Math 532/736I: Modern Geometry

Spring 2016

Test 2: Solution Key

1) a) $\mathrm{P}=(1008,0)$
b) $\mathrm{Q}=(1008,1008)$
c) $\mathrm{T}=(1008,-1008)$
2) $f=R \frac{\pi}{\frac{2}{2},(0,2016)} R \frac{\pi}{\frac{1}{2},(1,1)}$
$R_{\frac{\pi}{2},(0,2016)}=\left[\begin{array}{ccc}0 & -1 & 2016 \\ 1 & 0 & 2016 \\ 0 & 0 & 1\end{array}\right] \quad R_{\frac{\pi}{2},(1,1)}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}0 & -1 & 2016 \\ 1 & 0 & 2016 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 2016 \\ 0 & -1 & 2018 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 0 & 2016 \\ 0 & -1 & 2018 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}-x+2016 \\ -y+2018 \\ 1\end{array}\right]$
$x=-x+2016$

$$
y=-y+2018
$$

$2 x=2016$
$2 y=2018$
$x=1008$
$y=1009$
$f(1008,1009)=(1008,1009)$
$\angle=\frac{\pi}{2}+\frac{\pi}{2}=\pi$
$f=R_{\pi,(1008,1009)}$
3)

$\left|\overline{N M_{A}}\right|=\left|\overline{N M_{C}}\right|$
$\Leftrightarrow\left(N-M_{A}\right)^{2}=\left(N-M_{C}\right)^{2}$
$\Leftrightarrow\left(N-M_{A}\right)^{2}-\left(N-M_{C}\right)^{2}=0$
$\Leftrightarrow\left(N-M_{A}+N-M_{C}\right)\left(N-M_{A}-N+M_{c}\right)=0$
$\Leftrightarrow\left(N-M_{A}+N-M_{C}\right)\left(\nmid X-M_{A}-\mathscr{X}+M_{c}\right)=0$
$\Leftrightarrow\left(2 N-M_{A}-M_{c}\right)\left(M_{C}-M_{A}\right)=0$
$\Leftrightarrow\left(\frac{A+B+C+D}{2}-\frac{B+C}{2}-\frac{A+B}{2}\right)\left(\frac{A+B}{2}-\frac{B+C}{2}\right)=0$
$\Leftrightarrow\left(\frac{X+\mathbb{X}+\mathbb{X}+D}{2}-\frac{\mathbb{K}+\mathbb{X}}{2}-\frac{X+B}{2}\right)\left(\frac{A+\mathbb{X}}{2}-\frac{\mathbb{K}+C}{2}\right)=0$
$\Leftrightarrow \frac{1}{4}(D-B)(A-C)=0$

We know that $\overline{D B}$ is on the altitude to $\overline{A C}$ so they must be perpendicular and our result holds. Following the above logic backwards, we arrive at our intended conclusion.
4)

$-A, B, C$ are noncollinear as are $A^{\prime}, B^{\prime}, C^{\prime}$

- $A \neq \boldsymbol{A}^{\prime}, \boldsymbol{B} \neq \boldsymbol{B}^{\prime}, \& C \neq \boldsymbol{C}^{\prime}$
- $\overleftrightarrow{A A^{\prime}}, \overleftrightarrow{B B^{\prime}}, \& \overleftrightarrow{C C^{\prime}}$ intersect at X
- $\overleftrightarrow{\boldsymbol{A B}}\left\|\overleftarrow{\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime}} \& \overleftrightarrow{\boldsymbol{B C}}\right\| \overleftrightarrow{\boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}}$
- $k_{1}=k_{2}$
- $\left(\frac{k_{1}}{k_{1}-k_{2}}\right) A+\left(-\frac{k_{2}}{k_{1}-k_{2}}\right) B=\left(\frac{1-k_{2}}{k_{1}-k_{2}}\right) B^{\prime}-\left(\frac{1-k_{1}}{k_{1}-k_{2}}\right) A^{\prime}$
- $t=-\frac{k_{2}}{k_{1}-k_{2}}$
- $t=-\frac{1-k_{1}}{k_{1}-k_{2}}$
- $k_{2}=k_{3}$
- $k_{3}=k_{1}$
- $k_{1} A-k_{3} C=\left(1-k_{3}\right) C^{\prime}-\left(1-k_{1}\right) A^{\prime}$
- $k_{1}(A-C)=\left(1-k_{1}\right)\left(C^{\prime}-A^{\prime}\right)$
- vector $\overline{A C}$
- line $\overleftrightarrow{A C}$

5)

- $\triangle P A D, \triangle Q D C, \triangle R C B, \triangle P X Y, \triangle Q X Y \& \triangle R Y Z$ are all equilateral
- M is midpoint of $\overline{A B}$
$-\overline{A B} \& \overline{Y Z}$ intersect at T
- $f=R_{\pi, M} R_{\frac{\pi}{3}, R} R_{\frac{\pi}{3}, Q} R_{\frac{\pi}{3}, P}$
a) $f(A)=R_{\pi, M} R_{\frac{\pi}{3}, R} R_{\frac{\pi}{3}, Q} R_{\frac{\pi}{3}, P}(A)$
$f(A)=R_{\pi, M} R_{\frac{\pi}{3}, R} R_{\frac{\pi}{3}, Q}(D)$
$f(A)=R_{\pi, M} R_{\frac{\pi}{3}, R}(C)$
$f(A)=R_{\pi, M}(B)$
$f(A)=A$
b). Since $\pi+\frac{\pi}{3}+\frac{\pi}{3}+\frac{\pi}{3}=2 \pi$, Theorem 2 implies that f is a translation.

From part (a) we found that $f(A)=A$ which implies that the translation is by $(0,0)$ so we get that $f=T_{(0,0)}$
c) We know $f(Y)=Y$ since part (b) tells us $f=T_{(0,0)}$ and

$$
\begin{aligned}
& f(Y)=R_{\pi, M} R_{\frac{\pi}{3}, R} R_{\frac{\pi}{3}, Q} R_{\frac{\pi}{3}, P}(Y) \\
& f(Y)=R_{\pi, M} R_{\frac{\pi}{3}, R} R_{\frac{\pi}{3}, Q}(X) \\
& f(Y)=R_{\pi, M} R_{\frac{\pi}{3}, R}(Y) \\
& f(Y)=R_{\pi, M}(Z)
\end{aligned}
$$

So $Y=R_{\pi, M}(Z)$. Hence, M is the midpoint of $\overline{Y Z}$. Since M is defined in the problem as the midpoint of $\overline{A B}, \mathrm{M}$ is on both $\overline{A B}$ and $\overline{Y Z}$. Therefore, $\mathrm{M}=\mathrm{T}$.

