Math 532: Homework 7

(1) For each of the problems below, the function $f(x, y)$ is defined as follows. First f rotates (x, y) about the point $A=(1,1)$ by $\pi / 2$, then it takes the result and translates it by $B=(1,3)$, and then it takes that result and rotates it about the point $C=(2,4)$ by π. Thus, we can view f as being $R_{\pi, C} T_{B} R_{\pi / 2, A}$.
(a) Calculate $f(2,3)$.
(b) Calculate $f(3,3)$.
(c) Calculate $f(4,5)$.
(d) Find a point (x, y) that is mapped to itself by f. In other words, find a point (x, y) such that $f(x, y)=(x, y)$.
(2) Show that a translation by (a, b) is equivalent to a rotation about the origin by π followed by a rotation about the point $(a / 2, b / 2)$ by π.
(3) Using the information in the above problems, explain why the f in problem (1) is a rotation about some point D by $3 \pi / 2$. What are the coordinates of the point D ?

Solutions

(1) For the problems, it helps to observe that

$$
R_{\pi, C} T_{B} R_{\pi / 2, A}=\left(\begin{array}{ccc}
-1 & 0 & 4 \\
0 & -1 & 8 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right)
$$

Thus,

$$
R_{\pi, C} T_{B} R_{\pi / 2, A}\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
y+1 \\
-x+5 \\
1
\end{array}\right)
$$

We easily get then that the answer to (a) is $(4,3)$, the answer to (b) is $(4,2)$, and the answer to (c) is $(6,1)$. For (d), we want $x=y+1$ and $y=-x+5$. Thus, the answer to (d) is $(x, y)=(3,2)$.
(2) This can be done geometrically using the information in the first example on translations and rotations. We use instead the interpretation by matrices. The result follows from

$$
R_{\pi,(a / 2, b / 2)} R_{\pi,(0,0)}=\left(\begin{array}{ccc}
-1 & 0 & a \\
0 & -1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)=T_{(a, b)}
$$

(3) From (2), we can write f as a composition of 4 rotations about points by $\pi / 2, \pi, \pi$, and π. Applying the theorem about compositions of rotations, we obtain that f is a rotation about some point D by $3 \pi / 2$. In (1) (d), we saw that $f(3,2)=(3,2)$. The only way this can occur is if $D=(3,2)$.

