
Mersenne Primes

The Lucas-Lehmer Test. Let p be an odd prime, and define
recursively

L0 = 4 and Ln+1 = L2
n � 2 (mod (2p � 1)) for n � 0.

Then 2p � 1 is a prime if and only if Lp�2 = 0.

Definition. A Mersenne prime is a prime of the form 2n � 1.

• Equivalently, . . . of the form 2p � 1 where p is a prime.

• Mersenne primes are related to perfect numbers. Euler
showed that �(m) = 2m, where m is even if and only if
m = 2p�1(2p � 1) and 2p � 1 is prime.

• The largest known prime is 257885161 � 1.
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O�ce Hours and Such:

I will not have regular o�ce hours tomorrow. I “should” be
around tomorrow afternoon (2:00-4:00), but do let me know
if you plan to come by.

Mersenne Primes

The Lucas Primality Test

The Lucas-Lehmer Test. Let p be an odd prime, and define
recursively

L0 = 4 and Ln+1 = L2
n � 2 mod (2p � 1) for n � 0.

Then 2p � 1 is a prime if and only if Lp�2 = 0.

Definition. A Mersenne prime is a prime of the form 2n�1.

• Equivalently, . . . of the form 2p � 1 where p is a prime.

• Mersenne primes are related to perfect numbers. Euler
showed that �(m) = 2m, where m is even if and only if
m = 2p�1(2p � 1) where p and 2p � 1 are primes.

• The largest known prime is 257885161�1 (17425170 digits).
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Other Primality Tests

Theorem (Selfridge-Weinberger). Assume that the Extended

Riemann Hypothesis holds. Let n be an odd integer > 1. A

necessary and su�cient condition for n to be prime is that

for all positive integers a < min{70(log n)2, n}, we have

a(n�1)/2 ⌘ ±1 (mod n) with at least one occurrence of �1.

Note: Primes pass this test but 1729 does not.

Theorem (Lucas). Let n be a positive integer. If there is

an integer a such that an�1 ⌘ 1 (mod n) and for all primes

p dividing n � 1 we have a(n�1)/p 6⌘ 1 (mod n), then n is

prime.

Revised Theorem. Let n be a positive integer. Suppose that

for each prime p dividing n � 1, there is an a 2 Z such

that an�1 ⌘ 1 (mod n) and a(n�1)/p 6⌘ 1 (mod n). Then n
is prime.

Note: Primes pass this test but 1729 does not.

Idea: If pek(n � 1), then pe|ordna =) pe|�(n) =) n prime.
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Theorem (Pepin Test). Let Fn = 22n
+ 1 with n a positive

integer. Then Fn is prime if and only if 3(Fn�1)/2 ⌘ �1
(mod Fn).

( =) ): Use

✓
3

Fn

◆
= �1.

( (= ): Use ordFn(3) = 22n
. (Or use the theorem of Lucas.)

Theorem (Proth, Pocklington, Lehmer Test). Let n 2 Z+
.

Suppose n � 1 = FR where all the prime factors of F are

known and gcd(F, R) = 1. Suppose further that there exists

an integer a such that an�1 ⌘ 1 (mod n) and for all primes

p dividing F we have gcd(a(n�1)/p � 1, n) = 1. Then every

prime factor of n is congruent to 1 modulo F .

Note: If F � p
n and the conclusion holds, then n is prime.

• Suppose q|n (q prime), and let m = ordq(a).

• If pekF , then pekm.

• Deduce F |m, so F |(q � 1).
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Comments:

In 1980, Adleman, Pomerance, and Rumely found a primality
test that determines if n is prime in ⌧ (log n)c log log log n steps
(shown by Odlyzko).

In 2002, Agrawal, Kayal, and Saxena developed a polynomial
time primality test. Pomerance and Lenstra gave a variant
that runs in ⌧ (log n)6 steps where n is the number being
tested.

Which test is better?

Note: If n has a googol digits, then log log log n < 5.5.
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PRIMALITY TESTING IN POLYNOMIAL TIME

CAUTION: This is a theoretical result.
We will describe an algorithm that deter-
mines whether a number n is prime in
O((log n)12+") steps, a truly remarkable
result. There is, however, no claim that if
n < 101000, then the algorithm takes less
than n steps.
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ANOTHER CAUTION:

log x = log2 x



Simple Idea: Suppose that a and n are coprime integers.
Then n is a prime if and only if

(x � a)n ⌘ xn
� a (mod n).
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Comments: Verifying the congruence requires too much
running time as the LHS contains n + 1 non-zero terms.
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