Math 532/736I, Lecture Notes 9

The Nine-Point Circle Theorem. Let A, B and C be the three vertices of a triangle. Let M_{A} be the midpoint of $\overline{B C}, M_{B}$ be the midpoint of $\overline{A C}$, and M_{C} be the midpoint of $\overline{A B}$. Let $\overline{A P_{A}}$ be an altitude for $\triangle A B C$ (so P_{A} is on $\overline{B C}$). Let $\overline{B P_{B}}$ be an altitude for $\triangle A B C$ (so P_{B} is on $\overline{A C}$). Let $\overline{C P_{C}}$ be an altitude for $\triangle A B C$ (so P_{C} is on $\overline{A B}$). Let D be the intersection of these three altitudes. Let Q_{A} be the midpoint of $\overline{A D}, Q_{B}$ be the midpoint of $\overline{B D}$, and Q_{C} be the midpoint of $\overline{C D}$. Then the nine points $M_{A}, M_{B}, M_{C}, P_{A}, P_{B}, P_{C}, Q_{A}, Q_{B}$ and Q_{C} all lie on a circle, and the center of this circle is $(A+B+C+D) / 4$.

Lemma. Let A, B and P be three distinct points. Let $O=(A+B) / 2$. If $\angle A P B$ is a right angle, then $O P=O A(=O B)$.

Comment: This is a well-known geometric fact; the point P is on the circle centered at O of radius $O A$. But this can also be shown with vectors. To see this, use that the following three equations are equivalent:

$$
\begin{gathered}
\left(\frac{A+B}{2}-P\right)^{2}=\left(\frac{A+B}{2}-A\right)^{2} \\
(A+B-2 P)^{2}=(B-A)^{2} \\
(B-P)(A-P)=0
\end{gathered}
$$

The last equation follows from the line above it by using that $X^{2}-Y^{2}=(X+Y)(X-Y)$. Also, note that the last equation above holds since $\angle A P B$ is a right angle.

Basic Ideas of Proof of The Nine-Point Circle Theorem:

- Note $Q_{A}=(A+D) / 2, Q_{B}=(B+D) / 2$ and $Q_{C}=(C+D) / 2$.
- Let $N=(A+B+C+D) / 4$.
- Observe that N is the midpoint of M_{A} and Q_{A}, N is the midpoint of M_{B} and Q_{B}, and N is the midpoint of M_{C} and Q_{C}. So $N M_{A}=N Q_{A}, N M_{B}=N Q_{B}$ and $N M_{C}=N Q_{C}$.
- A computation shows $\left(N-M_{A}\right)^{2}=\left(N-M_{B}\right)^{2}=\left(N-M_{C}\right)^{2}$. For example, begin with the first equation and rewrite it as

$$
(A-B-C+D)^{2}=(-A+B-C+D)^{2} .
$$

Show that this follows from $\overrightarrow{A B}$ and $\overrightarrow{C D}$ being perpendicular.

- The above implies $N M_{A}, N Q_{A}, N M_{B}, N Q_{B}, N M_{C}$ and $N Q_{C}$ are all equal.
- Using the lemma and that $\triangle Q_{A} P_{A} M_{A}$ is a right triangle, deduce that $N P_{A}=N Q_{A}=$ $N M_{A}$. Similarly $\triangle Q_{B} P_{B} M_{B}$ and $\triangle Q_{C} P_{C} M_{C}$ are right triangles, and the proof of the theorem follows.

