MATH 532, 736I: MODERN GEOMETRY Test 2 Solutions

Test #2 (2011)

1) Theorems are listed on the last page of this test. They may or may not have the numbering that you are accustomed to them having from class. Prove Theorem 2 using Theorem 1 (but not Theorem 3 or Theorem 4)

If A = B, then take x = 1, y = -1, and z = 0.

Suppose now that $A \neq B$. By Theorem 1 there is a real number t such that C = (1 - t)A + tB. Let x = 1 - t, y = t, and z = -1. Then x, y, and z are not all 0, x + y + z = 0, and $xA + yB + zC = \vec{0}$.

2) Let A, B, and C be 3 noncollinear point. Let M_a be the midpoint of \overline{BC} and let D be the intersection of the (extended) altitudes of $\triangle ABC$. Let Q_a be the midpoint of \overline{AD} . Finally, let N = (A + B + C + D)/4. Prove that the distance from N to M_a is the same the distance from N to Q_a . This is part of the 9-point circle theorem, so you should not make use of the 9-point circle theorem in doing this problem.

Show that $|NM_A| = |NQ_A|$ by showing that N is the midpoint of $\overline{M_AQ_A}$.

$$M_A = \frac{B+C}{2}$$
 and $Q_A = \frac{A+D}{2}$
 $\frac{M_A+Q_A}{2} = \frac{(B+C+A+D)/2}{2} = \frac{A+B+C+D}{4} = N$

Hence, *N* is the midpoint of $\overline{M_A Q_A}$ and $|\overline{MM_A}| = |\overline{MQ_A}|$

3) The centroid of a triangle is the point that is the average of its vertices. In other words, the point (U + V + W)/3 is the centroid of $\triangle UVW$. For a $\triangle ABC$, let M_A be the midpoint of side \overline{BC} , let M_B be the midpoint of side \overline{AC} , and let M_C be the midpoint of side \overline{AB} . Show that the centroid of $\triangle M_A M_B M_C$ is equal to the centroid of $\triangle ABC$.

Show that
$$\frac{M_A + M_B + M_C}{3} = \frac{A + B + C}{3}$$

 $M_A = \frac{B + C}{2}$, $M_B = \frac{A + C}{2}$, and $M_C = \frac{A + B}{2}$
The centroid for $\Delta M_A M_B M_C = \frac{M_A + M_B + M_C}{3} = \frac{(B + C + A + C + A + B)/2}{3} = \frac{2(A + B + C)}{6} = \frac{A + B + C}{3}$

4) For each part below, the function f(x, y) is defined as follows. First f rotates (x, y) about the point A = (-1,1) by π and then it takes the result and translates it by the point B = (-2,3) and then it rotates this result about the point C = (-2,-1) by $\frac{\pi}{2}$. Thus, we can view f as being $R\pi_{/2,C}T_BR_{\pi,A}$. As usual, all rotations are counterclockwise.

From the translation and rotation matrices we obtain

$$R\pi_{/2,C} = \begin{pmatrix} 0 & -1 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ T_B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \text{ and } R_{\pi,A} = \begin{pmatrix} -1 & 0 & -2 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
Multiply the first two matrices to find $\begin{pmatrix} 0 & -1 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -6 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
Multiply that result by the final matrix $\begin{pmatrix} 0 & -1 & -6 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & -2 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -8 \\ -1 & 0 & -3 \\ 0 & 0 & 1 \end{pmatrix}$
a) Calculate $f(4,1)$

$$f(4,1) = \begin{pmatrix} 0 & 1 & -8 \\ -1 & 0 & -3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -7 \\ -7 \\ 1 \end{pmatrix}$$
Answer: $(-7,-7)$

b) Find a point (x_0, y_0) satisfying $(x_0, y_0) = (x_0, y_0)$.

$$(x_0, y_0): \begin{bmatrix} \left(\frac{-11}{2}, \frac{5}{2}\right) \\ \left(\frac{-11}{2}, \frac{5}{2}\right) \end{bmatrix} \begin{pmatrix} 0 & 1 & -8 \\ -1 & 0 & -3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} y - 8 \\ -x - 3 \\ 1 \end{pmatrix}$$

$$x = y - 8$$

$$y = -x - 3 \Rightarrow \frac{x - y = -8}{2x = -11}$$
We use simultaneous equations and substitution to find the value of x and y.
From here we find $x = \frac{-11}{2}$ and $y = -\left(\frac{-11}{2}\right) - 3 \Rightarrow y = \frac{5}{2}$

c) Determine whether f is a translation or a rotation. If f is a translation, express f in the form $T_{(a,b)}$ where a and b are explicit numbers. If f is a rotation, express f in the form $R_{\theta,(a,b)}$ where θ , a, and b are explicit numbers.

$$f = R\pi_{/_2,C} T_B R_{\pi,A}$$

Using Theorem and the fact that a translation is the sum of two rotations, we can rewrite as follows.

$$f = R\pi_{/_{2},C}R_{\pi,*}R_{\pi,,*}R_{\pi,A}$$

$$\left(R\pi_{/_{2},C}R_{\pi,*}R_{\pi,,*}\right)R_{\pi,A}$$

$$R_{5\pi_{/_{2},*}}R_{\pi,A}$$

$$R_{7\pi_{/_{2},*}} \Rightarrow R_{3\pi_{/_{2},*}}$$

Since $\frac{3\pi}{2}$ is not a multiple of 2π , this is a rotation. From (b), we know the point about which the rotation occurs must be $\left(\frac{-11}{2}, \frac{5}{2}\right)$ since $f(x_0, y_0) = (x_0, y_0)$

f:
$$R_{3\pi/2,(\frac{-115}{2,2})}$$

5) The Picture to the right shows 14 congruent equilateral triangles. One of these triangles is $\triangle ABC$. The point M_A is the midpoint of segment \overline{BC} , the point M_B is the midpoint of segment \overline{AC} , and M_C is the midpoint of segment \overline{AB} . Consider the function f that is a rotation about M_A by π , followed by a rotation about M_C by π , and then followed by a rotation about M_B by π . So $f = R_{\pi,M_B}R_{\pi,M_C}R_{\pi,M_A}$

a. What point is f(C)? Since we can simply use the principle of rotation and visualize of how C moves, we can determine that f(C) = C

b) What point is f(D)? Circle the point to the right and justify your answer by using part (a) and Theorem 5 from the last page of the test.

IMPORTANT: You must explain your answer by using the theorem even if you have another reason for your answer. I want to know if you understand how the theorem gives the answer.

Using Theorem 5, we know that f is a rotation about some point by π . Since the sum of the rotations is equal to 3π and maps point C to itself, C is the point about which f rotates and $f = R_{\pi,C}$. Hence f(D) is rotating f(D) about point C by π , and that is the point which is circled.

6) This is the same problem as Problem 3 Part III from Test 2 of 1992. See the solutions to that test for the solution to this problem.