MATH 532, 736I: MODERN GEOMETRY Test 2 Solutions

Test 2 (1992):

Part I:

(1) If A, B, and C are not distinct, then the conclusion that A, B, and C are collinear is clear. Suppose now that A, B, and C are distinct. Recall that not all of x, y, and z are zero. Suppose x ≠ 0 (a similar argument can be made if y ≠ 0 or z ≠ 0). From xA + yB + zC = 0, we obtain A = (-y/x)B + (-z/x)C. Let t = -z/x. Since x + y + z = 0,

$$1 - t = 1 - \left(-\frac{z}{x}\right) = 1 + \frac{z}{x} = \frac{x + z}{x} = -\frac{y}{x}.$$

Hence, A = (1 - t)B + tC. By Theorem 1, A is on \overrightarrow{BC} . Thus, A, B, and C are collinear.

(2) The square of the distance from N to M_A is $(N - M_A)^2$ and the square of the distance from N to M_B is $(N - M_B)^2$. It therefore suffices to show that $(N - M_A)^2 = (N - M_B)^2$. Since \overrightarrow{CD} and \overrightarrow{BA} are perpendicular, (D - C)(A - B) = 0. We use that

$$D - C = (A + B + C + D) - (B + C) - (A + C)$$

= 4N - 2M_A - 2M_B = 2((N - M_A) + (N - M_B)).

and $A - B = (A + C) - (B + C) = 2M_B - 2M_A = 2((N - M_A) - (N - M_B))$ Since (D - C)(A - B) = 0, we deduce

$$0 = ((N - M_A) + (N - M_B))((N - M_A) - (N - M_B)) = (N - M_A)^2 - (N - M_B)^2.$$

Hence, $(N - M_A)^2 = (N - M_B)^2.$

Part II:

- (1) Not relevant to the current course.
- (2) Let P_A be the intersection of the altitude drawn from A to \overrightarrow{BC} . Let P_B be the intersection of the altitude drawn from B to \overrightarrow{AC} . Let P_C be the intersection of the altitude drawn from C to \overrightarrow{AB} . Let D be the intersection of $\overrightarrow{AP_A}$ and $\overrightarrow{BP_B}$. Then \overrightarrow{AD} and \overrightarrow{BC} are perpendicular and \overrightarrow{BD} and \overrightarrow{AC} are perpendicular. Hence, (D A)(C B) = 0 and (D B)(C A) = 0. Therefore,

$$0 = (D - A)(C - B) - (D - B)(C - A) = -AC - BD + AD + BC = (D - C)(A - B).$$

Thus, \overrightarrow{CD} and \overrightarrow{BA} are perpendicular. We deduce that the altitude from C also passes through D so that the three altitudes are concurrent.

(3) In this problem, $f = R_{\pi/2,A}T_AR_{\pi,A}$. From the last page of this test (and as shown on homework from class) $T_A = R_{\pi,A/2}R_{\pi,(0,0)}$. Thus, we can view f as a product of four rotations with the sum of the angles in the rotations being $7\pi/2$. Since a rotation by $7\pi/2$ is the same as a rotation by $3\pi/2$, we deduce that $f = R_{3\pi/2,B}$. Using A = (1,3), one writes $R_{\pi/2,A}T_AR_{\pi,A}$ as a product of 3 matrices and obtains

$$R_{\pi/2,A}T_A R_{\pi,A} = \begin{pmatrix} 0 & 1 & -5 \\ -1 & 0 & 5 \\ 0 & 0 & 1 \end{pmatrix}.$$

(Note that the matrix above can be used to justify $f = R_{3\pi/2,B}$ as well.) If B = (x, y), then

$$R_{3\pi/2,B} = \begin{pmatrix} 0 & 1 & x - y \\ -1 & 0 & x + y \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence, x - y = -5 and x + y = 5. Solving, we deduce x = 0 and y = 5. Thus, B = (0, 5).

Part III:

(1) The vector B - A (going in the direction of ℓ) is parallel to the vector D - C (going in the direction of m). Thus, B - A = k(D - C) for some constant k. Since E is the midpoint of \overline{AC} and F is the midpoint of \overline{BD} , we obtain

Thus,

s,
$$E = \frac{1}{2}(A+C)$$
 and $F = \frac{1}{2}(B+D)$.
 $F - E = \frac{1}{2}(B+D) - \frac{1}{2}(A+C) = \frac{1}{2}(B-A) + \frac{1}{2}(D-C) = \frac{k+1}{2}(D-C).$

Thus, \overrightarrow{EF} is a constant times \overrightarrow{CD} . This constant is non-zero since $E \neq F$. It follows that \overleftarrow{EF} is parallel to \overrightarrow{CD} . Hence, \overleftarrow{EF} is parallel to both ℓ and m.

- (2) You do not need to know this for Test 2.
- (3) **Proof.** By Theorem 1 (from the Information Page at the end of this test), there are real numbers k_1 , k_2 , and k_3 such that

$$X = (1 - k_1)A + k_1A' = (1 - k_2)B + k_2B' = (1 - k_3)C + k_3C'.$$

Next, we show that $k_1 \neq k_2$. Assume $k_1 = k_2$. Observe that $k_1 \neq 0$ since otherwise we would have X = A = B, contradicting that A and B are distinct points. Also, $k_1 \neq 1$ since otherwise we would have X = A' = B', contradicting that A' and B' are distinct points. We get that

$$(1 - k_1)A - (1 - k_2)B = k_2B' - k_1A'$$

and that the vectors \overrightarrow{BA} and $\overrightarrow{A'B'}$ either have the same direction or the exact opposite direction. This contradicts that the point P exists. Hence, $k_1 \neq k_2$. Thus,

$$\frac{1-k_1}{k_2-k_1}A + \frac{k_2-1}{k_2-k_1}B = \frac{k_2}{k_2-k_1}B' + \frac{-k_1}{k_2-k_1}A'.$$

By Theorem 1 with $t = (k_2 - 1)/(k_2 - k_1)$, we see that the expression on the left above is a point on line \overrightarrow{AB} . By Theorem 1 with $t = -k_1/(k_2 - k_1)$, we see that the expression on the right above is a point on line $\overrightarrow{A'B'}$. Therefore, we get that

$$P = \frac{1 - k_1}{k_2 - k_1} A + \frac{k_2 - 1}{k_2 - k_1} B.$$

Hence,

(1)
$$(k_2 - k_1)P = (1 - k_1)A + (k_2 - 1)B.$$

Using that

$$(1-k_2)B - (1-k_3)C = k_3C' - k_2B',$$

we similarly obtain that $k_2 \neq k_3$, that

$$\frac{1-k_2}{k_3-k_2}B + \frac{k_3-1}{k_3-k_2}C = \frac{k_3}{k_3-k_2}C' + \frac{-k_2}{k_3-k_2}B',$$

and that

(2)
$$(k_3 - k_2)Q = (1 - k_2)B + (k_3 - 1)C$$

From

$$(1-k_3)C - (1-k_1)A = k_1A' - k_3C',$$

we similarly obtain that either

$$(3) k_3 = k_1$$

or

(4)
$$\frac{1-k_3}{k_1-k_3}C + \frac{k_1-1}{k_1-k_3}A = \frac{k_1}{k_1-k_3}A' + \frac{-k_3}{k_1-k_3}C'.$$

If (4) holds, then we could deduce that there is a point on both line \overleftarrow{AC} and line $\overleftarrow{A'C'}$, giving a contradiction. Thus, (3) must hold. We get from (1) and (2) that

$$(k_2 - k_1)P + (k_3 - k_2)Q = (1 - k_1)A + (k_3 - 1)C$$

so that

$$(k_2 - k_1)(P - Q) = (1 - k_1)(A - C).$$

Observe that $P \neq Q$ since otherwise we would have that the points A, B, and C are collinear, which isn't the case. Since $k_1 \neq k_2$, we obtain that the lines \overrightarrow{PQ} and \overrightarrow{AC} are parallel, completing the proof.

Test 2 (1993):

Part I:

- (1) If A = B, then take x = 1, y = -1, and z = 0. Suppose now that $A \neq B$. By Theorem 1, there is a real number t such that C = (1 t)A + tB. Let x = 1 t, y = t, and z = -1. Then x, y, and z are not all 0, x + y + z = 0, and $xA + yB + zC = \vec{0}$.
- (2) See Problem (2) of the 1992 test.
- (3) One answer is: $\Delta AA'Z$ and $\Delta BB'X$ are perspective from point Y.

Part II:

(1) It suffices to show that $G = \frac{1}{2}(C + F)$. The given information implies

$$D = \frac{B+C}{2}, \quad E = \frac{A+C}{2}, \quad F = \frac{A+B}{2}, \quad \text{and} \quad G = \frac{D+E}{2}.$$
$$G = \frac{1}{2}(D+E) = \frac{1}{2}\left(\frac{B+C}{2} + \frac{A+C}{2}\right) = \frac{1}{2}\left(C + \frac{A+B}{2}\right) = \frac{1}{2}(C+F),$$

as desired.

Hence,

- (2) From the given information, f = R_{π/2,(1,1)}R_{π,(1,0)}R_{π/2,(0,0)}. Since the sum of the angles (π/2, π, and π/2) is 2π (an integer times 2π), we deduce that f is a translation. In other words, f = T_B. To determine B, one can compute f by multiplying matrices. However, it is probably easier to take a point and see what f does to it (where it is mapped under f). Consider (x, y) = (0,0). Rotating this point about (0,0) by π/2 does not change it. Now, rotating the point about (1,0) by π moves it to (2,0). Finally, rotating this point about (1,1) by π/2 moves it to (2,2). Thus, f takes (0,0) to (2,2). It follows that B = (2,2).
- (3) You do not need to know this for Test 2.
- (4) Recall in class that we discussed how one could obtain the point C where $R_{\alpha+\beta,C} = R_{\beta,B}R_{\alpha,A}$. The points A, B, and C form a triangle with $\angle BAC = \alpha/2$ and $\angle ABC = \beta/2$. Since $\alpha + \beta = \pi$ in this problem, the sum of the measures of $\angle BAC$ and $\angle ABC$ is $\pi/2$. Thus, $\triangle ABC$ is a right triangle with $\angle ACB = \pi/2$. Recall that we showed in class that in this situation, C is on the circle having diameter \overline{AB} . Since the center of this circle is the midpoint of \overline{AB} , C is on the circle centered at $\frac{1}{2}(A + B)$ passing through A and B.

Test 2 (1994):

- (1) See Problem 1 on the 1992 test. Note that the theorems are numbered differently.
- (2) Observe that

$$2N - M_A - Q_A = \frac{A + B + C + D}{2} - \frac{B + C}{2} - \frac{A + D}{2} = \vec{0}.$$

Thus,

$$0 = (2N - M_A - Q_A)(M_A - Q_A) = 2NM_A - M_A^2 - 2NQ_A + Q_A^2$$

= -N² + 2NM_A - M_A^2 + N² - 2NQ_A + Q_A^2 = -(N - M_A)^2 + (N - Q_A)^2

Thus, $(N - M_A)^2 = (N - Q_A)^2$, and we deduce that the distance from N to M_A is the same as the distance from N to Q_A .

- (3) (a) (3, -2)
 - (b) 4
 - (c) (4, 4) (you should be able to do this with and without matrices)
 - (d) (1,4) (you should be able to do this with and without matrices)
- (4) One answer is: $\Delta AZA'$ and $\Delta BXB'$ are perspective from point Y. There are other answers. Another one that was suggested is: $\Delta A'YA$ and $\Delta C'XC$ are perspective from point Z.

(5) Observe that $a^2 = (B - A)^2$, $b^2 = (C - B)^2$, and $c^2 = (C - A)^2$. Since $a^2 + b^2 = c^2$, we obtain $(B - A)^2 + (C - B)^2 = (C - A)^2$

so that

$$B^{2} - 2AB + A^{2} + C^{2} - 2BC + B^{2} = C^{2} - 2AC + A^{2}.$$

Rearranging, we obtain $2B^2 - 2AB - 2BC + 2AC = 0$. Dividing by 2, we obtain $0 = B^2 - AB - BC + AC = (A - B)(C - B)$. Therefore, \overrightarrow{BA} and \overrightarrow{BC} are perpendicular and, hence, $\angle ABC$ is a right angle.

- (6) You do not need to know this for Test 2.
- (7) Since f is three successive rotations with the angles of these rotations summing to $8\pi/3$, $f = R_{8\pi/3,(x,y)} = R_{\alpha,D}$ where $\alpha = 2\pi/3$ and D = (x, y) for some numbers x and y. We need to determine x and y. Since f(1, 1) = (5, 7), we deduce that

Thus.

Rewriting these, we obtain
$$3x + \sqrt{3}y = 11 + \sqrt{3}$$
 and $14 = \sqrt{3} - 1 - \sqrt{3}x + 3y$
 $3x + \sqrt{3}y = 11 + \sqrt{3}$ and $\sqrt{3}x - 3y = -15 + \sqrt{3}$.

Multiplying the first of these by $\sqrt{3}$ and adding the result to the second, we deduce $4\sqrt{3}x = 12\sqrt{3} - 12$ so that $x = 3 - \sqrt{3}$. Substituting, we obtain (after a little work) $y = 4 + (2\sqrt{3}/3)$.

(8) **Proof:** Since $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, and $\overrightarrow{CC'}$ are parallel, there are real numbers k_1 and k_2 such that

$$A' - A = k_1(B' - B) = k_2(C' - C).$$

We get that

$$A - k_1 B = A' - k_1 B'.$$

We first explain why $k_1 \neq 1$. Assume $k_1 = 1$. Then A - B = A' - B' so that \overrightarrow{AB} and $\overrightarrow{A'B'}$ are parallel. This contradicts that P exists. Therefore, $k_1 \neq 1$. Hence,

$$\left(\frac{1}{1-k_1}\right)A + \left(\frac{-k_1}{1-k_1}\right)B = \left(\frac{1}{1-k_1}\right)A' + \left(\frac{-k_1}{1-k_1}\right)B'.$$

By Theorem 1 (from the last page of this exam) with $t = -k_1/(1 - k_1)$, we see that the expression on the left above is a point on line \overrightarrow{AB} and that the expression on the right above is a point on line $\overrightarrow{A'B'}$. Therefore, we get that

(1)
$$(1-k_1)P = A - k_1B$$
.

Similarly, from $k_1B - k_2C = k_1B' - k_2C'$, we deduce that

(2)
$$(k_1 - k_2)Q = k_1 B - k_2 C.$$

Also, from $k_2C - A = k_2C' - A'$, we deduce that

$$(3) (k_2 - 1)R = k_2C - A$$

Therefore, from (1), (2), and (3),

$$(1-k_1)P + (k_1-k_2)Q + (k_2-1)R = \overrightarrow{0}.$$

The result follows from Theorem 3 (on the last page of this test).

Test 2 (1995):

- (1) See Problem 1 on the 1993 test. Note that the theorems are numbered differently.
- (2) The square of the distance from N to M_A is $(N M_A)^2$ and the square of the distance from N to M_C is $(N M_C)^2$. It therefore suffices to show that $(N M_A)^2 = (N M_C)^2$. Since \overrightarrow{BD} and \overrightarrow{CA} are perpendicular, (D B)(A C) = 0. We use that

$$D - B = (A + B + C + D) - (B + C) - (A + B)$$

= 4N - 2M_A - 2M_C = 2((N - M_A) + (N - M_C)).

and

d $A - C = (A + B) - (B + C) = 2M_C - 2M_A = 2((N - M_A) - (N - M_C))$

Since (D - B)(A - C) = 0, we deduce

$$0 = \left((N - M_A) + (N - M_C) \right) \left((N - M_A) - (N - M_C) \right) = (N - M_A)^2 - (N - M_C)^2.$$

Hence, $(N - M_A)^2 = (N - M_C)^2$.

- (3) (a) (-2,0)
 - (b) 1
 - (c) (12, 6)

(4) Observe that $a^2 = (B - A)^2$, $b^2 = (C - B)^2$, and $c^2 = (C - A)^2$. Since $a^2 + b^2 = c^2$, we obtain $(B - A)^2 + (C - B)^2 = (C - A)^2$

so that

$$B^{2} - 2AB + A^{2} + C^{2} - 2BC + B^{2} = C^{2} - 2AC + A^{2}$$

Rearranging, we obtain $2B^2 - 2AB - 2BC + 2AC = 0$. Dividing by 2, we obtain $0 = B^2 - AB - BC + AC = (A - B)(C - B)$. Therefore, \overrightarrow{BA} and \overrightarrow{BC} are perpendicular and, hence, $\angle ABC$ is a right angle.

- (5) One answer is: $\Delta TB'B$ and $\Delta SA'A$ are perspective from point R.
- (6) Let D be the midpoint of \overline{BC} . Then D = (B + C)/2. Since the distance from A to B is equal to the distance from A to C, we obtain $(A B)^2 = (A C)^2$. Thus,

$$0 = (A - B)^{2} - (A - C)^{2} = (2A - B - C)(C - A)$$
$$= 2\left(A - \frac{B + C}{2}\right)(C - A) = 2(A - D)(C - A)$$

(where the second equality follows by considering the factorization of the difference of two squares). It follows that \overrightarrow{DA} and \overrightarrow{AC} are prependicular. In other words, the line passing through A and the midpoint of \overrightarrow{BC} is perpendicular to line \overleftarrow{BC} .

(7) **Proof:** Since $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, and $\overrightarrow{CC'}$ are parallel, there are real numbers k_1 and k_2 such that

$$A' - A = k_1(B' - B) = k_2(C' - C).$$

We get that

$$A - k_1 B = A' - k_1 B'.$$

We first explain why $k_1 \neq 1$. Assume $k_1 = 1$. Then A - B = A' - B' so that \overrightarrow{AB} and $\overrightarrow{A'B'}$ are parallel. This contradicts that P exists. Therefore, $k_1 \neq 1$. Hence,

$$\left(\frac{1}{1-k_1}\right)A + \left(\frac{-k_1}{1-k_1}\right)B = \left(\frac{1}{1-k_1}\right)A' + \left(\frac{-k_1}{1-k_1}\right)B'.$$

By Theorem 1 (from the last page of this exam) with $t = -k_1/(1 - k_1)$, we see that the expression on the left above is a point on line \overrightarrow{AB} and that the expression on the right above is a point on line $\overrightarrow{A'B'}$. Therefore, we get that

(1)
$$(1-k_1)P = A - k_1B$$
.

Similarly, from $k_1B - k_2C = k_1B' - k_2C'$, we deduce that

(2)
$$(k_1 - k_2)Q = k_1 B - k_2 C.$$

Using that

$$A - k_2 C = A' - k_2 C'$$

and that \overrightarrow{AC} and $\overrightarrow{A'C'}$ are parallel (so R is a point at "infinity"), we obtain

(3)
$$k_2 = 1.$$

From (1) and (2), we obtain

(4)
$$(1-k_1)P + (k_1 - k_2)Q = A - k_2C.$$

Using (3), we can rewrite (4) in the form

$$(1-k_1) \times (P-Q) = A - C.$$

Recall that $k_1 \neq 1$. Therefore, the line \overleftrightarrow{AC} is parallel to the line \overleftrightarrow{PQ} .