MATH 532/736I, LECTURE NOTES 9

The Nine-Point Circle Theorem. Let A, B and C be the three vertices of a triangle. Let M_A be the midpoint of \overline{BC} , M_B be the midpoint of \overline{AC} , and M_C be the midpoint of \overline{AB} . Let $\overline{AP_A}$ be an altitude for $\triangle ABC$ (so P_A is on \overline{BC}). Let $\overline{BP_B}$ be an altitude for $\triangle ABC$ (so P_B is on \overline{AC}). Let $\overline{CP_C}$ be an altitude for $\triangle ABC$ (so P_C is on \overline{AB}). Let D be the intersection of these three altitudes. Let Q_A be the midpoint of \overline{AD} , Q_B be the midpoint of \overline{BD} , and Q_C be the midpoint of \overline{CD} . Then the nine points M_A , M_B , M_C , P_A , P_B , P_C , Q_A , Q_B and Q_C all lie on a circle, and the center of this circle is (A + B + C + D)/4.

Lemma. Let A, B and P be three distinct points. Let O = (A + B)/2. If $\angle APB$ is a right angle, then OP = OA (= OB).

Comment: This is a well-known geometric fact; the point P is on the circle centered at O of radius OA. But this can also be shown with vectors. To see this, use that the following three equations are equivalent:

$$\left(\frac{A+B}{2} - P\right)^2 = \left(\frac{A+B}{2} - A\right)^2$$
$$(A+B-2P)^2 = (B-A)^2$$
$$(B-P)(A-P) = 0.$$

The last equation follows from the line above it by using that $X^2 - Y^2 = (X + Y)(X - Y)$. Also, note that the last equation above holds since $\angle APB$ is a right angle.

Basic Ideas of Proof of The Nine-Point Circle Theorem:

- Note $Q_A = (A + D)/2$, $Q_B = (B + D)/2$ and $Q_C = (C + D)/2$.
- Let N = (A + B + C + D)/4.
- Observe that N is the midpoint of M_A and Q_A , N is the midpoint of M_B and Q_B , and N is the midpoint of M_C and Q_C . So $NM_A = NQ_A$, $NM_B = NQ_B$ and $NM_C = NQ_C$.
- A computation shows $(N M_A)^2 = (N M_B)^2 = (N M_C)^2$. For example, begin with the first equation and rewrite it as

$$(A - B - C + D)^2 = (-A + B - C + D)^2.$$

Show that this follows from \overrightarrow{AB} and \overrightarrow{CD} being perpendicular.

- The above implies NM_A , NQ_A , NM_B , NQ_B , NM_C and NQ_C are all equal.
- Using the lemma and that $\triangle Q_A P_A M_A$ is a right triangle, deduce that $NP_A = NQ_A = NM_A$. Similarly $\triangle Q_B P_B M_B$ and $\triangle Q_C P_C M_C$ are right triangles, and the proof of the theorem follows.