Mersenne Primes

Definition. A Mersenne prime is a prime of the form $2^{n}-1$.

- Equivalently, ... of the form $2^{p}-1$ where p is a prime.
- The largest known prime is $2^{57885161}-1$ (17425170 digits).

The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

$$
L_{0}=4 \quad \text { and } \quad L_{n+1}=L_{n}^{2}-2 \bmod \left(2^{p}-1\right) \text { for } n \geq 0
$$

Then $2^{p}-1$ is a prime if and only if $L_{p-2}=0$.

Other Primality Tests

Theorem (Selfridge-Weinberger). Assume that the Extended Riemann Hypothesis holds. Let n be an odd integer >1. A necessary and sufficient condition for n to be prime is that for all positive integers $a<\min \left\{70(\log n)^{2}, n\right\}$, we have $a^{(n-1) / 2} \equiv \pm 1(\bmod n)$ with at least one occurrence of -1 .

Theorem (Lucas). Let n be a positive integer. If there is an integer a such that $a^{n-1} \equiv 1(\bmod n)$ and for all primes p dividing $n-1$ we have $a^{(n-1) / p} \not \equiv 1(\bmod n)$, then n is prime.

Revised Theorem. Let n be a positive integer. Suppose that for each prime p dividing $n-1$, there is an $a \in \mathbb{Z}$ such that $a^{n-1} \equiv 1(\bmod n)$ and $a^{(n-1) / p} \not \equiv 1(\bmod n)$. Then n is prime.

Theorem (Lucas). Let n be a positive integer. If there is an integer a such that $a^{n-1} \equiv 1(\bmod n)$ and for all primes p dividing $n-1$ we have $a^{(n-1) / p} \not \equiv 1(\bmod n)$, then n is prime.

Theorem (Pepin Test). Let $F_{n}=2^{2^{n}}+1$ with n a positive integer. Then F_{n} is prime if and only if $3^{\left(F_{n}-1\right) / 2} \equiv-1$ $\left(\bmod F_{n}\right)$.
$(\Longrightarrow):$ Use $\left(\frac{3}{F_{n}}\right)=-1$.
$(\Longleftarrow):$ Use $\operatorname{ord}_{F_{n}}(3)=2^{2^{n}} .($ Or use the theorem of Lucas.)

Theorem (Proth, Pocklington, Lehmer Test). Let $n \in \mathbb{Z}^{+}$. Suppose $n-1=F R$ where all the prime factors of F are known and $\operatorname{gcd}(F, R)=1$. Suppose further that there exists an integer a such that $a^{n-1} \equiv 1(\bmod n)$ and for all primes p dividing F we have $\operatorname{gcd}\left(a^{(n-1) / p}-1, n\right)=1$. Then every prime factor of n is congruent to 1 modulo F.

Note: If $F \geq \sqrt{n}$ and the conclusion holds, then n is prime.

- Suppose $q \mid n(q$ prime $)$, and let $m=\operatorname{ord}_{q}(a)$.
- If $\boldsymbol{p}^{e} \| F$, then $\boldsymbol{p}^{e} \| m$.
- Deduce $F \mid m$, so $F \mid(q-1)$.

In 1980, Adleman, Pomerance, and Rumely found a primality test that determines if n is prime in $\ll(\log n)^{c \log \log \log n}$ steps (shown by Odlyzko).

In 2002, Agrawal, Kayal, and Saxena developed a polynomial time primality test. Pomerance and Lenstra gave a variant that runs in $\ll(\log n)^{6}$ steps where n is the number being tested.

Which test is better?

Note: If n has a googol digits, then $\log \log \log n<5.5$.

In 1980, Adleman, Pomerance, and Rumely found a primality test that determines if n is prime in $\ll(\log n)^{c \log \log \log n}$ steps (shown by Odlyzko).

In 2002, Agrawal, Kayal, and Saxena developed a polynomial time primality test. Pomerance and Lenstra gave a variant that runs in $\ll(\log n)^{6}$ steps where n is the number being tested.

Which test is better?

Note: If n has a googol digits, then $\log \log \log n<5.5$.

Primality Testing in Polynomial Time (Recyclization of an OLD Lecture, 2002)

Primality Testing in Polynomial Time

A Theorem of
M. Agrawal, N. Kayal, and N. Saxena

Department of Computer Science \& Engineering Indian Institute of Technology in Kanpur

Primality Testing in Polynomial Time

CAUTION: This is a theoretical result.

Primality Testing in Polynomial Time

CAUTION: This is a theoretical result. We will describe an algorithm that determines whether a number \boldsymbol{n} is prime in $\mathcal{O}\left((\log n)^{12+\varepsilon}\right)$ steps

Primality Testing in Polynomial Time

CAUTION: This is a theoretical result. We will describe an algorithm that determines whether a number \boldsymbol{n} is prime in $\mathcal{O}\left((\log n)^{12+\varepsilon}\right)$ steps, a truly remarkable result.

Primality Testing in Polynomial Time

CaUtion: This is a theoretical result. We will describe an algorithm that determines whether a number \boldsymbol{n} is prime in $\mathcal{O}\left((\log n)^{12+\varepsilon}\right)$ steps, a truly remarkable result. There is, however, no claim that if $n<10^{1000}$, then the algorithm takes less than \boldsymbol{n} steps.

Primality Testing in Polynomial Time

Another Caution:

Primality Testing in Polynomial Time

Another Caution:

$$
\log x=\log _{2} x
$$

Simple Idea: Suppose that \boldsymbol{a} and \boldsymbol{n} are coprime integers. Then \boldsymbol{n} is a prime if and only if

$$
(x-a)^{n} \equiv x^{n}-a \quad(\bmod n) .
$$

Simple Idea: Suppose that \boldsymbol{a} and \boldsymbol{n} are coprime integers. Then \boldsymbol{n} is a prime if and only if

$$
(x-a)^{n} \equiv x^{n}-a \quad(\bmod n)
$$

Comments: Verifying the congruence requires too much running time as the LHS contains $\boldsymbol{n}+\mathbf{1}$ non-zero terms.

Simple Idea: Suppose that \boldsymbol{a} and \boldsymbol{n} are coprime integers. Then \boldsymbol{n} is a prime if and only if

$$
(x-a)^{n} \equiv x^{n}-a \quad(\bmod n)
$$

Comments: Verifying the congruence requires too much running time as the LHS contains $\boldsymbol{n}+\mathbf{1}$ non-zero terms.

$$
(x-a)^{n} \equiv x^{n}-a \quad(\bmod n)
$$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

What does this mean?

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

What does this mean?

- The difference $(x-a)^{n}-\left(x^{n}-a\right)$ is an element in the ideal $\left(x^{r}-1, n\right)$ in the ring $\mathbb{Z}[x]$.

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

What does this mean?

- The difference $(x-a)^{n}-\left(x^{n}-a\right)$ is an element in the ideal $\left(x^{r}-1, n\right)$ in the ring $\mathbb{Z}[x]$.
- It is the same as the assertion
$\operatorname{Rem}\left((x-a)^{n}-\left(x^{n}-a\right), x^{r}-1, x\right) \bmod n=0$ in MAPLE.

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

What does this mean?

- The difference $(x-a)^{n}-\left(x^{n}-a\right)$ is an element in the ideal $\left(x^{r}-1, n\right)$ in the ring $\mathbb{Z}[x]$.
- It is the same as the assertion
$\operatorname{Rem}\left((x-a)^{n}-\left(x^{n}-a\right), x^{r}-1, x\right) \bmod n=0$ in MAPLE.
$>\operatorname{Rem}\left((x-2)^{\wedge} 15-\left(x^{\wedge} 15-2\right), x^{\wedge} 3-1, x\right) \bmod 15$

$$
12 x^{2}+9 x+9
$$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

Idea for Checking this Congruence:

r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

Idea for Checking this Congruence:

- Write $n=2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{t-1}}+2^{k_{t}}$, where $k_{1}<k_{2}<\cdots<k_{t}$.
r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

Idea for Checking this Congruence:

- Write $n=2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{t-1}}+2^{k_{t}}$, where $k_{1}<k_{2}<\cdots<k_{t}$.
- Compute $f_{j}(x)=(x-a)^{2^{j}}\left(\bmod x^{r}-1, n\right)$ for $j \in\left\{0,1, \ldots, k_{t}\right\}$ successively by squaring.

r denotes a prime of size $\ll \log n$

$$
(x-a)^{n} \equiv x^{n}-a \quad\left(\bmod x^{r}-1, n\right)
$$

Idea for Checking this Congruence:

- Write $n=2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{t-1}}+2^{k_{t}}$, where $k_{1}<k_{2}<\cdots<k_{t}$.
- Compute $f_{j}(x)=(x-a)^{2^{j}}\left(\bmod x^{r}-1, n\right)$ for $j \in\left\{0,1, \ldots, k_{t}\right\}$ successively by squaring.
- Compute $\prod_{j=1}^{t} f_{k_{j}}\left(\bmod x^{r}-1, n\right)$ and compare to $x^{\boldsymbol{n} \bmod r}-(a \bmod n)$.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then n is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then \boldsymbol{n} is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.
n prime $\Longrightarrow(*)$ holds
(*) holds $\Longrightarrow n$ prime

Conjecture: Suppose r does not divide $n\left(n^{2}-1\right)$ where r is prime. Then \boldsymbol{n} is a prime if and only if
$(*) \quad(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod x^{r}-1, n\right)$.
n prime $\xlongequal{\checkmark}(*)$ holds
(*) holds $\stackrel{?}{\Longrightarrow} n$ prime

