Mersenne Primes

Definition. A Mersenne prime is a prime of the form $2^{n}-1$.

- Equivalently, ... of the form $2^{p}-1$ where p is a prime.
- Mersenne primes are related to perfect numbers. Euler showed that $\sigma(m)=2 m$, where m is even if and only if $m=2^{p-1}\left(2^{p}-1\right)$ where p and $2^{p}-1$ are primes.
- The largest known prime is $2^{77232917}-1$.

The Lucas Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
\begin{gathered}
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1, \\
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1 .
\end{gathered}
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

Maple's Version

- Take $Q=1$.
- Find first P where the Jacobi symbol $\left(\frac{P^{2}-4}{n}\right)=-1$.
- Make use of the identities, where $n \geq 1$.

$$
v_{2 n}=v_{n}^{2}-2, \quad v_{2 n+1}=v_{n+1} v_{n}-P, \quad D u_{n}=2 v_{n+1}-P v_{n}
$$

The Lucas Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
\begin{gathered}
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1, \\
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1 .
\end{gathered}
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

$$
\begin{aligned}
& \text { Suppose } n \equiv 7(\bmod 12) \text { is } \\
& \text { prime. We can take } P=4 .
\end{aligned}
$$

- Take $Q=1$.
- Find first P where the Jacobi symbol $\left(\frac{P^{2}-4}{n}\right)=-1$.
- Make use of the identities, where $n \geq 1$.

$$
v_{2 n}=v_{n}^{2}-2, \quad v_{2 n+1}=v_{n+1} v_{n}-P, \quad D u_{n}=2 v_{n+1}-P v_{n}
$$

The Lucas Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1,
$$

$$
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1 .
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

$$
\begin{aligned}
& \text { Suppose } n \equiv 7(\bmod 12) \text { is } \\
& \text { prime. We can take } P=4 .
\end{aligned}
$$

- Take $Q=1$.
- Find first P where the Jacobi symbol $\left(\frac{P^{2}-4}{n}\right)=-1$.

$$
\begin{gathered}
v_{2 n}=v_{n}^{2}-2, \quad v_{2 n+1}=v_{n+1} v_{n}-P, \quad D u_{n}=2 v_{n+1}-P v_{n} \\
v_{1}=4, \quad v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
\end{gathered}
$$

The Lucas Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1,
$$

$$
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1 .
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

$$
L_{0}=4 \quad \text { and } \quad L_{n+1}=L_{n}^{2}-2 \bmod \left(2^{p}-1\right) \text { for } n \geq 0 .
$$

Then $2^{p}-1$ is a prime if and only if $L_{p-2}=0$.

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

$$
L_{0}=4 \quad \text { and } \quad L_{n+1}=L_{n}^{2}-2 \bmod \left(2^{p}-1\right) \text { for } n \geq 0
$$

Then $2^{p}-1$ is a prime if and only if $L_{p-2}=0$.

$$
\begin{gathered}
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0) \\
L_{n}=v_{2^{n}}
\end{gathered}
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N

$$
\begin{gathered}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad v_{n}=\alpha^{n}+\beta^{n} \quad \text { for } n \geq 0 \\
\text { where } \alpha=(P+\sqrt{D}) / 2 \text { and } \beta=(P-\sqrt{D}) / 2 \\
D=P^{2}-4 Q
\end{gathered}
$$

The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

$$
L_{0}=4 \quad \text { and } \quad L_{n+1}=L_{n}^{2}-2 \bmod \left(2^{p}-1\right) \text { for } n \geq 0
$$

Then $2^{p}-1$ is a prime if and only if $L_{p-2}=0$.

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad v_{n}=\alpha^{n}+\beta^{n} \quad \text { for } n \geq 0
$$

$$
\text { where } \alpha=(P+\sqrt{D}) / 2 \text { and } \beta=(P-\sqrt{D}) / 2
$$

$$
D=P^{2}-4 Q
$$

$u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}}$ and $v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N

$$
u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}} \text { and } v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}
$$

$(\Longrightarrow):$

- $3^{(N-1) / 2} \equiv-1(\bmod N)$ and $2^{(N-1) / 2} \equiv 1(\bmod N)$
- It suffices to prove $v_{(N+1) / 2} \equiv-2(\bmod N)$.

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N

$$
u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}} \quad \text { and } \quad v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}
$$

$(\Longrightarrow):$

- $3^{(N-1) / 2} \equiv-1(\bmod N)$ and $2^{(N-1) / 2} \equiv 1(\bmod N)$
- It suffices to prove $v_{(N+1) / 2} \equiv-2(\bmod N)$.
- $2 \pm \sqrt{3}=((\sqrt{2} \pm \sqrt{6}) / 2)^{2}$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N $u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}} \quad$ and $\quad v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$
$(\Longrightarrow):$

- $3^{(N-1) / 2} \equiv-1(\bmod N)$ and $2^{(N-1) / 2} \equiv 1(\bmod N)$
- It suffices to prove $\boldsymbol{v}_{(N+1) / 2} \equiv-2(\bmod N)$.
- $2 \pm \sqrt{3}=((\sqrt{2} \pm \sqrt{6}) / 2)^{2}$
- $v_{(N+1) / 2}=\left(\frac{\sqrt{2}+\sqrt{6}}{2}\right)^{N+1}+\left(\frac{\sqrt{2}-\sqrt{6}}{2}\right)^{N+1}$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N $(\Longrightarrow):$

- $3^{(N-1) / 2} \equiv-1(\bmod N)$ and $2^{(N-1) / 2} \equiv 1(\bmod N)$
- It suffices to prove $\boldsymbol{v}_{(N+1) / 2} \equiv-2(\bmod N)$.
- $2 \pm \sqrt{3}=((\sqrt{2} \pm \sqrt{6}) / 2)^{2}$
- $v_{(N+1) / 2}=\left(\frac{\sqrt{2}+\sqrt{6}}{2}\right)^{N+1}+\left(\frac{\sqrt{2}-\sqrt{6}}{2}\right)^{N+1}$

$$
=2^{-N} \sum_{j=0}^{(N+1) / 2}\binom{N+1}{2 j} \sqrt{2}^{N+1-2 j} \sqrt{6}^{2 j}
$$

$$
=2^{(1-N) / 2} \sum_{j=0}^{(N+1) / 2}\binom{N+1}{2 j} 3^{j}
$$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
$(\Longrightarrow):$

- $3^{(N-1) / 2} \equiv-1(\bmod N)$ and $2^{(N-1) / 2} \equiv 1(\bmod N)$
- It suffices to prove $v_{(N+1) / 2} \equiv-2(\bmod N)$.
- $2 \pm \sqrt{3}=((\sqrt{2} \pm \sqrt{6}) / 2)^{2}$
- $v_{(N+1) / 2}=2^{(1-N) / 2} \sum_{j=0}^{(N+1) / 2}\binom{N+1}{2 j} 3^{j}$
- $2^{(N-1) / 2} v_{(N+1) / 2} \equiv 1+3^{(N+1) / 2} \equiv-2(\bmod N)$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
(\Longleftrightarrow) : Note that this is the important direction!

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
$u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}}$ and $v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$
$(\Longleftarrow):$ Note that this is the important direction!

- $(2 \pm \sqrt{3})^{2}-1= \pm \sqrt{12}(2 \pm \sqrt{3})$ (all signs the same)
- $v_{n}=u_{n+1}-u_{n-1}$ and $u_{m+n}=u_{m} u_{n+1}-u_{m-1} u_{n}$
- If $p^{e} \mid u_{n}$ with $e \geq 1$, then

Future Homework
$u_{k n} \equiv k u_{n+1}^{k-1} u_{n}\left(\bmod p^{e+1}\right)$ and $u_{k n+1} \equiv u_{n+1}^{k}\left(\bmod p^{e+1}\right)$.
BEWARE BAD NOTATION

$$
p \neq p
$$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
$u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}}$ and $v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$
$(\Longleftarrow):$ Note that this is the important direction!

- $(2 \pm \sqrt{3})^{2}-1= \pm \sqrt{12}(2 \pm \sqrt{3})$ (all signs the same)
- $v_{n}=u_{n+1}-u_{n-1}$ and $u_{m+n}=u_{m} u_{n+1}-u_{m-1} u_{n}$
- If $p^{e} \mid u_{n}$ with $e \geq 1$, then

$$
\begin{aligned}
& u_{k n} \equiv k u_{n+1}^{k-1} u_{n}\left(\bmod p^{e+1}\right) \text { and } u_{k n+1} \equiv u_{n+1}^{k}\left(\bmod p^{e+1}\right) \\
& u_{(k+1) n}=u_{k n} u_{n+1}-u_{k n-1} u_{n}=u_{k n} u_{n+1}+u_{n}\left(u_{k n+1}-4 u_{k n}\right)
\end{aligned}
$$

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
$u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}}$ and $v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$
$(\Longleftarrow):$ Note that this is the important direction!

- $(2 \pm \sqrt{3})^{2}-1= \pm \sqrt{12}(2 \pm \sqrt{3})$ (all signs the same)
- $v_{n}=u_{n+1}-u_{n-1}$ and $u_{m+n}=u_{m} u_{n+1}-u_{m-1} u_{n}$
- If $p^{e} \mid u_{n}$ with $e \geq 1$, then

$$
u_{k n} \equiv k u_{n+1}^{k-1} u_{n}\left(\bmod p^{e+1}\right) \text { and } u_{k n+1} \equiv u_{n+1}^{k}\left(\bmod p^{e+1}\right)
$$

- If $p^{e} \mid u_{n}$ with $e \geq 1$, then $p^{e+1} \mid u_{p n}$.
- \forall primes $p, \exists \varepsilon=\varepsilon_{p} \in\{-1,0,1\}$ such that $p \mid u_{p+\varepsilon}$.

$$
v_{1}=4, v_{2}=14, \ldots \quad v_{2^{n+1}}=v_{2^{n}}^{2}-2 \quad(n \geq 0)
$$

$N=2^{p}-1$ is a prime $\Longleftrightarrow v_{(N+1) / 4}$ is divisible by N
$u_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{\sqrt{12}}$ and $v_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$

- $v_{n}=u_{n+1}-u_{n-1}$ and $u_{m+n}=u_{m} u_{n+1}-u_{m-1} u_{n}$
- If $p^{e} \mid u_{n}$ with $e \geq 1$, then $p^{e+1} \mid u_{p n}$.
- \forall primes $p, \exists \varepsilon=\varepsilon_{p} \in\{-1,0,1\}$ such that $p \mid u_{p+\varepsilon}$.

$$
\begin{aligned}
u_{0} & =0, \quad u_{1}=1, \quad u_{2}=4, \quad u_{3}=15, \ldots \\
u_{n} & =\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 k+1} 2^{n-2 k-1} 3^{k}, \quad v_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} 2^{n-2 k+1} 3^{k} \\
u_{p} & \equiv 3^{(p-1) / 2} \equiv \pm 1(\bmod p) \quad \text { and } \quad v_{p} \equiv 4(\bmod p)
\end{aligned}
$$

