrow{0}(\bmod 2)$. Calculate $x \in[0, n-1] \cap \mathbb{Z}($ in an obvious way) satisfying

$$
\prod_{i \in S} s\left(a_{i}\right) \equiv x^{2} \quad(\bmod n)
$$

5. Calculate $y=\prod_{i \in S} a_{i} \bmod n$. Then $x^{2} \equiv y^{2}(\bmod n)$. Compute $\operatorname{gcd}(x+y, n)$. Hopefully, a nontrivial factorization of n results.

Small Example: $n=1189$ and $B=11$.

Homework: (due October 26 by class time) page 14 , problem (1) about (1) on page 12 page 16 on Dixon's Factoring Algorithm New Problem below (not in Notes)

New Problem.
(a) Calculate accurate to 4 decimal places the value of

$$
\lim _{x \rightarrow \infty} \frac{\mid\left\{n \leq x: \forall \text { primes } p \text { dividing } n, \text { we have } p \leq x^{1 / 3}\right\} \mid}{x}
$$

(b) Calculate accurate to 4 decimal places the value $a \in(0,1)$ such that

$$
\lim _{x \rightarrow \infty} \frac{\mid\left\{n \leq x: \forall \text { primes } p \text { dividing } n, \text { we have } p \leq x^{a}\right\} \mid}{x}=\frac{1}{2}
$$

$$
\text { Small Example: } n=1189 \text { and } B=11
$$

Homework: (due October 26 by class time) page 14 , problem (1) about (1) on page 12 page 16 on Dixon's Factoring Algorithm New Problem below (not in Notes)

Use Dixon's Algorithm to factor $n=80099$. Suppose $B=15$ and the a_{j} 's from the first three steps are the numbers 1392 , $58360,27258,39429,12556,42032$, and 1234. (Each of these squared $\bmod n$ should have all of its prime factors $\leq B$.)

MAPLE EXAMPLE

What bound B on the primes is optimal (or at least good)? What is the running time for Dixon's algorithm?

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi(x, \sqrt{x}) \sim(1-\log 2) x
\end{gathered}
$$

Theorem (Dickman). For u fixed, $\psi\left(x, x^{1 / u}\right) \sim \rho(u) x$ where $\rho(u)$ satisfies:
(i) $\rho(u)$ is continuous for $u>0$
(ii) $\rho(u) \rightarrow 0$ as $u \rightarrow \infty$
(iii) $\rho(u)=1$ for $0<u \leq 1$
(iv) for $u>1, \rho(u)$ satisfies the differential delay equation $u \rho^{\prime}(u)=-\rho(u-1)$.

What bound B on the primes is optimal (or at least good)? What is the running time for Dixon's algorithm?

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi(x, \sqrt{x}) \sim(1-\log 2) x
\end{gathered}
$$

Theorem (Dickman). For u fixed, $\psi\left(x, x^{1 / u}\right) \sim \rho(u) x$ where $\rho(u)$ satisfies:
(i) $\rho(u)$ is continuous for $u>0$
(ii) $\rho(u) \rightarrow 0$ as $u \rightarrow \infty$
(iii) $\rho(u)=1$ for $0<u \leq 1$
(iv) for $u>1, \rho(u)$ satisfies the differential delay equation $u \rho^{\prime}(u)=-\rho(u-1)$.

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Comment: The following estimate was obtained by deBruijn:

$$
\rho(u)=\exp (-(1+o(1)) u \log u) \approx \frac{1}{u^{u}}
$$

Maier showed that u does not need to be fixed in any of the above and instead one can take

$$
u<(\log x)^{1-\varepsilon} \quad \text { for any fixed } \varepsilon>0
$$

Note that $x^{1 / \log x}=e$.

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Comment: The following estimate was obtained by deBruijn:

$$
\rho(u)=\exp (-(1+o(1)) u \log u) \approx \frac{1}{u^{u}}
$$

Maier showed that u does not need to be fixed in any of the above and instead one can take

$$
u<(\log x)^{1-\varepsilon} \quad \text { for any fixed } \varepsilon>0
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$) $\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$. The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$)
$\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$.
The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B) .
$$

We also expect $\leq B$ steps to factor each value of $s(a)$.

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$)
$\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$.
The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$)
$\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$.
The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$)
$\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$.
The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

and the expected running time for Dixon's Algorithm is about

$$
\exp (2 \sqrt{\log n} \sqrt{\log \log n})
$$

including Gaussian elimination.

The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

and the expected running time for Dixon's Algorithm is about

$$
\exp (2 \sqrt{\log n} \sqrt{\log \log n})
$$

including Gaussian elimination.
Comment: This is a rough estimate. A closer analysis would give a running time of

$$
\exp ((2 \sqrt{2}+o(1)) \sqrt{\log n} \sqrt{\log \log n})
$$

With some more work, Pomerance and later Vallée reduced the constant $2 \sqrt{2}$ so that now we know it can be replaced to $\sqrt{4 / 3}$.

The CFRAC Algorithm

Every real number α can be written uniquely as a simple continued fraction

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots .}}}
$$

where $a_{0} \in \mathbb{Z}$ and $a_{j} \in \mathbb{Z}^{+}$for $j \geq 1$. The convergents obtained by truncating the above give approximations a / b to α satisfying

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{2}} .
$$

The CFRAC Algorithm

$$
\begin{array}{r}
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{2}} \\
\left|\alpha^{2}-\frac{a^{2}}{b^{2}}\right| \ll \frac{\alpha}{b^{2}} \\
\left|b^{2} \alpha^{2}-a^{2}\right| \ll \alpha
\end{array}
$$

Comment: Every convergent a / b of \sqrt{n} satisfies

$$
\left|b^{2} n-a^{2}\right|<2 \sqrt{n}
$$

The CFRAC Algorithm

Compute the numerators a_{j} of the convergents of \sqrt{n}. If the corresponding denominators are b_{j}, then $\left|a_{j}^{2}-n b_{j}^{2}\right|<2 \sqrt{n}$. Recall $s(a)=a^{2} \bmod n$. Repeat Dixon's algorithm but now

- Define $s(a)$ to be in $(-n / 2, n / 2]$ with $s(a) \equiv a^{2}$ $(\bmod n)$. Then $\left|s\left(a_{j}\right)\right|<2 \sqrt{n}$.
- Treat -1 (the possible negative sign in $s(a))$ as a prime.

How is the running time of the algorithm affected?
The chance that a_{j} has the property that all its prime divisors are $\leq B$ is $\psi(2 \sqrt{n}, B)$ instead of $\psi(n, B)$. The expected running time is

$$
O(\exp (\sqrt{2} \sqrt{\log n} \sqrt{\log \log n}))
$$

$$
\begin{gathered}
\psi(x, y)=|\{n \leq x: p \mid n \Longrightarrow p \leq y\}| \\
\psi\left(x, x^{1 / u}\right) \sim \rho(u) x
\end{gathered}
$$

Take $u=\log n / \log B$ so that (if $u<(\log n)^{1-\varepsilon}$)
$\psi(n, B)=\psi\left(n, n^{1 / u}\right)=n \exp (-(1+o(1)) \log n \log u / \log B)$.
The number of different a 's we expect to consider before we get enough good $s(a)$'s in the algorithm is

$$
(\pi(B)+1) \exp ((1+o(1)) \log n \log u / \log B)
$$

We also expect $\leq B$ steps to factor each value of $s(a)$. This means we should take

$$
B=\exp (\sqrt{\log n} \sqrt{\log u} / \sqrt{2})=\exp (\sqrt{\log n} \sqrt{\log \log n} / 2)
$$

and the expected running time for Dixon's Algorithm is about

$$
\exp (2 \sqrt{\log n} \sqrt{\log \log n})
$$

including Gaussian elimination.

The CFRAC Algorithm

Compute the numerators a_{j} of the convergents of \sqrt{n}. If the corresponding denominators are b_{j}, then $\left|a_{j}^{2}-n b_{j}^{2}\right|<2 \sqrt{n}$. Recall $s(a)=a^{2} \bmod n$. Repeat Dixon's algorithm but now

- Define $s(a)$ to be in $(-n / 2, n / 2]$ with $s(a) \equiv a^{2}$ $(\bmod n)$. Then $\left|s\left(a_{j}\right)\right|<2 \sqrt{n}$.
- Treat -1 (the possible negative sign in $s(a))$ as a prime.

How is the running time of the algorithm affected?
The chance that a_{j} has the property that all its prime divisors are $\leq B$ is $\psi(2 \sqrt{n}, B)$ instead of $\psi(n, B)$. The expected running time is

$$
O(\exp (\sqrt{2} \sqrt{\log n} \sqrt{\log \log n}))
$$

The CFRAC Algorithm

Compute the numerators a_{j} of the convergents of \sqrt{n}. If the corresponding denominators are b_{j}, then $\left|a_{j}^{2}-n b_{j}^{2}\right|<2 \sqrt{n}$. Recall $s(a)=a^{2} \bmod n$. Repeat Dixon's algorithm but now

- Define $s(a)$ to be in $(-n / 2, n / 2]$ with $s(a) \equiv a^{2}$ $(\bmod n)$. Then $\left|s\left(a_{j}\right)\right|<2 \sqrt{n}$.
- Treat -1 (the possible negative sign in $s(a))$ as a prime.

The chance that a_{j} has the property that all its prime divisors are $\leq B$ is $\psi(2 \sqrt{n}, B)$ instead of $\psi(n, B)$. The expected running time is

$$
O(\exp (\sqrt{2} \sqrt{\log n} \sqrt{\log \log n}))
$$

Comment: Brillhart and Morrison (1970) used the CFRAC algorithm to factor $F_{7}=2^{2^{7}}+1$ (having 39 digits).

A Further Idea

An "early abort" strategy can be combined with the above ideas to reduce the running time of the algorithms.

A Further Idea

An "early abort" strategy can be combined with the above ideas to reduce the running time of the algorithms. Given a, one stops trying to factor $s(a)$ if it has no "small" prime factors.

A Further Idea

An "early abort" strategy can be combined with the above ideas to reduce the running time of the algorithms. Given a, one stops trying to factor $s(a)$ if it has no "small" prime factors. This leads to a running time of the form

$$
O(\exp (\sqrt{3 / 2} \sqrt{\log n} \sqrt{\log \log n}))
$$

