Math 532: Quiz 3

Name \qquad

Axiom 1 . There exist exactly 3 points.
Axiom 2. Given any 2 distinct points, there exists exactly one line passing through the 2 points. Axiom 3. Given any line, there is a point not on the line.
Axiom 4. Any two lines intersect in at least one point.

1. Finish the proof below that, for an axiomatic system with the axioms above, each line has exactly two points on it.

Proof: Let ℓ be a line. By Axiom 3, there is a point \square By Axiom 1, there are exactly 3 points. Therefore, ℓ has $\underbrace{}_{\leq \text {or } \geq} 2$ points on it. Assume ℓ has $\begin{aligned} & \quad<\text { or }>\end{aligned}$
line passing through 2 of these points, say A and B. We know ℓ^{\prime} exists by Axiom \square

Observe that $\ell^{\prime} \neq \ell$ since \square

By Axiom 4, ℓ and ℓ^{\prime} have at least one point, say P, in common. We know that $P \neq A$ and
\square
that there are exactly 3 points, these 3 points must be \square. This

Therefore, ℓ must have exactly 2 points on it, finishing the proof.

