
Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).
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1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
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Q
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Compute gcd(x + y, n). Hopefully, a nontrivial factor-
ization of n results.



Small Example: n = 1189 and B = 11.

Homework: (due October 25 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

smallest prime divisor 1238926361552897

Homework: (due October 26 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
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Small Example: n = 1189 and B = 11.

Small Example: n = 1189 and B = 11.

Homework: (Due Friday, March 21, by class)

Use Dixon’s Algorithm to factor n = 80099. Suppose B = 15
and the aj’s from the first three steps are the numbers 1392,
58360, 27258, 39429, 12556, 42032, and 1234. (Each of these
squared mod n should have all of its prime factors  B.)
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page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)
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(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
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What bound B on the primes is optimal (or at least good)?

What is the running time for Dixon’s algorithm?

 (x, y) = |{n  x : p|n =) p  y}|

 
�
x,

p
x

�
⇠ (1 � log 2)x

Theorem (Dickman). For u fixed,  (x, x
1/u) ⇠ ⇢(u)x where

⇢(u) satisfies:

(i) ⇢(u) is continuous for u > 0

(ii) ⇢(u) ! 0 as u ! 1

(iii) ⇢(u) = 1 for 0 < u  1

(iv) for u > 1, ⇢(u) satisfies the di↵erential delay equa-
tion u⇢

0(u) = �⇢(u � 1).

Comment: The following estimate was obtained by deBruijn:

⇢(u) = exp (�(1 + o(1))u log u) ⇡
1

uu
.

Maier showed that u does not need to be fixed in any of the
above and instead one can take

u < (log x)1�" for any fixed " > 0.
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constant 2

p
2 so that now we know it can be replaced to

p
4/3.



The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.



What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying ����↵ �

a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

What if we lived on a di↵erent planet?

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...
where a0 2 Z and aj 2 Z+ for j � 1. The convergents
obtained by truncating the above give approximations a/b to
↵ satisfying

����↵ �
a

b

���� <
1

b2

����↵
2 �

a
2

b2

���� ⌧
↵

b2

��b2
↵

2 � a
2
�� ⌧ ↵

Comment: Every convergent a/b of
p

n satisfies
��b2

n � a
2
�� < 2

p
n.

The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.



The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2
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� nb

2
j
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Recall aaaaaaaaaaaa
s(a) = a

2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O
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2
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log n

p
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⌘
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Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the negative sign in s(a) if it exists) as a
prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).

Compute the numerators aj of the convergents of
p

n. If the
corresponding denominators are bj, then |a2

j
� nb

2
j
| < 2

p
n.

Recall s(a) = a
2 mod n. Repeat Dixon’s algorithm but now

• Define s(a) to be in (�n/2, n/2] with s(a) ⌘ a
2

(mod n). Then |s(aj)| < 2
p

n.

• Treat �1 (the possible negative sign in s(a)) as a prime.

How is the running time of the algorithm a↵ected?

The chance that aj has the property that all its prime divisors
are  B is  (2

p
n, B) instead of  (n, B). The expected

running time is

O

⇣
exp(

p
2
p

log n

p
log log n)

⌘
.

Comment: Brillhart and Morrison (1970) used the CFRAC
algorithm to factor F7 = 227

+ 1 (having 39 digits).



What bound B on the primes is optimal (or at least good)?

What is the running time for Dixon’s algorithm?

 (x, y) = |{n  x : p|n =) p  y}|

 
�
x,

p
x

�
⇠ (1 � log 2)x

Theorem (Dickman). For u fixed,  (x, x
1/u) ⇠ ⇢(u)x where

⇢(u) satisfies:

(i) ⇢(u) is continuous for u > 0

(ii) ⇢(u) ! 0 as u ! 1

(iii) ⇢(u) = 1 for 0 < u  1

(iv) for u > 1, ⇢(u) satisfies the di↵erential delay equa-
tion u⇢

0(u) = �⇢(u � 1).

Comment: The following estimate was obtained by deBruijn:

⇢(u) = exp (�(1 + o(1))u log u) ⇡
1

uu
.

Maier showed that u does not need to be fixed in any of the
above and instead one can take

u < (log x)1�" for any fixed " > 0.
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including Gaussian elimination.
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The CFRAC Algorithm

Every real number ↵ can be written uniquely as a simple
continued fraction

↵ = a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 2 Z and the other aj 2 Z+. The convergents ob-
tained by truncating the expression above give approxima-
tions a/b to ↵ satisfying

����↵ �
a

b

���� <
1

b2
.



A Further Idea

An “early abort” strategy can be combined with the above
ideas to reduce the running time of the algorithms. Given
a, one stops trying to factor s(a) if it has no “small” prime
factors. This leads to a running time of the form
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