MATH 532, 736I: MODERN GEOMETRY Test 2 Solutions

Test \#2 (2011)

1) Theorems are listed on the last page of this test. They may or may not have the numbering that you are accustomed to them having from class. Prove Theorem 2 using Theorem 1 (but not Theorem 3 or Theorem 4)

If $A=B$, then take $x=1, y=-1$, and $z=0$.
Suppose now that $A \neq B$. By Theorem 1 there is a real number t such that $C=$ $(1-t) A+t B$. Let $x=1-t, y=t$, and $z=-1$. Then x, y, and z are not all 0 , $x+y+z=0$, and $x A+y B+z C=\overrightarrow{0}$.
2) Let A, B, and C be 3 noncollinear point. Let M_{a} be the midpoint of $\overline{B C}$ and let D be the intersection of the (extended) altitudes of $\triangle A B C$. Let Q_{a} be the midpoint of $\overline{A D}$. Finally, let $N=(A+B+C+D) / 4$. Prove that the distance from N to M_{a} is the same the distance from N to Q_{a}. This is part of the 9-point circle theorem, so you should not make use of the 9-point circle theorem in doing this problem.

Show that $\left|N M_{A}\right|=\left|N Q_{A}\right|$ by showing that N is the midpoint of $\overline{M_{A} Q_{A}}$.
$M_{A}=\frac{B+C}{2}$ and $Q_{A}=\frac{A+D}{2}$
$\frac{M_{A}+Q_{A}}{2}=\frac{(B+C+A+D) / 2}{2}=\frac{A+B+C+D}{4}=N$
Hence, N is the midpoint of $\overline{M_{A} Q_{A}}$ and $\left|\overline{N M_{A}}\right|=\left|\overline{N Q_{A}}\right|$

3) The centroid of a triangle is the point that is the average of its vertices. In other words, the point $(U+V+W) / 3$ is the centroid of $\triangle U V W$. For a $\triangle A B C$, let M_{A} be the midpoint of side $\overline{B C}$, let M_{B} be the midpoint of side $\overline{A C}$, and let M_{C} be the midpoint of side $\overline{A B}$. Show that the centroid of $\triangle M_{A} M_{B} M_{C}$ is equal to the centroid of $\triangle A B C$.

Show that $\frac{M_{A}+M_{B}+M_{C}}{3}=\frac{A+B+C}{3}$
$M_{A}=\frac{B+C}{2}, M_{B}=\frac{A+C}{2}$, and $M_{C}=\frac{A+B}{2}$
The centroid for $\Delta M_{A} M_{B} M_{C}=\frac{M_{A}+M_{B+} M_{C}}{3}=\frac{(B+C+A+C+A+B) / 2}{3}=\frac{2(A+B+C)}{6}=\frac{A+B+C}{3}$

4) For each part below, the function $f(x, y)$ is defined as follows. First f rotates (x, y) about the point $A=(-1,1)$ by π and then it takes the result and translates it by the point $B=(-2,3)$ and then it rotates this result about the point $C=(-2,-1)$ by $\frac{\pi}{2}$. Thus, we can view f as being $R \pi / 2, C T_{B} R_{\pi, A}$. As usual, all rotations are counterclockwise.

From the translation and rotation matrices we obtain
$R \pi /{ }_{2}, C=\left(\begin{array}{ccc}0 & -1 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right), T_{B}=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right)$, and $R_{\pi, A}=\left(\begin{array}{ccc}-1 & 0 & -2 \\ 0 & -1 & 2 \\ 0 & 0 & 1\end{array}\right)$
Multiply the first two matrices to find $\left(\begin{array}{ccc}0 & -1 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & -1 & -6 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right)$
Multiply that result by the final matrix $\left(\begin{array}{ccc}0 & -1 & -6 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}-1 & 0 & -2 \\ 0 & -1 & 2 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -8 \\ -1 & 0 & -3 \\ 0 & 0 & 1\end{array}\right)$
a) Calculate $f(4,1)$

Answer: $(-7,-7)$

$$
f(4,1)=\left(\begin{array}{ccc}
0 & 1 & -8 \\
-1 & 0 & -3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-7 \\
-7 \\
1
\end{array}\right)
$$

b) Find a point $\left(x_{0}, y_{0}\right)$ satisfying $\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$.

$$
\left(x_{0}, y_{0}\right):\left(\begin{array}{c}
\left.-\frac{-11}{2}, \frac{5}{2}\right)
\end{array}\left(\begin{array}{ccc}
0 & 1 & -8 \\
-1 & 0 & -3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
y-8 \\
-x-3 \\
1
\end{array}\right)\right.
$$

$$
\begin{gathered}
x=y-8 \\
y=-x-3
\end{gathered} \begin{gathered}
x-y=-8 \\
\frac{x+y=-3}{2 x=-11}
\end{gathered}
$$

We use simultaneous equations and substitution to find the value of x and y.

From here we find $x=\frac{-11}{2}$ and $y=-\left(\frac{-11}{2}\right)-3 \Rightarrow y=\frac{5}{2}$
c) Determine whether f is a translation or a rotation. If f is a translation, express f in the form $T_{(a, b)}$ where a and b are explicit numbers. If f is a rotation, express f in the form $R_{\theta,(a, b)}$ where θ, a, and b are explicit numbers.

$$
f=R \pi / 2, c T_{B} R_{\pi, A}
$$

Using Theorem and the fact that a translation is the sum of two rotations, we can rewrite as follows.

$$
\begin{gathered}
f=R \pi / 2, C \\
\left(R \pi / 2, C, R_{\pi, *} R_{\pi, *} R_{\pi, A} R_{\pi, *}\right) R_{\pi, A} \\
R_{5 \pi / 2,{ }^{*}} R_{\pi, A} \\
R_{7 \pi / 2, *} \Rightarrow R_{3 \pi / 2, *}
\end{gathered}
$$

Since $3 \pi / 2$ is not a multiple of 2π, this is a rotation. From (b), we know the point about which the rotation occurs must be $\left(\frac{-11}{2}, \frac{5}{2}\right)$ since $f\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$

$$
f: \quad R_{3 \pi / 2,\left(\frac{-11,5}{2}, \frac{5}{2}\right)}
$$

5) The Picture to the right shows 14 congruent equilateral triangles. One of these triangles is $\triangle A B C$. The point M_{A} is the midpoint of segment $\overline{B C}$, the point M_{B} is the midpoint of segment $\overline{A C}$, and M_{C} is the midpoint of segment $\overline{A B}$. Consider the function f that is a rotation about M_{A} by π, followed by a rotation about M_{C} by π, and then followed by a rotation about M_{B} by π. So $f=R_{\pi, M_{B}} R_{\pi, M_{C}} R_{\pi, M_{A}}$

a. What point is $f(C)$? Since we can simply use the principle of rotation and visualize of how C moves, we can determine that $f(C)=C$

$R_{\pi, M_{A}}$

$R_{\pi, M_{C}}$

$R_{\pi, M_{B}}$
b) What point is $f(D)$? Circle the point to the right and justify your answer by using part (a) and Theorem 5 from the last page of the test.

IMPORTANT: You must explain your answer by using the theorem even if you have another reason for your answer. I want to know if you understand how the theorem gives the answer.

Using Theorem 5, we know that f is a rotation about some point by π. Since the sum of the rotations is equal to 3π and maps point C to itself, C is the point about which f rotates and $f=R_{\pi, C}$. Hence $f(D)$ is rotating $f(D)$ about point C by π, and that is the point which is circled.

6) This is the same problem as Problem 3 Part III from Test 2 of 1992. See the solutions to that test for the solution to this problem.

