Primality Testing in Polynomial Time

A Theorem of
M. Agrawal, N. Kayal, and N. Saxena

Department of Computer Science \& Engineering Indian Institute of Technology in Kanpur

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

What does this mean?

- The difference $(x-a)^{n}-\left(x^{n}-a\right)$ is an element in the ideal $\left(x^{r}-1, n\right)$ in the ring $\mathbb{Z}[x]$.
- It is the same as the assertion
$\operatorname{Rem}\left((x-a)^{n}-\left(x^{n}-a\right), x^{r}-1, x\right) \bmod n=0$ in MAPLE.
$>\operatorname{Rem}\left((x-2)^{\wedge} 15-\left(x^{\wedge} 15-2\right), x^{\wedge} 3-1, x\right) \bmod 15$

$$
12 x^{2}+9 x+9
$$

r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

Idea for Checking this Congruence:

- Write $n=2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{t-1}}+2^{k_{t}}$, where $k_{1}<k_{2}<\cdots<k_{t}$.
- Compute $f_{j}(x)=(x-a)^{2^{j}}\left(\bmod x^{r}-1, n\right)$ for $j \in\left\{0,1, \ldots, k_{t}\right\}$ successively by squaring.
- Compute $\prod_{j=1}^{t} f_{k_{j}}\left(\bmod x^{r}-1, n\right)$ and compare to $x^{\boldsymbol{n} \bmod r}-(a \bmod n)$.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then \boldsymbol{n} is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.
n prime $\xlongequal{\checkmark}(*)$ holds
(*) holds $\stackrel{?}{\Longrightarrow} n$ prime

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then n is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Idea for an Algorithm Assuming Conjecture:

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then n is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Idea for an Algorithm Assuming Conjecture: Suppose n is large.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then \boldsymbol{n} is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Idea for an Algorithm Assuming Conjecture: Suppose n is large. Since

$$
\prod_{p \leq x} p \geq e^{0.8 x} \quad \text { for } x \geq 67
$$

there is a prime $r \in[2,5 \log n]$ not dividing $n^{2}-1$.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then n is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Idea for an Algorithm Assuming Conjecture: Suppose n is large. Since

$$
\prod_{p \leq x} p \geq e^{0.8 x} \quad \text { for } x \geq 67
$$

there is a prime $r \in[2,5 \log n]$ not dividing $n^{2}-1$. If \boldsymbol{r} divides \boldsymbol{n}, then \boldsymbol{n} is composite.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where \boldsymbol{r} is prime. Then \boldsymbol{n} is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Idea for an Algorithm Assuming Conjecture: Suppose \boldsymbol{n} is large. Since

$$
\prod_{p \leq x} p \geq e^{0.8 x} \quad \text { for } x \geq 67
$$

there is a prime $r \in[2,5 \log n]$ not dividing $n^{2}-1$. If \boldsymbol{r} divides \boldsymbol{n}, then \boldsymbol{n} is composite. Otherwise, check if ($*$) holds to determine whether \boldsymbol{n} is a prime.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then n is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

What if the Conjecture is not true?

Two Important Papers in the Literature:

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Adleman and Heath-Brown, using Fouvry's result, showed for the first time that the first case of Fermat's Last Theorem holds for infinitely many prime exponents.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Fouvry showed that there are infinitely many primes \boldsymbol{p} for which the largest prime factor of $p-1$ exceeds $p^{2 / 3}$.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Fouvry showed that there are infinitely many primes \boldsymbol{p} for which the largest prime factor of $p-1$ exceeds $p^{2 / 3}$. More precisely, he showed...

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Notation.

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Notation. $\quad \pi(x)=\mid\{p: p$ prime $\leq \boldsymbol{x}\} \mid$

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Notation. $\quad \pi(x)=\mid\{p: p$ prime $\leq x\} \mid$

$$
\pi_{s}(x)=\mid\left\{p: p \text { prime } \leq x, P(p-1)>p^{2 / 3}\right\} \mid
$$

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Notation. $\quad \pi(x)=\mid\{p: p$ prime $\leq \boldsymbol{x}\} \mid$

$$
\begin{aligned}
& \pi_{s}(x)=\mid\left\{p: p \text { prime } \leq x, P(p-1)>p^{2 / 3}\right\} \mid \\
& \text { " } s \text { " as in special }
\end{aligned}
$$

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Notation. $\quad \pi(x)=\mid\{p: p$ prime $\leq \boldsymbol{x}\} \mid$
$\underset{\sim}{\pi_{s}}(x)=\mid\{p: p$ prime $\leq x, \underbrace{P(p-1)}_{\uparrow}>p^{2 / 3}\} \mid$
"s" as in special $\boldsymbol{P}(\boldsymbol{n})$ is the largest prime factor of \boldsymbol{n}

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Lemma 1. There is a constant $\boldsymbol{c}>\boldsymbol{0}$ and \boldsymbol{x}_{0} such that

$$
\pi_{s}(x) \geq c \frac{x}{\log x} \quad \text { for all } x \geq x_{0}
$$

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Classical. $\pi(x) \leq \frac{2 x}{\log x}$ for x large

Two Important Papers in the Literature:

- Etienne Fouvry, Théorèm de Brun-Titchmarsh, application au théorèm de Fermat, Invent. Math 79 (1985), 383-407.
- Leonard Adleman and D. Roger Heath-Brown, The first case of Fermat's Last Theorem, Invent. Math 79 (1985), 409-416.

Lemma 1. $\pi_{s}(x) \geq \frac{c x}{\log x}$ for x large

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right.$] contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right.$] contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
\begin{aligned}
q \geq 4 \sqrt{r} & \log n \quad \text { and } \quad q \mid \underbrace{\operatorname{ord}_{r}(n)}_{\uparrow} \\
& n^{s} \equiv 1(\bmod r) \Longrightarrow q \mid s
\end{aligned}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right.$] contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof.

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large.

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in I is at least

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in I is at least

$$
\pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right)
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in \boldsymbol{I} is at least

$$
\begin{aligned}
& \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \\
& \quad \geq \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi\left(c_{1}(\log n)^{6}\right)
\end{aligned}
$$

Classical. $\quad \pi(x) \leq \frac{2 x}{\log x}$ for x large

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in \boldsymbol{I} is at least

$$
\begin{aligned}
& \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \\
& \quad \geq \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi\left(c_{1}(\log n)^{6}\right) \\
& \quad \geq \frac{c c_{2}(\log n)^{6}}{7 \log \log n}
\end{aligned}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in \boldsymbol{I} is at least

$$
\begin{aligned}
\pi_{s}\left(c_{2}\right. & \left.(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \\
& \geq \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi\left(c_{1}(\log n)^{6}\right) \\
& \geq \frac{c c_{2}(\log n)^{6}}{7 \log \log n}-\frac{c_{1}(\log n)^{6}}{3 \log \log n}
\end{aligned}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in \boldsymbol{I} is at least

$$
\begin{aligned}
\pi_{s}\left(c_{2}\right. & \left.(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \\
& \geq \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi\left(c_{1}(\log n)^{6}\right) \\
& \geq\left(\frac{c c_{2}}{7}-\frac{c_{1}}{3}\right) \frac{(\log n)^{6}}{\log \log n}
\end{aligned}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in \boldsymbol{I} is at least

$$
\begin{aligned}
& \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \\
& \quad \geq \pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi\left(c_{1}(\log n)^{6}\right) \\
& \quad \geq \quad c^{\prime} \frac{(\log n)^{6}}{\log \log n}
\end{aligned}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in I is at least

$$
\pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \geq \frac{c^{\prime}(\log n)^{6}}{\log \log n}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in I is at least

$$
\pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \geq \frac{c^{\prime}(\log n)^{6}}{\log \log n}
$$

If r is a special prime in I, then $r-1$ has a prime factor \boldsymbol{q} satisfying

$$
q \geq r^{2 / 3}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1, the number of special primes in I is at least

$$
\pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \geq \frac{c^{\prime}(\log n)^{6}}{\log \log n}
$$

If r is a special prime in I, then $r-1$ has a prime factor \boldsymbol{q} satisfying

$$
q \geq r^{2 / 3}=\sqrt{r} r^{1 / 6}
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. We may suppose that \boldsymbol{n} is large. By Lemma 1 , the number of special primes in I is at least

$$
\pi_{s}\left(c_{2}(\log n)^{6}\right)-\pi_{s}\left(c_{1}(\log n)^{6}\right) \geq \frac{c^{\prime}(\log n)^{6}}{\log \log n}
$$

If r is a special prime in I, then $r-1$ has a prime factor \boldsymbol{q} satisfying

$$
q \geq r^{2 / 3}=\sqrt{r} r^{1 / 6} \geq 4 \sqrt{r} \log n
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$.

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$.

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then
$\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad$ where $M=c_{2}^{1 / 3}(\log n)^{2}$.

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then
$\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad$ where $M=c_{2}^{1 / 3}(\log n)^{2}$.

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then
$\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad$ where $M=c_{2}^{1 / 3}(\log n)^{2}$.
Hence, \boldsymbol{r} divides

$$
\prod_{1 \leq j \leq M}\left(n^{j}-1\right) \leq n^{M^{2}}
$$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then

$$
\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad \text { where } M=c_{2}^{1 / 3}(\log n)^{2}
$$

Hence, \boldsymbol{r} divides

$$
\prod_{1 \leq j \leq M}\left(n^{j}-1\right) \leq n^{M^{2}}
$$

If there are k primes dividing the product, then
$2^{k} \leq n^{M^{2}}$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then

$$
\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad \text { where } M=c_{2}^{1 / 3}(\log n)^{2}
$$

Hence, \boldsymbol{r} divides

$$
\prod_{1 \leq j \leq M}\left(n^{j}-1\right) \leq n^{M^{2}}
$$

If there are k primes dividing the product, then
$2^{k} \leq n^{M^{2}} \Longrightarrow k=\mathcal{O}\left(M^{2} \log n\right)=\mathcal{O}\left((\log n)^{5}\right)$

Proof. There are $\geq c^{\prime}(\log n)^{6} / \log \log n$ primes r in I with $r-1$ having a prime factor $q \geq r^{2 / 3} \geq 4 \sqrt{r} \log n$. We want at least one such \boldsymbol{q} to divide $\operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$. Note that if $\boldsymbol{q} \nmid \operatorname{ord}_{\boldsymbol{r}}(\boldsymbol{n})$, then

$$
\operatorname{ord}_{r}(n) \leq r^{1 / 3} \leq M \quad \text { where } M=c_{2}^{1 / 3}(\log n)^{2}
$$

Hence, \boldsymbol{r} divides

$$
\prod_{1 \leq j \leq M}\left(n^{j}-1\right) \leq n^{M^{2}}
$$

If there are k primes dividing the product, then
$2^{k} \leq n^{M^{2}} \Longrightarrow k=\mathcal{O}\left(M^{2} \log n\right)=\mathcal{O}\left((\log n)^{5}\right)$.
Hence, for at least one prime $r \in I$ as above . . .

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right.$] contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right.$] contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

So what's the algorithm?

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $r \rightarrow r+1$;
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

In Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime \boldsymbol{r} with $\boldsymbol{r}-\mathbf{1}$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7.
8. if $(q \geq 4 \sqrt{r} \log n)$ and $(\underbrace{n^{(r-1) / q} \not \equiv \equiv \underbrace{1}(\bmod r)}_{\uparrow})$
9. $r \rightarrow r+1$;
$q \mid \operatorname{ord}_{r}(n)$
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $r \rightarrow r+1$;
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE; 2. $r=2$;
2. while $(\boldsymbol{r}<\boldsymbol{n})\left\{\quad\right.$ Lemma $2 \Longrightarrow$ loop ends with $r \ll(\log n)^{6}$
3. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
4. if (r is prime)
5. let \boldsymbol{q} be the largest prime factor of $\boldsymbol{r}-1$;
6.
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$ break;

Lemma 2. There are positive constants c_{1} and c_{2} such that the interval $I=\left(c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ contains a prime r with $r-1$ having a prime factor \boldsymbol{q} satisfying

$$
q \geq 4 \sqrt{r} \log n \quad \text { and } \quad q \mid \operatorname{ord}_{r}(n)
$$

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while $(r<n)\left\{\quad\right.$ Lemma $2 \Longrightarrow$ loop ends with $r \ll(\log n)^{6}$
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$; \quad Note that, after the while loop, $r=n$ is possible.
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while $(r<\boldsymbol{n})\left\{\quad\right.$ Lemma $2 \Longrightarrow$ loop ends with $r \ll(\log n)^{6}$
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$; 10. \}

Note that, after the while loop, $\boldsymbol{r}=\boldsymbol{n}$ is possible. Then \boldsymbol{n} is prime, and the algorithm indicates it is.
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while $(r<n)\left\{\quad\right.$ Lemma $2 \Longrightarrow$ loop ends with $r \ll(\log n)^{6}$
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1 ; \quad$ IMPORTANT :
10. \}
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while $(r<n)\left\{\quad\right.$ Lemma $2 \Longrightarrow$ loop ends with $r \ll(\log n)^{6}$
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$; 10. $\}$ algorithm indicates it is.
10. for $a=1$ to $2 \sqrt{r} \log n$
11. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
12. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $r \rightarrow r+1$;
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$; \quad Since the while loop ends with $r \ll(\log n)^{6}$, 10. \} the running time is polynomial in $\log n$.
10. for $a=1$ to $2 \sqrt{r} \log n$
11. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
12. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$;
10. $\}$
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE;
2. $r=2$;
3. while ($r<n$) \{
4. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of $r-1$;
7. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
8. break;
9. $\quad r \rightarrow r+1$;
10. $\}$

Note that n does not have any prime divisors $\leq r$.
11. for $a=1$ to $2 \sqrt{r} \log n$
12. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
13. output PRIME;

Input: integer $n>1$

1. if (n is of the form $a^{b}, b>1$) output COMPOSITE; 2. $r=2$;
2. while ($r<n$) \{
3. if $(\operatorname{gcd}(n, r) \neq 1)$ output COMPOSITE;
4. if (r is prime)
5. let q be the largest prime factor of $r-1$;
6. if $(q \geq 4 \sqrt{r} \log n)$ and $\left(n^{(r-1) / q} \not \equiv 1(\bmod r)\right)$
7. break;
8. $\quad r \rightarrow r+1$; \quad Problem: Show that if n is composite, then the 10. \} algorithm indicates it is.
9. for $a=1$ to $2 \sqrt{r} \log n$
10. if $\left((x-a)^{n} \not \equiv x^{n}-a\left(\bmod x^{r}-1, n\right)\right)$ output COMPOSITE;
11. output PRIME;

Situation:

\boldsymbol{n} is composite, $\quad \boldsymbol{r}$ is a prime

$$
\begin{gathered}
q \text { is a prime, } \quad q \geq 4 \sqrt{r} \log n \\
q \nmid n, \quad q|(r-1), \quad q| \operatorname{ord}_{r}(n)
\end{gathered}
$$

WAnt: There is an integer a with $1 \leq a \leq 2 \sqrt{r} \log n$ such that

$$
(x-a)^{n} \not \equiv\left(x^{n}-a\right) \quad\left(\bmod x^{r}-1, \quad n\right)
$$

