Mersenne Primes

Definition. A Mersenne prime is a prime of the form $2^n - 1$.

- Equivalently, ... of the form $2^p 1$ where p is a prime.
- The largest known prime is $2^{57885161} 1$ (17425170 digits).

The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

$$L_0=4 \quad and \quad L_{n+1}=L_n^2-2 \ mod \ (2^p-1) \ for \ n\geq 0.$$

Then $2^p - 1$ is a prime if and only if $L_{p-2} = 0$.

Other Primality Tests

Theorem (Selfridge-Weinberger). Assume that the Extended Riemann Hypothesis holds. Let n be an odd integer > 1. A necessary and sufficient condition for n to be prime is that for all positive integers $a < \min\{70(\log n)^2, n\}$, we have $a^{(n-1)/2} \equiv \pm 1 \pmod{n}$ with at least one occurrence of -1.

Theorem (Lucas). Let n be a positive integer. If there is an integer a such that $a^{n-1} \equiv 1 \pmod{n}$ and for all primes p dividing n-1 we have $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.

Revised Theorem. Let n be a positive integer. Suppose that for each prime p dividing n - 1, there is an $a \in \mathbb{Z}$ such that $a^{n-1} \equiv 1 \pmod{n}$ and $a^{(n-1)/p} \not\equiv 1 \pmod{n}$. Then n is prime. Theorem (Lucas). Let n be a positive integer. If there is an integer a such that $a^{n-1} \equiv 1 \pmod{n}$ and for all primes p dividing n-1 we have $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.

Theorem (Pepin Test). Let $F_n = 2^{2^n} + 1$ with *n* a positive integer. Then F_n is prime if and only if $3^{(F_n-1)/2} \equiv -1 \pmod{F_n}$.

$$(\Longrightarrow)$$
: Use $\left(rac{3}{F_n}
ight) = -1.$

 (\Leftarrow) : Use $\operatorname{ord}_{F_n}(3) = 2^{2^n}$. (Or use the theorem of Lucas.)

Theorem (Proth, Pocklington, Lehmer Test). Let $n \in \mathbb{Z}^+$. Suppose n - 1 = FR where all the prime factors of F are known and gcd(F, R) = 1. Suppose further that there exists an integer a such that $a^{n-1} \equiv 1 \pmod{n}$ and for all primes p dividing F we have $gcd(a^{(n-1)/p} - 1, n) = 1$. Then every prime factor of n is congruent to 1 modulo F.

Note: If $F \ge \sqrt{n}$ and the conclusion holds, then n is prime.

- Suppose q|n (q prime), and let $m = \operatorname{ord}_q(a)$.
- If $p^e || F$, then $p^e || m$.
- Deduce F|m, so F|(q-1).

In 1980, Adleman, Pomerance, and Rumely found a primality test that determines if n is prime in $\ll (\log n)^{c \log \log \log n}$ steps (shown by Odlyzko).

In 2002, Agrawal, Kayal, and Saxena developed a polynomial time primality test. Pomerance and Lenstra gave a variant that runs in $\ll (\log n)^6$ steps where n is the number being tested.

Which test is better?

Note: If n has a googol digits, then $\log \log \log n < 5.5$.

In 1980, Adleman, Pomerance, and Rumely found a primality test that determines if n is prime in $\ll (\log n)^{c \log \log \log n}$ steps (shown by Odlyzko).

In 2002, Agrawal, Kayal, and Saxena developed a polynomial time primality test. Pomerance and Lenstra gave a variant that runs in $\ll (\log n)^6$ steps where n is the number being tested.

Which test is better?

Note: If n has a googol digits, then $\log \log \log n < 5.5$.

PRIMALITY TESTING IN POLYNOMIAL TIME (Recyclization of an OLD Lecture, 2002)

A Theorem of M. AGRAWAL, N. KAYAL, AND N. SAXENA Department of Computer Science & Engineering Indian Institute of Technology in Kanpur

CAUTION: This is a theoretical result.

CAUTION: This is a theoretical result. We will describe an algorithm that determines whether a number n is prime in $\mathcal{O}((\log n)^{12+\varepsilon})$ steps

CAUTION: This is a theoretical result. We will describe an algorithm that determines whether a number n is prime in $\mathcal{O}((\log n)^{12+\varepsilon})$ steps, a truly remarkable result.

CAUTION: This is a theoretical result. We will describe an algorithm that determines whether a number n is prime in $\mathcal{O}((\log n)^{12+\varepsilon})$ steps, a truly remarkable result. There is, however, no claim that if $n < 10^{1000}$, then the algorithm takes less than n steps.

ANOTHER CAUTION:

ANOTHER CAUTION:

$$\log x = \log_2 x$$

Simple Idea: Suppose that *a* and *n* are coprime integers. Then *n* is a prime if and only if

$$(x-a)^n \equiv x^n - a \pmod{n}$$
.

Simple Idea: Suppose that *a* and *n* are coprime integers. Then *n* is a prime if and only if

$$(x-a)^n \equiv x^n - a \pmod{n}.$$

Comments: Verifying the congruence requires too much running time as the LHS contains n + 1 non-zero terms.

Simple Idea: Suppose that *a* and *n* are coprime integers. Then *n* is a prime if and only if

$$(x-a)^n \equiv x^n - a \pmod{n}.$$

Comments: Verifying the congruence requires too much running time as the LHS contains n + 1 non-zero terms.

$$(x-a)^n \equiv x^n - a \pmod{n}$$

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

$$(x-a)^n\equiv x^n-a\pmod{x^r-1,n}$$

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

• The difference $(x - a)^n - (x^n - a)$ is an element in the ideal $(x^r - 1, n)$ in the ring $\mathbb{Z}[x]$.

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

• The difference $(x - a)^n - (x^n - a)$ is an element in the ideal $(x^r - 1, n)$ in the ring $\mathbb{Z}[x]$.

• It is the same as the assertion $\operatorname{Rem}((x - a)^{n} - (x^{n} - a), x^{r} - 1, x) \mod n = 0$ in MADLE

in MAPLE.

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

- The difference $(x a)^n (x^n a)$ is an element in the ideal $(x^r 1, n)$ in the ring $\mathbb{Z}[x]$.
- It is the same as the assertion
 Rem ((x a)ⁿ (xⁿ a), x^r 1, x) mod n = 0 in MAPLE.

> Rem((x-2)^15-(x^15-2), x^3-1, x) mod 15
$$12x^2+9x+9$$

$$(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$$

r denotes a prime of size $\ll \log n$ $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$ r denotes a prime of size $\ll \log n$ $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

Idea for Checking this Congruence:

r denotes a prime of size $\ll \log n$

 $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

Idea for Checking this Congruence:

• Write $n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_{t-1}} + 2^{k_t}$, where $k_1 < k_2 < \dots < k_t$.

r denotes a prime of size $\ll \log n$

 $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

Idea for Checking this Congruence:

- Write $n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_{t-1}} + 2^{k_t}$, where $k_1 < k_2 < \dots < k_t$.
- Compute $f_j(x) = (x a)^{2^j} \pmod{x^r 1, n}$ for $j \in \{0, 1, \dots, k_t\}$ successively by squaring.

r denotes a prime of size $\ll \log n$

 $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

Idea for Checking this Congruence:

- Write $n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_{t-1}} + 2^{k_t}$, where $k_1 < k_2 < \dots < k_t$.
- Compute $f_j(x) = (x a)^{2^j} \pmod{x^r 1, n}$ for $j \in \{0, 1, \dots, k_t\}$ successively by squaring.
- Compute $\prod_{j=1}^{t} f_{k_j} \pmod{x^r 1, n}$ and compare to $x^{n \mod r} (a \mod n)$.

Conjecture: Suppose *r* does not divide $n(n^2 - 1)$ where *r* is prime. Then *n* is a prime if and only if

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

Conjecture: Suppose r does not divide $n(n^2 - 1)$ where r is prime. Then n is a prime if and only if

$$(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$$

$$n \text{ prime } \implies (*) \text{ holds}$$

(*) holds $\implies n \text{ prime}$

Conjecture: Suppose *r* does not divide $n(n^2 - 1)$ where *r* is prime. Then *n* is a prime if and only if

 $(*) \quad (x-1)^n \equiv x^n - 1 \pmod{x^r - 1, n}.$

$$n \text{ prime } \implies (*) \text{ holds}$$

$$\stackrel{\checkmark}{\Longrightarrow} n \text{ prime}$$