vart I. Basic Arithmetic vart II. Primality Testing Part III. Factoring Integers

Problem. Given a composite integer $n>1$, find some nontrivial factorization of n, that is $n=u v$ where each of u and v is an integer >1.

Note: One can be pretty confident about whether a large integer n is composite without knowing a nontrivial factorization.

Expectation. A random number n will have around $\log \log n$ prime factors.

Theorem. If $\omega(n)$ is the number of distinct prime factors of n, then

$$
\sum_{n \leq x}(\omega(n)-\log \log x)^{2} \ll x \log \log x
$$

Corollary. For almost all n, we have $(*) \quad|\omega(n)-\log \log n| \leq(\log \log n)^{2 / 3}$.

$$
\sum_{n \leq x}(\omega(n)-\log \log x)^{2} \ll x \log \log x
$$

Corollary. For almost all n, we have

$$
\begin{equation*}
|\omega(n)-\log \log n| \leq(\log \log n)^{2 / 3} \tag{*}
\end{equation*}
$$

Explanation of Corollary:

- Assume there are εx different $n \leq x$ for which $(*)$ does not hold, where $\varepsilon>0$ is fixed and x is large.
- All but $\leq \sqrt{x}$ of these are $>\sqrt{x}$.
- For such n, we have

$$
\begin{aligned}
& |\log \log n-\log \log x|<1 \\
& \quad \Longrightarrow|\omega(n)-\log \log x| \geq(1 / 2)(\log \log x)^{2 / 3}
\end{aligned}
$$

- This contradicts the theorem.

Expectation 2. "Most" numbers n have a prime factor $>\sqrt{n}$.

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O(1 / \log x)
$$

Why does the sum of the reciprocals of the primes diverge and where is this coming from (roughly)?

What does this have to do with Expectation 2?

$$
\sum_{n \leq x} \sum_{\substack{\sqrt{x}<p \leq x \\ p \mid n}} 1
$$

$$
\log 2=0.69314718 \ldots
$$

Expectation 2. "Most" numbers n have a prime factor $>\sqrt{n}$.

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O(1 / \log x)
$$

Why does the sum of the reciprocals of the primes diverge and where is this coming from (roughly)?

What does this have to do with Expectation 2?

$$
\sum_{\substack{n \leq x}} \sum_{\substack{x \\ \sqrt{x}<p \leq x \\ p \mid n}} 1=\sum_{\substack{\sqrt{x}<p \leq x}} \sum_{\substack{n \leq x \\ p \mid n}} 1 \geq(\log 2) x+O\left(\frac{x}{\log x}\right)
$$

$$
\log 2=0.69314718 \ldots
$$

Comment: A random number n will have small prime factors, so it is reasonable to first do a quick "sieve" to determine if this is the case.

How many integers $n \leq x$ do not have a prime factor $\leq z ?$

$$
\text { On the order of } \frac{x}{\log z}
$$

Pollard's p-1 Factoring Algorithm

For $k \leq \min \left\{10^{7}, n-1\right\}$, check if $\operatorname{gcd}\left(2^{k!}-1 \bmod n, n\right)>1$.

Idea: If n has some prime factor p that is not too large and $p-1$ has fairly small prime factors, then probably $p-1$ divides some k ! above and hence the gcd. Further, it is likely that all primes dividing n will not simultaneously divide the first occurrence of such a k.
> $\mathrm{n}:=31415926535897932384626433832795028841971693993751$:
> check:=0:
for k from 1 to 25 while check=0 do
$m:=2 \alpha^{\wedge}(k!)-1 \bmod n:$
thegcd := $\operatorname{gcd}(m, n):$
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
1657
$\mathrm{n}:=31415926535897932384626433832795028841971693993751$:
> check:=0:
for k from 1 to 25 while check=0 do
$\mathrm{m}:=2 \alpha^{\wedge}(\mathrm{k}!)-1 \bmod n:$
thegcd := $\operatorname{gcd}(m, n)$:
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
1657
> $\mathrm{n}:=31415926535897932384626433832795028841971693993751$:
$>$ check: $=0$:
for k from 1 to 25 while check=0 do
$m:=2 \&^{\wedge}(k!)-1 \bmod n:$
thegcd $:=\operatorname{gcd}(m, n):$
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
1657
> $\mathrm{n}:=\mathrm{n} / 1657$;

$$
n:=18959521144174974281609193622688611250435542543
$$

$>$ check: $=0$:
for k from 1 to 8000 while check=0 do
$m:=2 \&^{\wedge}(k!)-1 \bmod n:$
thegcd $:=\operatorname{gcd}(m, n):$
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
2767321
> $\mathrm{n}:=31415926535897932384626433832795028841971693993751$:
$>$ check: $=0$:
for k from 1 to 25 while check=0 do
$m:=2 \&^{\wedge}(k!)-1 \bmod n:$
thegcd $:=\operatorname{gcd}(m, n):$
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
1657
> $\mathrm{n}:=\mathrm{n} / 1657$;

$$
n:=18959521144174974281609193622688611250435542543
$$

> check:=0:
for k from 1 to 8000 while check=0 do
$\mathrm{m}:=2 \&^{\wedge}(k!)-1 \bmod n:$
thegcd $:=\operatorname{gcd}(m, n):$
if thegcd > 1 then lprint(thegcd): check:=1: fi: od:
2767321
> ifactor(2767320)

$$
(2)^{3}(3)^{2}(5)(7687)
$$

Pollard's ρ-Algorithm

This method typically finds a prime factor p of n in about \sqrt{p} steps (so $O\left(n^{1 / 4}\right)$ steps), and small prime factors of n will usually be found first.

A couple of relevant asides:
The birthday problem and a card trick.

$$
0.9053761649
$$

$$
\begin{aligned}
& >\operatorname{product}\left(\frac{k}{365 .}, k=(365-8) . .365\right) \\
& 0.9053761649 \\
& >\operatorname{product}\left(\frac{k}{365 .}, k=(365-22) . .365\right) \\
& 0.4927027640 \\
& >\operatorname{product}\left(\frac{k}{366}, k=(366-22) . .366\right) \\
& 0.4936769876 \\
& >\operatorname{product}\left(\frac{k}{365 .}, k=(365-21) . .365\right) \\
& 0.5243046907
\end{aligned}
$$

Pollard's ρ-Algorithm

This method typically finds a prime factor p of n in about \sqrt{p} steps (so $O\left(n^{1 / 4}\right)$ steps), and small prime factors of n will usually be found first.

A couple of relevant asides:
The birthday problem and a card trick.

And what if birthdays are not random?

Pollard's ρ-Algorithm

More Background: Suppose we roll a fair die with " n faces" k times. If $k \geq 2 \sqrt{n}+2$, then with probability $>1 / 2$ two of the numbers rolled will be the same.

$$
\prod_{j=1}^{k-1}\left(\frac{n-j}{n}\right) \leq\left(1-\frac{\sqrt{n}}{n}\right)^{\sqrt{n}} \leq \frac{1}{e}
$$

Pollard's ρ-Algorithm

Idea with a hiccup:

- Take $f(x)=x^{2}+1$, and define $f^{(1)}(x)=f(x)$ and $f^{(j+1)}(x)=f\left(f^{(j)}(x)\right)$ for $j \geq 1$.
- Compute $a_{j}=f^{(j)}(1) \bmod n$ for $1 \leq j \leq k$ where $\boldsymbol{k} \approx \sqrt[4]{\boldsymbol{n}}$ (or less).
- Compute $\operatorname{gcd}\left(a_{i}-a_{j}, n\right)$ for $1 \leq i<j \leq k$ to get a likely factorization of n.

Why does this likely lead to a factorization of n ?
What's the hiccup?

