Math 532: Quiz 3

Name
 Axiom 1. There exist exactly 3 points. Axiom 2. Given any 2 distinct points, there exists exactly one line passing through the 2 points. Axiom 3. Given any line, there is a point not on the line. Axiom 4. Any two lines intersect in at least one point.
1. Finish the proof below that, for an axiomatic system with the axioms above, each line has exactly two points on it.
Proof: Let ℓ be a line. By Axiom 3, there is a point \square
By Axiom 1, there are exactly 3 points. Therefore, ℓ has 2 points on it. Assume \leq or \geq
ℓ has
line passing through 2 of these points, say A and B . We know ℓ' exists by Axiom
Observe that $\ell' \neq \ell$ since
By Axiom 4, ℓ and ℓ' have at least one point, say P , in common. We know that $P \neq A$ and
$P \neq B$ since \Box . Since Axiom 1 indicates
that there are exactly 3 points, these 3 points must be This
contradicts Axiom since . Therefore, ℓ must have exactly 2 points on it, finishing the proof.