PRIMALITY TESTING IN POLYNOMIAL TIME

A Theorem of M. AGRAWAL, N. KAYAL, AND N. SAXENA Department of Computer Science & Engineering Indian Institute of Technology in Kanpur

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

What does this mean?

- The difference $(x a)^n (x^n a)$ is an element in the ideal $(x^r 1, n)$ in the ring $\mathbb{Z}[x]$.
- It is the same as the assertion
 Rem ((x a)ⁿ (xⁿ a), x^r 1, x) mod n = 0 in MAPLE.

> Rem((x-2)^15-(x^15-2), x^3-1, x) mod 15
$$12x^2+9x+9$$

r denotes a prime of size $\ll \log n$

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

Idea for Checking this Congruence:

- Write $n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_{t-1}} + 2^{k_t}$, where $k_1 < k_2 < \dots < k_t$.
- Compute $f_j(x) = (x a)^{2^j} \pmod{x^r 1, n}$ for $j \in \{0, 1, \dots, k_t\}$ successively by squaring.
- Compute $\prod_{j=1}^{t} f_{k_j} \pmod{x^r 1, n}$ and compare to $x^{n \mod r} (a \mod n)$.

 $(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$

$$n \text{ prime } \implies (*) \text{ holds}$$

$$\stackrel{\checkmark}{\Longrightarrow} n \text{ prime}$$

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Idea for an Algorithm Assuming Conjecture:

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Idea for an Algorithm Assuming Conjecture: Suppose *n* is large.

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Idea for an Algorithm Assuming Conjecture: Suppose *n* is large. Since

$$\prod_{p \le x} p \ge e^{0.8x} \quad \text{for } x \ge 67,$$

there is a prime $r \in [2, 5 \log n]$ not dividing $n^2 - 1$.

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Idea for an Algorithm Assuming Conjecture: Suppose *n* is large. Since

$$\prod_{p \le x} p \ge e^{0.8x} \quad \text{for } x \ge 67,$$

there is a prime $r \in [2, 5 \log n]$ not dividing $n^2 - 1$. If r divides n, then n is composite.

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Idea for an Algorithm Assuming Conjecture: Suppose *n* is large. Since

$$\prod_{p \le x} p \ge e^{0.8x} \quad \text{for } x \ge 67,$$

there is a prime $r \in [2, 5 \log n]$ not dividing $n^2 - 1$. If r divides n, then n is composite. Otherwise, check if (*) holds to determine whether n is a prime.

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

What if the Conjecture is not true?

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Adleman and Heath-Brown, using Fouvry's result, showed for the first time that the first case of Fermat's Last Theorem holds for infinitely many prime exponents.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Fourry showed that there are infinitely many primes p for which the largest prime factor of p - 1 exceeds $p^{2/3}$.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Fouvry showed that there are infinitely many primes p for which the largest prime factor of p - 1 exceeds $p^{2/3}$. More precisely, he showed ...

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Notation.

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Notation. $\pi(x) = |\{p: p \text{ prime } \leq x\}|$

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Notation. $\pi(x) = |\{p: p \text{ prime } \leq x\}|$ $\pi_s(x) = |\{p: p \text{ prime } \leq x, P(p-1) > p^{2/3}\}|$

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Notation. $\pi(x) = |\{p : p \text{ prime } \leq x\}|$ $\pi_s(x) = |\{p : p \text{ prime } \leq x, P(p-1) > p^{2/3}\}|$ \uparrow "s" as in special

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Notation. $\pi(x) = |\{p : p \text{ prime } \leq x\}|$ $\pi_s(x) = |\{p : p \text{ prime } \leq x, \underbrace{P(p-1)}_{\uparrow} > p^{2/3}\}|$ \uparrow "s" as in special P(n) is the largest prime factor of n

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Lemma 1. There is a constant c > 0 and x_0 such that

$$\pi_s(x) \geq c rac{x}{\log x} \quad ext{for all } x \geq x_0.$$

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Classical.
$$\pi(x) \leq \frac{2x}{\log x}$$
 for x large

- Etienne Fouvry, *Théorèm de Brun-Titchmarsh, application au théorèm de Fermat*, Invent. Math **79** (1985), 383–407.
- Leonard Adleman and D. Roger Heath-Brown, *The first* case of Fermat's Last Theorem, Invent. Math 79 (1985), 409–416.

Lemma 1.
$$\pi_s(x) \ge \frac{cx}{\log x}$$
 for x large

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$q \ge 4\sqrt{r}\log n \quad ext{and} \quad q | \underbrace{\operatorname{ord}_r(n)}_{\uparrow}.$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof.

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large.

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$\pi_s(c_2(\log n)^6) - \pi_s(c_1(\log n)^6)$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$\pi_s(c_2(\log n)^6) - \pi_s(c_1(\log n)^6) \ \geq \pi_s(c_2(\log n)^6) - \pi(c_1(\log n)^6)$$

Classical.
$$\pi(x) \leq \frac{2x}{\log x}$$
 for x large

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$egin{aligned} &\pi_sig(c_2(\log n)^6ig) - \pi_sig(c_1(\log n)^6ig) \ &\geq \pi_sig(c_2(\log n)^6ig) - \piig(c_1(\log n)^6ig) \ &\geq rac{cc_2(\log n)^6}{7\log\log n} \end{aligned}$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$egin{split} &\pi_sig(c_2(\log n)^6ig) - \pi_sig(c_1(\log n)^6ig)\ &\geq \pi_sig(c_2(\log n)^6ig) - \piig(c_1(\log n)^6ig)\ &\geq rac{cc_2(\log n)^6}{7\log\log n} - rac{c_1(\log n)^6}{3\log\log n} \end{split}$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

 $egin{split} \pi_sig(c_2(\log n)^6ig) &- \pi_sig(c_1(\log n)^6ig)\ &\geq \pi_sig(c_2(\log n)^6ig) - \piig(c_1(\log n)^6ig)\ &\geq ig(rac{cc_2}{7} - rac{c_1}{3}ig)rac{(\log n)^6}{\log\log n} \end{split}$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

$$egin{aligned} &\pi_sig(c_2(\log n)^6ig) - \pi_sig(c_1(\log n)^6ig) \ &\geq \pi_sig(c_2(\log n)^6ig) - \piig(c_1(\log n)^6ig) \ &\geq c' & rac{(\log n)^6}{\log\log n}. \end{aligned}$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

$$\pi_sig(c_2(\log n)^6ig)-\pi_sig(c_1(\log n)^6ig)\geq rac{c'(\log n)^6}{\log\log n}.$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

$$\pi_s(c_2(\log n)^6) - \pi_s(c_1(\log n)^6) \geq \frac{c'(\log n)^6}{\log\log n}.$$

If r is a special prime in I, then r - 1 has a prime factor q satisfying

$$q \geq r^{2/3}$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

$$\pi_sig(c_2(\log n)^6ig)-\pi_sig(c_1(\log n)^6ig)\geq rac{c'(\log n)^6}{\log\log n}.$$

If r is a special prime in I, then r - 1 has a prime factor q satisfying

$$q \ge r^{2/3} = \sqrt{r} \, r^{1/6}$$

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

Proof. We may suppose that *n* is large. By Lemma 1, the number of special primes in *I* is at least

$$\pi_s(c_2(\log n)^6) - \pi_s(c_1(\log n)^6) \geq \frac{c'(\log n)^6}{\log\log n}.$$

If r is a special prime in I, then r - 1 has a prime factor q satisfying

$$q\geq r^{2/3}=\sqrt{r}\,r^{1/6}\geq 4\sqrt{r}\log n.$$

 $q \geq 4\sqrt{r}\log n$ and $q|\operatorname{ord}_r(n)$.

Proof. There are $\geq c'(\log n)^6 / \log \log n$ primes r in I with r-1 having a prime factor $q \geq r^{2/3} \geq 4\sqrt{r} \log n$.

 $q \geq 4\sqrt{r}\log n$ and $q|\operatorname{ord}_r(n)$.

Proof. There are $\geq c'(\log n)^6 / \log \log n$ primes r in I with r-1 having a prime factor $q \geq r^{2/3} \geq 4\sqrt{r} \log n$. We want at least one such q to divide $\operatorname{ord}_r(n)$.

 $q \geq 4\sqrt{r}\log n$ and $q|\operatorname{ord}_r(n)$.

Proof. There are $\geq c'(\log n)^6 / \log \log n$ primes r in I with r-1 having a prime factor $q \geq r^{2/3} \geq 4\sqrt{r} \log n$. We want at least one such q to divide $\operatorname{ord}_r(n)$. Note that if $q \nmid \operatorname{ord}_r(n)$, then

 $\operatorname{ord}_r(n) \leq r^{1/3} \leq M$ where $M = c_2^{1/3} (\log n)^2$.

 $\operatorname{ord}_{r}(n) \leq r^{1/3} \leq M$ where $M = c_{2}^{1/3} (\log n)^{2}$.

ord_r(n) $\leq r^{1/3} \leq M$ where $M = c_2^{1/3} (\log n)^2$.

Hence, r divides

$$\prod_{1\leq j\leq M}(n^j-1)\leq n^{M^2}.$$

 $\operatorname{ord}_{r}(n) \leq r^{1/3} \leq M$ where $M = c_{2}^{1/3} (\log n)^{2}$.

Hence, r divides

$$\prod_{1\leq j\leq M} (n^j-1)\leq n^{M^2}.$$

If there are k primes dividing the product, then

 $2^k \leq n^{M^2}$

 $\operatorname{ord}_r(n) \leq r^{1/3} \leq M$ where $M = c_2^{1/3} (\log n)^2$.

Hence, r divides

$$\prod_{1\leq j\leq M} (n^j-1)\leq n^{M^2}.$$

If there are k primes dividing the product, then

$$2^k \leq n^{M^2} \implies k = \mathcal{O}ig(M^2 \log nig) = \mathcal{O}ig((\log n)^5ig).$$

 $\operatorname{ord}_r(n) \leq r^{1/3} \leq M$ where $M = c_2^{1/3} (\log n)^2$.

Hence, r divides

$$\prod_{1\leq j\leq M}(n^j-1)\leq n^{M^2}.$$

If there are k primes dividing the product, then

$$2^k \leq n^{M^2} \implies k = \mathcal{O}ig(M^2 \log nig) = \mathcal{O}ig((\log n)^5ig).$$

Hence, for at least one prime $r \in I$ as above . . .

$$q \ge 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

$$q \geq 4\sqrt{r}\log n$$
 and $q|\operatorname{ord}_r(n)$.

So what's the algorithm?

- 1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;
- 3. while (r < n) $\{$
- 4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r+1;$

10.}

11. for a=1 to $2\sqrt{r}\log n$

1	Lemma 2. There are positive constants c_1 and c_2 such that the interval $I = (c_1(\log n)^6, c_2(\log n)^6]$ contains a prime r with $r - 1$ having a prime factor q satisfying $q \ge 4\sqrt{r} \log n$ and $q \operatorname{ord}_r(n)$.
5	. if (r is prime)
6	. let q be the largest prime factor of $r-1;$
7	. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q} ot\equiv 1 \pmod{r}$)
8	• break;
9	. $r \rightarrow r+1$; $q \operatorname{ord}_r(n)$
10	• }
11	. for $a=1$ to $2\sqrt{r}\log n$
12	. if ($(x-a)^n \not\equiv x^n - a \pmod{x^r - 1}, n$) output COMPOSITE
13	.output PRIME;

- 1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;
- 3. while (r < n) $\{$
- 4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r+1;$

10.}

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) { Lemma 2 \Longrightarrow loop ends with $r \ll (\log n)^6$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (
$$r$$
 is prime)

6. let q be the largest prime factor of r-1;

7. if $(q \ge 4\sqrt{r}\log n)$ and $(n^{(r-1)/q} \not\equiv 1 \pmod{r})$ 8. break;

⁹ Lemma 2. There are positive constants c_1 and c_2 such ¹⁰ that the interval $I = (c_1(\log n)^6, c_2(\log n)^6]$ contains ¹¹ a prime r with r - 1 having a prime factor q satisfying ¹² $q \ge 4\sqrt{r}\log n$ and $q|\operatorname{ord}_r(n)$.

TE;

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) { Lemma 2 \Longrightarrow loop ends with $r \ll (\log n)^6$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (
$$r$$
 is prime)

6. let q be the largest prime factor of r-1;

7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
ot \equiv 1 \pmod{r}$)

8. break;

9. $r \rightarrow r + 1$; Note that, after the while loop, r = n is possible. 10.}

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) { Lemma 2 \Longrightarrow loop ends with $r \ll (\log n)^6$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (
$$r$$
 is prime)

6. let q be the largest prime factor of r-1;

7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
ot\equiv 1 \pmod{r}$)

8. break;

9. $r \rightarrow r + 1$; Note that, after the while loop, r = n is possible. 10. } Then n is prime, and the algorithm indicates it is.

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) { Lemma 2 \Longrightarrow loop ends with $r \ll (\log n)^6$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (
$$r$$
 is prime)

6. let q be the largest prime factor of r-1;

7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
ot\equiv 1 \pmod{r}$)

8. break;

9. $r \rightarrow r + 1$; IMPORTANT:

10.}

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) { Lemma 2 \Longrightarrow loop ends with $r \ll (\log n)^6$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (
$$r$$
 is prime)

6. let q be the largest prime factor of r-1;

7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q} \not\equiv 1 \pmod{r}$)

8. break;

9. $r \rightarrow r + 1$; IMPORTANT: In general, if n is a prime, then the algorithm indicates it is

10. } algorithm indicates it is.

11. for a=1 to $2\sqrt{r}\log n$

- 1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;
- 3. while (r < n) $\{$
- 4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r+1;$

10.}

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

- 3. while (r < n) $\{$
- 4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r+1$; Since the while loop ends with $r \ll (\log n)^6$, the running time is polynomial in $\log n$.

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

- 3. while (r < n) $\{$
- 4. if ($gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. If ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r+1;$

10.}

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

3. while (r < n) $\{$

4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;

5. if (r is prime)

6. let q be the largest prime factor of r-1;

7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q} \not\equiv 1 \pmod{r}$)

8. break; 9. $r \rightarrow r+1$; 10. } Note that n does not have any prime divisors $\leq r$.

11. for a=1 to $2\sqrt{r}\log n$

1. if (n is of the form a^b , b>1) output COMPOSITE; 2. r=2;

- 3. while (r < n) $\{$
- 4. if ($\gcd(n,r) \neq 1$) output COMPOSITE;
- 5. if (r is prime)
- 6. let q be the largest prime factor of r-1;
- 7. if ($q \geq 4\sqrt{r}\log n$) and ($n^{(r-1)/q}
 ot\equiv 1 \pmod{r}$)
- 8. break;
- 9. $r \rightarrow r + 1$; PROBLEM: Show that if n is composite, then the algorithm indicates it is.

11. for a=1 to $2\sqrt{r}\log n$

SITUATION:

 $n ext{ is composite, } r ext{ is a prime}$ $q ext{ is a prime, } q \ge 4\sqrt{r} \log n$ $q \nmid n, \quad q \mid (r-1), \quad q \mid \operatorname{ord}_r(n)$

WANT: There is an integer a with $1 \le a \le 2\sqrt{r} \log n$ such that

 $(x-a)^n \not\equiv (x^n-a) \pmod{x^r-1}, n$).