Math 532, 736I: Modern Geometry Test 2 Solutions

Test 2 (1992):

Part I:

(1) If A, B, and C are not distinct, then the conclusion that A, B, and C are collinear is clear. Suppose now that A, B, and C are distinct. Recall that not all of x, y, and z are zero. Suppose $x \neq 0$ (a similar argument can be made if $y \neq 0$ or $z \neq 0$). From $x A+y B+z C=\overrightarrow{0}$, we obtain $A=(-y / x) B+(-z / x) C$. Let $t=-z / x$. Since $x+y+z=0$,

$$
1-t=1-\left(-\frac{z}{x}\right)=1+\frac{z}{x}=\frac{x+z}{x}=-\frac{y}{x} .
$$

Hence, $A=(1-t) B+t C$. By Theorem $1, A$ is on $\overleftrightarrow{B C}$. Thus, A, B, and C are collinear.
(2) The square of the distance from N to M_{A} is $\left(N-M_{A}\right)^{2}$ and the square of the distance from $\stackrel{N}{\leftrightarrows}$ to M_{B} is $\left(N-M_{B}\right)^{2}$. It therefore suffices to show that $\left(N-M_{A}\right)^{2}=\left(N-M_{B}\right)^{2}$. Since $\overleftrightarrow{C D}$ and $\overleftrightarrow{B A}$ are perpendicular, $(D-C)(A-B)=0$. We use that

$$
\begin{aligned}
D-C & =(A+B+C+D)-(B+C)-(A+C) \\
& =4 N-2 M_{A}-2 M_{B}=2\left(\left(N-M_{A}\right)+\left(N-M_{B}\right)\right) .
\end{aligned}
$$

and $\quad A-B=(A+C)-(B+C)=2 M_{B}-2 M_{A}=2\left(\left(N-M_{A}\right)-\left(N-M_{B}\right)\right)$
Since $(D-C)(A-B)=0$, we deduce

$$
0=\left(\left(N-M_{A}\right)+\left(N-M_{B}\right)\right)\left(\left(N-M_{A}\right)-\left(N-M_{B}\right)\right)=\left(N-M_{A}\right)^{2}-\left(N-M_{B}\right)^{2} .
$$

Hence, $\left(N-M_{A}\right)^{2}=\left(N-M_{B}\right)^{2}$.

Part II:

(1) Not relevant to the current course.
(2) Let P_{A} be the intersection of the altitude drawn from A to $\overleftrightarrow{B C}$. Let P_{B} be the intersection of
 $\overleftrightarrow{A B}$. Let D be the intersection of $\overleftrightarrow{A P_{A}}$ and $\overleftrightarrow{B P_{B}}$. Then $\overrightarrow{A D}$ and $\overrightarrow{B C}$ are perpendicular and $\overrightarrow{B D}$ and $\overrightarrow{A C}$ are perpendicular. Hence, $(D-A)(C-B)=0$ and $(D-B)(C-A)=0$. Therefore,

$$
0=(D-A)(C-B)-(D-B)(C-A)=-A C-B D+A D+B C=(D-C)(A-B) .
$$

Thus, $\overrightarrow{C D}$ and $\overrightarrow{B A}$ are perpendicular. We deduce that the altitude from C also passes through D so that the three altitudes are concurrent.
(3) In this problem, $f=R_{\pi / 2, A} T_{A} R_{\pi, A}$. From the last page of this test (and as shown on homework from class) $T_{A}=R_{\pi, A / 2} R_{\pi,(0,0)}$. Thus, we can view f as a product of four rotations with the sum of the angles in the rotations being $7 \pi / 2$. Since a rotation by $7 \pi / 2$ is the same as a rotation by $3 \pi / 2$, we deduce that $f=R_{3 \pi / 2, B}$. Using $A=(1,3)$, one writes $R_{\pi / 2, A} T_{A} R_{\pi, A}$ as a product of 3 matrices and obtains

$$
R_{\pi / 2, A} T_{A} R_{\pi, A}=\left(\begin{array}{ccc}
0 & 1 & -5 \\
-1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right)
$$

(Note that the matrix above can be used to justify $f=R_{3 \pi / 2, B}$ as well.) If $B=(x, y)$, then

$$
R_{3 \pi / 2, B}=\left(\begin{array}{ccc}
0 & 1 & x-y \\
-1 & 0 & x+y \\
0 & 0 & 1
\end{array}\right)
$$

Hence, $x-y=-5$ and $x+y=5$. Solving, we deduce $x=0$ and $y=5$. Thus, $B=(0,5)$.

Part III:

(1) The vector $B-A$ (going in the direction of ℓ) is parallel to the vector $D-C$ (going in the direction of m). Thus, $B-A=k(D-C)$ for some constant k. Since E is the midpoint of $\overline{A C}$ and F is the midpoint of $\overline{B D}$, we obtain

Thus,

$$
E=\frac{1}{2}(A+C) \quad \text { and } \quad F=\frac{1}{2}(B+D)
$$

$$
F-E=\frac{1}{2}(B+D)-\underset{\longrightarrow}{\frac{1}{2}}(A+C)=\frac{1}{2}(B-A)+\frac{1^{2}}{2}(D-C)=\frac{k+1}{2}(D-C)
$$

Thus, $\overrightarrow{E F}$ is a constant times $\overrightarrow{C D}$. This constant is non-zero since $E \neq F$. It follows that $\overleftrightarrow{E F}$ is parallel to $\overleftrightarrow{C D}$. Hence, $\overleftrightarrow{E F}$ is parallel to both ℓ and m.
(2) You do not need to know this for Test 2.
(3) Proof. By Theorem 1 (from the Information Page at the end of this test), there are real numbers k_{1}, k_{2}, and k_{3} such that

$$
X=\left(1-k_{1}\right) A+k_{1} A^{\prime}=\left(1-k_{2}\right) B+k_{2} B^{\prime}=\left(1-k_{3}\right) C+k_{3} C^{\prime}
$$

Next, we show that $k_{1} \neq k_{2}$. Assume $k_{1}=k_{2}$. Observe that $k_{1} \neq 0$ since otherwise we would have $X=A=B$, contradicting that A and B are distinct points. Also, $k_{1} \neq 1$ since otherwise we would have $X=A^{\prime}=B^{\prime}$, contradicting that A^{\prime} and B^{\prime} are distinct points. We get that

$$
\left(1-k_{1}\right) A-\left(1-k_{2}\right) B=k_{2} B^{\prime}-k_{1} A^{\prime}
$$

and that the vectors $\overrightarrow{B A}$ and $\overrightarrow{A^{\prime} B^{\prime}}$ either have the same direction or the exact opposite direction. This contradicts that the point P exists. Hence, $k_{1} \neq k_{2}$. Thus,

$$
\frac{1-k_{1}}{k_{2}-k_{1}} A+\frac{k_{2}-1}{k_{2}-k_{1}} B=\frac{k_{2}}{k_{2}-k_{1}} B^{\prime}+\frac{-k_{1}}{k_{2}-k_{1}} A^{\prime}
$$

By Theorem 1 with $t=\left(k_{2}-1\right) /\left(k_{2}-k_{1}\right)$, we see that the expression on the left above is a point on line $\overleftrightarrow{A B}$. By Theorem 1 with $t=-k_{1} /\left(k_{2}-k_{1}\right)$, we see that the expression on the right above is a point on line $\overleftrightarrow{A^{\prime} B^{\prime}}$. Therefore, we get that

$$
P=\frac{1-k_{1}}{k_{2}-k_{1}} A+\frac{k_{2}-1}{k_{2}-k_{1}} B
$$

Hence,

$$
\begin{equation*}
\left(k_{2}-k_{1}\right) P=\left(1-k_{1}\right) A+\left(k_{2}-1\right) B . \tag{1}
\end{equation*}
$$

Using that

$$
\left(1-k_{2}\right) B-\left(1-k_{3}\right) C=k_{3} C^{\prime}-k_{2} B^{\prime}
$$

we similarly obtain that $k_{2} \neq k_{3}$, that

$$
\frac{1-k_{2}}{k_{3}-k_{2}} B+\frac{k_{3}-1}{k_{3}-k_{2}} C=\frac{k_{3}}{k_{3}-k_{2}} C^{\prime}+\frac{-k_{2}}{k_{3}-k_{2}} B^{\prime}
$$

and that

$$
\begin{equation*}
\left(k_{3}-k_{2}\right) Q=\left(1-k_{2}\right) B+\left(k_{3}-1\right) C . \tag{2}
\end{equation*}
$$

From

$$
\left(1-k_{3}\right) C-\left(1-k_{1}\right) A=k_{1} A^{\prime}-k_{3} C^{\prime}
$$

we similarly obtain that either

$$
\begin{equation*}
k_{3}=k_{1} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1-k_{3}}{k_{1}-k_{3}} C+\frac{k_{1}-1}{k_{1}-k_{3}} A=\frac{k_{1}}{k_{1}-k_{3}} A^{\prime}+\frac{-k_{3}}{k_{1}-k_{3}} C^{\prime} . \tag{4}
\end{equation*}
$$

If (4) holds, then we could deduce that there is a point on both line $\overleftrightarrow{A C}$ and line $\overleftrightarrow{A^{\prime} C^{\prime}}$, giving a contradiction. Thus, (3) must hold. We get from (1) and (2) that

$$
\left(k_{2}-k_{1}\right) P+\left(k_{3}-k_{2}\right) Q=\left(1-k_{1}\right) A+\left(k_{3}-1\right) C
$$

so that

$$
\left(k_{2}-k_{1}\right)(P-Q)=\left(1-k_{1}\right)(A-C)
$$

Observe that $P \neq Q$ since otherwise we would have that the points A, B, and C are collinear, which isn't the case. Since $k_{1} \neq k_{2}$, we obtain that the lines $\overleftrightarrow{P Q}$ and $\overleftrightarrow{A C}$ are parallel, completing the proof.

Test 2 (1993):

Part I:

(1) If $A=B$, then take $x=1, y=-1$, and $z=0$. Suppose now that $A \neq B$. By Theorem 1 , there is a real number t such that $C=(1-t) A+t B$. Let $x=1-t, y=t$, and $z=-1$. Then x, y, and z are not all $0, x+y+z=0$, and $x A+y B+z C=\overrightarrow{0}$.
(2) See Problem (2) of the 1992 test.
(3) One answer is: $\Delta A A^{\prime} Z$ and $\Delta B B^{\prime} X$ are perspective from point Y.

Part II:

(1) It suffices to show that $G=\frac{1}{2}(C+F)$. The given information implies

$$
D=\frac{B+C}{2}, \quad E=\frac{A+C}{2}, \quad F=\frac{A+B}{2}, \quad \text { and } \quad G=\frac{D+E}{2} .
$$

Hence,

$$
G=\frac{1}{2}(D+E)=\frac{1}{2}\left(\frac{B+C}{2}+\frac{A+C}{2}\right)=\frac{1}{2}\left(C+\frac{A+B}{2}\right)=\frac{1}{2}(C+F)
$$

as desired.
(2) From the given information, $f=R_{\pi / 2,(1,1)} R_{\pi,(1,0)} R_{\pi / 2,(0,0)}$. Since the sum of the angles ($\pi / 2$, π, and $\pi / 2$) is 2π (an integer times 2π), we deduce that f is a translation. In other words, $f=T_{B}$. To determine B, one can compute f by multiplying matrices. However, it is probably easier to take a point and see what f does to it (where it is mapped under f). Consider $(x, y)=$ $(0,0)$. Rotating this point about $(0,0)$ by $\pi / 2$ does not change it. Now, rotating the point about $(1,0)$ by π moves it to $(2,0)$. Finally, rotating this point about $(1,1)$ by $\pi / 2$ moves it to $(2,2)$. Thus, f takes $(0,0)$ to $(2,2)$. It follows that $B=(2,2)$.
(3) You do not need to know this for Test 2.
(4) Recall in class that we discussed how one could obtain the point C where $R_{\alpha+\beta, C}=R_{\beta, B} R_{\alpha, A}$. The points A, B, and C form a triangle with $\angle B A C=\alpha / 2$ and $\angle A B C=\beta / 2$. Since $\alpha+\beta=\pi$ in this problem, the sum of the measures of $\angle B A C$ and $\angle A B C$ is $\pi / 2$. Thus, $\triangle A B C$ is a right triangle with $\angle A C B=\pi / 2$. Recall that we showed in class that in this situation, C is on the circle having diameter $\overline{A B}$. Since the center of this circle is the midpoint of $\overline{A B}, C$ is on the circle centered at $\frac{1}{2}(A+B)$ passing through A and B.

Test 2 (1994):

(1) See Problem 1 on the 1992 test. Note that the theorems are numbered differently.
(2) Observe that

$$
2 N-M_{A}-Q_{A}=\frac{A+B+C+D}{2}-\frac{B+C}{2}-\frac{A+D}{2}=\overrightarrow{0} .
$$

Thus,

$$
\begin{aligned}
0 & =\left(2 N-M_{A}-Q_{A}\right)\left(M_{A}-Q_{A}\right)=2 N M_{A}-M_{A}^{2}-2 N Q_{A}+Q_{A}^{2} \\
& =-N^{2}+2 N M_{A}-M_{A}^{2}+N^{2}-2 N Q_{A}+Q_{A}^{2}=-\left(N-M_{A}\right)^{2}+\left(N-Q_{A}\right)^{2}
\end{aligned}
$$

Thus, $\left(N-M_{A}\right)^{2}=\left(N-Q_{A}\right)^{2}$, and we deduce that the distance from N to M_{A} is the same as the distance from N to Q_{A}.
(3) (a) $(3,-2)$
(b) 4
(c) $(4,4)$ (you should be able to do this with and without matrices)
(d) $(1,4)$ (you should be able to do this with and without matrices)
(4) One answer is: $\triangle A Z A^{\prime}$ and $\Delta B X B^{\prime}$ are perspective from point Y. There are other answers. Another one that was suggested is: $\Delta A^{\prime} Y A$ and $\Delta C^{\prime} X C$ are perspective from point Z.
(5) Observe that $a^{2}=(B-A)^{2}, b^{2}=(C-B)^{2}$, and $c^{2}=(C-A)^{2}$. Since $a^{2}+b^{2}=c^{2}$, we obtain $(B-A)^{2}+(C-B)^{2}=(C-A)^{2}$
so that

$$
B^{2}-2 A B+A^{2}+C^{2}-2 B C+B^{2}=C^{2}-2 A C+A^{2}
$$

Rearranging, we obtain $2 B^{2}-2 A B-2 B C+2 A C=0$. Dividing by 2 , we obtain $0=B^{2}-A B-$ $B C+A C=(A-B)(C-B)$. Therefore, $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are perpendicular and, hence, $\angle A B C$ is a right angle.
(6) You do not need to know this for Test 2.
(7) Since f is three successive rotations with the angles of these rotations summing to $8 \pi / 3, f=$ $R_{8 \pi / 3,(x, y)}=R_{\alpha, D}$ where $\alpha=2 \pi / 3$ and $D=(x, y)$ for some numbers x and y. We need to determine x and y. Since $f(1,1)=(5,7)$, we deduce that

$$
\left(\begin{array}{l}
5 \\
7 \\
1
\end{array}\right)=R_{2 \pi / 3,(x, y)}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 2 & -\sqrt{3} / 2 & (3 x+\sqrt{3} y) / 2 \\
\sqrt{3} / 2 & -1 / 2 & (-\sqrt{3} x+3 y) / 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Thus, $\quad 10=-1-\sqrt{3}+3 x+\sqrt{3} y \quad$ and $\quad 14=\sqrt{3}-1-\sqrt{3} x+3 y$.
Rewriting these, we obtain $\quad 3 x+\sqrt{3} y=11+\sqrt{3} \quad$ and $\quad \sqrt{3} x-3 y=-15+\sqrt{3}$.
Multiplying the first of these by $\sqrt{3}$ and adding the result to the second, we deduce $4 \sqrt{3} x=12 \sqrt{3}-$ 12 so that $x=3-\sqrt{3}$. Substituting, we obtain (after a little work) $y=4+(2 \sqrt{3} / 3)$.
(8) Proof: Since $\overleftrightarrow{A A^{\prime}}, \overleftrightarrow{B B^{\prime}}$, and $\overleftrightarrow{C C^{\prime}}$ are parallel, there are real numbers k_{1} and k_{2} such that

$$
A^{\prime}-A=k_{1}\left(B^{\prime}-B\right)=k_{2}\left(C^{\prime}-C\right)
$$

We get that

$$
A-k_{1} B=A^{\prime}-k_{1} B^{\prime} .
$$

We first explain why $k_{1} \neq 1$. Assume $k_{1}=1$. Then $A-B=A^{\prime}-B^{\prime}$ so that $\overleftrightarrow{A B}$ and $\overleftrightarrow{A^{\prime} B^{\prime}}$ are parallel. This contradicts that P exists. Therefore, $k_{1} \neq 1$. Hence,

$$
\left(\frac{1}{1-k_{1}}\right) A+\left(\frac{-k_{1}}{1-k_{1}}\right) B=\left(\frac{1}{1-k_{1}}\right) A^{\prime}+\left(\frac{-k_{1}}{1-k_{1}}\right) B^{\prime}
$$

By Theorem 1 (from the last page of this exam) with $t=-k_{1} /\left(1-k_{1}\right)$, we see that the expression on the left above is a point on line $\overleftrightarrow{A B}$ and that the expression on the right above is a point on line $\overleftrightarrow{A^{\prime} B^{\prime}}$. Therefore, we get that

$$
\begin{equation*}
\left(1-k_{1}\right) P=A-k_{1} B . \tag{1}
\end{equation*}
$$

Similarly, from $k_{1} B-k_{2} C=k_{1} B^{\prime}-k_{2} C^{\prime}$, we deduce that

$$
\begin{equation*}
\left(k_{1}-k_{2}\right) Q=k_{1} B-k_{2} C . \tag{2}
\end{equation*}
$$

Also, from $k_{2} C-A=k_{2} C^{\prime}-A^{\prime}$, we deduce that

$$
\begin{equation*}
\left(k_{2}-1\right) R=k_{2} C-A \tag{3}
\end{equation*}
$$

Therefore, from (1), (2), and (3),

$$
\left(1-k_{1}\right) P+\left(k_{1}-k_{2}\right) Q+\left(k_{2}-1\right) R=\overrightarrow{0}
$$

The result follows from Theorem 3 (on the last page of this test).

Test 2 (1995):

(1) See Problem 1 on the 1993 test. Note that the theorems are numbered differently.
(2) The square of the distance from N to M_{A} is $\left(N-M_{A}\right)^{2}$ and the square of the distance from N to M_{C} is $\left(N-M_{C}\right)^{2}$. It therefore suffices to show that $\left(N-M_{A}\right)^{2}=\left(N-M_{C}\right)^{2}$. Since $\overleftrightarrow{B D}$ and $\overleftrightarrow{C A}$ are perpendicular, $(D-B)(A-C)=0$. We use that

$$
\begin{aligned}
D-B & =(A+B+C+D)-(B+C)-(A+B) \\
& =4 N-2 M_{A}-2 M_{C}=2\left(\left(N-M_{A}\right)+\left(N-M_{C}\right)\right) .
\end{aligned}
$$

and

$$
A-C=(A+B)-(B+C)=2 M_{C}-2 M_{A}=2\left(\left(N-M_{A}\right)-\left(N-M_{C}\right)\right)
$$

Since $(D-B)(A-C)=0$, we deduce

$$
0=\left(\left(N-M_{A}\right)+\left(N-M_{C}\right)\right)\left(\left(N-M_{A}\right)-\left(N-M_{C}\right)\right)=\left(N-M_{A}\right)^{2}-\left(N-M_{C}\right)^{2}
$$

Hence, $\left(N-M_{A}\right)^{2}=\left(N-M_{C}\right)^{2}$.
(3) (a) $(-2,0)$
(b) 1
(c) $(12,6)$
(4) Observe that $a^{2}=(B-A)^{2}, b^{2}=(C-B)^{2}$, and $c^{2}=(C-A)^{2}$. Since $a^{2}+b^{2}=c^{2}$, we obtain

$$
(B-A)^{2}+(C-B)^{2}=(C-A)^{2}
$$

so that

$$
B^{2}-2 A B+A^{2}+C^{2}-2 B C+B^{2}=C^{2}-2 A C+A^{2} .
$$

Rearranging, we obtain $2 B^{2}-2 A B-2 B C+2 A C=0$. Dividing by 2 , we obtain $0=B^{2}-A B-$ $B C+A C=(A-B)(C-B)$. Therefore, $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are perpendicular and, hence, $\angle A B C$ is a right angle.
(5) One answer is: $\Delta T B^{\prime} B$ and $\Delta S A^{\prime} A$ are perspective from point R.
(6) Let D be the midpoint of $\overline{B C}$. Then $D=(B+C) / 2$. Since the distance from A to B is equal to the distance from A to C, we obtain $(A-B)^{2}=(A-C)^{2}$. Thus,

$$
\begin{aligned}
0 & =(A-B)^{2}-(A-C)^{2}=(2 A-B-C)(C-A) \\
& =2\left(A-\frac{B+C}{2}\right)(C-A)=2(A-D)(C-A)
\end{aligned}
$$

(where the second equality follows by considering the factorization of the difference of two squares). It follows that $\overrightarrow{D A}$ and $\overrightarrow{A C}$ are prependicular. In other words, the line passing through A and the midpoint of $\overline{B C}$ is perpendicular to line $\overleftrightarrow{B C}$.
(7) Proof: Since $\overleftrightarrow{A A^{\prime}}, \overleftrightarrow{B B^{\prime}}$, and $\overleftrightarrow{C C^{\prime}}$ are parallel, there are real numbers k_{1} and k_{2} such that

$$
A^{\prime}-A=k_{1}\left(B^{\prime}-B\right)=k_{2}\left(C^{\prime}-C\right)
$$

We get that

$$
A-k_{1} B=A^{\prime}-k_{1} B^{\prime} .
$$

We first explain why $k_{1} \neq 1$. Assume $k_{1}=1$. Then $A-B=A^{\prime}-B^{\prime}$ so that $\overleftrightarrow{A B}$ and $\overleftrightarrow{A^{\prime} B^{\prime}}$ are parallel. This contradicts that P exists. Therefore, $k_{1} \neq 1$. Hence,

$$
\left(\frac{1}{1-k_{1}}\right) A+\left(\frac{-k_{1}}{1-k_{1}}\right) B=\left(\frac{1}{1-k_{1}}\right) A^{\prime}+\left(\frac{-k_{1}}{1-k_{1}}\right) B^{\prime}
$$

By Theorem 1 (from the last page of this exam) with $t=-k_{1} /\left(1-k_{1}\right)$, we see that the expression on the left above is a point on line $\overleftrightarrow{A B}$ and that the expression on the right above is a point on line $\overleftrightarrow{A^{\prime} B^{\prime}}$. Therefore, we get that

$$
\begin{equation*}
\left(1-k_{1}\right) P=A-k_{1} B . \tag{1}
\end{equation*}
$$

Similarly, from $k_{1} B-k_{2} C=k_{1} B^{\prime}-k_{2} C^{\prime}$, we deduce that

$$
\begin{equation*}
\left(k_{1}-k_{2}\right) Q=k_{1} B-k_{2} C . \tag{2}
\end{equation*}
$$

Using that

$$
A-k_{2} C=A^{\prime}-k_{2} C^{\prime}
$$

and that $\overleftrightarrow{A C}$ and $\overleftrightarrow{A^{\prime} C^{\prime}}$ are parallel (so R is a point at "infinity"), we obtain

$$
\begin{equation*}
k_{2}=1 \tag{3}
\end{equation*}
$$

From (1) and (2), we obtain

$$
\begin{equation*}
\left(1-k_{1}\right) P+\left(k_{1}-k_{2}\right) Q=A-k_{2} C . \tag{4}
\end{equation*}
$$

Using (3), we can rewrite (4) in the form

$$
\left(1-k_{1}\right) \times(P-Q)=A-C
$$

Recall that $k_{1} \neq 1$. Therefore, the line $\overleftrightarrow{A C}$ is parallel to the line $\overleftrightarrow{P Q}$

