Math 532: Homework 6

(1) For $A=(1,2), B=(7,-1)$ and $C=(2,4)$. Calculate each of the following:
(i) $B-A$
(ii) $(B-A)^{2}$
(iii) $C-2 A$
(iv) $(B-A)(C-A)$
(v) Is $\triangle A B C$ a right triangle?
(2) Let A, B, and C be 3 noncollinear points. Let D be the intersection of the altitude in $\triangle A B C$ drawn from A with the altitude drawn from B. Then $\overrightarrow{A D}$ is perpendicular to $\overrightarrow{B C}$, and $\overrightarrow{B D}$ is perpendicular to $\overrightarrow{A C}$. Recall that the dot product of perpendicular vectors is 0 . Use this to show that all 3 altitudes of $\triangle A B C$ are concurrent.
(3) For a triangle $\triangle A B C$, let M_{A} be the midpoint of $\overline{B C}, M_{B}$ be the midpoint of $\overline{A C}$, and M_{C} be the midpoint of $\overline{A B}$. Along $\overline{B C}$ draw a perpendicular at M_{A}, along $\overline{A C}$ draw a perpendicular at M_{B}, and along $\overline{A B}$ draw a perpendicular at M_{C}.
(a) Show that these 3 perpendiculars share a common point.
(b) If D is the point in (a), show that D is equidistant from A, B, and C.
(Note that there is an easy way to do problem (3) without making use of vectors, but try the problems using vectors anyway.)
(4) Suppose $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ are such that $\overleftrightarrow{A B}$ and $\overleftrightarrow{A^{\prime} B^{\prime}}$ are parallel, $\overleftrightarrow{B C}$ and $\overleftrightarrow{B^{\prime} C^{\prime}}$ are parallel, and $\overleftrightarrow{A C}$ and $\overleftrightarrow{A^{\prime} C^{\prime}}$ are parallel. Show that either the lines $\overleftrightarrow{A A^{\prime}}, \overleftrightarrow{B B^{\prime}}$, and $\overleftrightarrow{C C^{\prime}}$ are all parallel or they all intersect at a common point.

