Math 532: Quiz 8, Spring 2011

Show ALL Work
Name \qquad
(1) For each part below, the function $f(x, y)$ is defined as follows. First f rotates (x, y) about the point $A=(1,3)$ by $\pi / 2$ and then it takes the result and rotates it about the point $B=(-1,1)$ by π. Thus, we can view f as being $R_{\pi, B} R_{\pi / 2, A}$. As usual, all rotations are counter-clockwise. (Some information is on the back of this quiz.)
(a) Calculate $f(3,0)$.

Answer: \square
(b) Find a point $\left(x_{0}, y_{0}\right)$ satisfying $f\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$.
$\left(x_{0}, y_{0}\right)$: \square

Translation and Rotation Information

(Most of this you do not need for this quiz.)

Theorem: Let α and β be real numbers (not necessarily distinct), and let A and B be points (not necessarily distinct). If $\alpha+\beta$ is not an integer multiple of 2π, then there is point C such that $R_{\beta, B} R_{\alpha, A}=R_{\alpha+\beta, C}$. If $\alpha+\beta$ is an integer multiple of 2π, then $R_{\beta, B} R_{\alpha, A}$ is a translation.

$$
\begin{gathered}
T_{(a, b)}=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \\
R_{\theta,\left(x_{1}, y_{1}\right)}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & x_{1}(1-\cos (\theta))+y_{1} \sin (\theta) \\
0 & 0 \\
0 & -x_{1} \sin (\theta)+y_{1}(1-\cos (\theta)) \\
1
\end{array}\right) \\
T_{(a, b)}=R_{\pi,(a / 2, b / 2)} R_{\pi,(0,0)}
\end{gathered}
$$

