Math 532/736I, Lecture Notes 10

Notes on Translations and Rotations

We associate with each point (x, y) the column $\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$ which we will sometimes write as $(x, y, 1)^{T}$. A translation of the Euclidean plane is a function f which maps each point (x, y) to $(x+a, y+b)$ for some real numbers a and b. To make matters more precise, we shall refer to f as a translation by (a, b). We may view such a translation as mapping $(x, y, 1)^{T}$ into $(x+a, y+b, 1)^{T}$. Since

$$
\left(\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

we may therefore think of f as simply being multiplication by the matrix above. We shall refer to the above matrix as $T_{(a, b)}$. If P represents the point (a, b), we will sometimes write T_{P}. Thus,

$$
T_{P}=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

represents a translation of the Euclidean plane by P. If $P=(0,0)$, observe that T_{P} maps each point to itself. In this case, we will call T_{P} the identity transformation.

Now, consider a point $A=\left(x_{1}, y_{1}\right)$ and a real number ϕ. A rotation of the Euclidean plane about A by an angle ϕ is a function f which maps each point $B=(x, y)$ to $C=\left(x^{\prime}, y^{\prime}\right)$ where C is the same distance as B from A and where the angle measured counterclockwise from the vector $\overrightarrow{A B}$ to the vector $\overrightarrow{A C}$ is ϕ. It will be convenient to also find a matrix representation of such a rotation. Suppose for the moment that $A=(0,0)$. We can write B in polar coordinates as (r, θ). Then C has the polar coordinate representation $(r, \theta+\phi)$. Hence,

$$
x^{\prime}=r \cos (\theta+\phi)=r \cos (\theta) \cos (\phi)-r \sin (\theta) \sin (\phi)=x \cos (\phi)-y \sin (\phi)
$$

and

$$
y^{\prime}=r \sin (\theta+\phi)=r \cos (\theta) \sin (\phi)+r \sin (\theta) \cos (\phi)=x \sin (\phi)+y \cos (\phi)
$$

In matrix notation, we may combine these as

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos (\phi) & -\sin (\phi) \\
\sin (\phi) & \cos (\phi)
\end{array}\right)\binom{x}{y} .
$$

In general, with $A=\left(x_{1}, y_{1}\right)$, we may obtain $\left(x^{\prime}, y^{\prime}\right)$ by translating the Euclidean plane first by $\left(-x_{1},-y_{1}\right)$, and then performing the above rotation about the origin, and then translating the Euclidean plane by $\left(x_{1}, y_{1}\right)$. Thus,

$$
\begin{aligned}
\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{cc}
\cos (\phi) & -\sin (\phi) \\
\sin (\phi) & \cos (\phi)
\end{array}\right)\binom{x-x_{1}}{y-y_{1}}+\binom{x_{1}}{y_{1}} \\
& =\binom{x \cos (\phi)-y \sin (\phi)+x_{1}(1-\cos (\phi))+y_{1} \sin (\phi)}{x \sin (\phi)+y \cos (\phi)-x_{1} \sin (\phi)+y_{1}(1-\cos (\phi))} .
\end{aligned}
$$

We may rewrite this as

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\phi) & -\sin (\phi) & x_{1}(1-\cos (\phi))+y_{1} \sin (\phi) \\
\sin (\phi) & \cos (\phi) & -x_{1} \sin (\phi)+y_{1}(1-\cos (\phi)) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) .
$$

Thus, a rotation f can also be viewed in terms of matrix multiplication. We call the above 3×3 matrix $R_{\phi, A}$. With the above information, we may now view a combination of translations and rotations in terms of matrix multiplication. For example, if we wish to translate the Euclidean plane by $A=(2,3)$ and then rotate about the point $B=(1,1)$ by $\pi / 6$ and then translate by $C=(-5,7)$, each point (x, y) in the Euclidean plane will be moved to $\left(x^{\prime}, y^{\prime}\right)$ where

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=T_{C} R_{\pi / 6, B} T_{A}\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) .
$$

This is a good place to do some examples and to make up some related homework. Our main goal here is to establish and apply the following result.

Theorem: Let α and β be real numbers (not necessarily distinct), and let A and B be points (not necessarily distinct). If $\alpha+\beta$ is not an integer multiple of 2π, then there is point C such that $R_{\beta, B} R_{\alpha, A}=R_{\alpha+\beta, C}$. If $\alpha+\beta$ is an integer multiple of 2π, then $R_{\beta, B} R_{\alpha, A}$ is a translation.

Before demonstrating the theorem it would be a good idea to discuss the analogous result for a composition of 2 translations, the first by (a, b) and the second by (c, d). Geometrically, it should be clear that the result of such a composition is a translation by $(a+c, b+d)$. Alternatively, one can show by taking the product of matrices that $T_{(a, b)} T_{(c, d)}=T_{(a+c, b+d)}$.

To see why the theorem holds, write $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$. Then

$$
\begin{aligned}
R_{\beta, B} R_{\alpha, A}= & \left(\begin{array}{ccc}
\cos (\beta) & -\sin (\beta) & x_{2}(1-\cos (\beta))+y_{2} \sin (\beta) \\
\sin (\beta) & \cos (\beta) & -x_{2} \sin (\beta)+y_{2}(1-\cos (\beta)) \\
0 & 0 & 1
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & x_{1}(1-\cos (\alpha))+y_{1} \sin (\alpha) \\
\sin (\alpha) & \cos (\alpha) & -x_{1} \sin (\alpha)+y_{1}(1-\cos (\alpha)) \\
0 & 0 \\
1
\end{array}\right) \\
= & \left(\begin{array}{ccc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) & u \\
\sin (\alpha+\beta) & \cos (\alpha+\beta) & v \\
0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& u=x_{1} \cos (\beta)(1-\cos (\alpha))+y_{1} \sin (\alpha) \cos (\beta)+x_{1} \sin (\alpha) \sin (\beta) \\
&-y_{1} \sin (\beta)(1-\cos (\alpha))+x_{2}(1-\cos (\beta))+y_{2} \sin (\beta) \\
&=x_{1}(1-\cos (\alpha+\beta))+y_{1} \sin (\alpha+\beta) \\
&+\left(x_{2}-x_{1}\right)(1-\cos (\beta))+\left(y_{2}-y_{1}\right) \sin (\beta)
\end{aligned}
$$

and

$$
\begin{aligned}
& v= x_{1} \sin (\beta)(1-\cos (\alpha))+y_{1} \sin (\alpha) \sin (\beta)-x_{1} \cos (\alpha) \sin (\beta) \\
& \quad+y_{1} \cos (\beta)(1-\cos (\alpha))-x_{2} \sin (\beta)+y_{2}(1-\cos (\beta)) \\
&=-x_{1} \sin (\alpha+\beta)+y_{1}(1-\cos (\alpha+\beta)) \\
& \quad-\left(x_{2}-x_{1}\right) \sin (\beta)+\left(y_{2}-y_{1}\right)(1-\cos (\beta)) .
\end{aligned}
$$

Observe that if $\alpha+\beta$ is an integer multiple of 2π, then the above matrix represents a translation by (u, v) so that the second part of the theorem follows. Suppose now that $\alpha+\beta$ is not an integer multiple of 2π. We will have that there is a C such that $R_{\beta, B} R_{\alpha, A}$ is a rotation at C by the angle $\alpha+\beta$ if we can find a pair $\left(x_{3}, y_{3}\right)$ such that

$$
x_{3}(1-\cos (\alpha+\beta))+y_{3} \sin (\alpha+\beta)=\left(x_{2}-x_{1}\right)(1-\cos (\beta))+\left(y_{2}-y_{1}\right) \sin (\beta)
$$

and

$$
-x_{3} \sin (\alpha+\beta)+y_{3}(1-\cos (\alpha+\beta))=-\left(x_{2}-x_{1}\right) \sin (\beta)+\left(y_{2}-y_{1}\right)(1-\cos (\beta)) .
$$

We have two equations in the 2 unknowns x_{3} and y_{3}. There is a solution provided that

$$
\operatorname{det}\left(\begin{array}{cc}
1-\cos (\alpha+\beta) & \sin (\alpha+\beta) \\
-\sin (\alpha+\beta) & 1-\cos (\alpha+\beta)
\end{array}\right) \neq 0
$$

Observe that one does not need to use anything fancy here; simply solve for x_{3} and y_{3} above and the equivalent of the determinant being non-zero above follows. We get that C exists provided that

$$
2-2 \cos (\alpha+\beta) \neq 0
$$

Since we are now only considering $\alpha+\beta$ which are not integer multiples of 2π, the theorem is established.

