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Theorem 1. Let A and B be distinct points. Then C is on
←→
AB if and only if there is a real number

t such that C = (1− t)A + tB.

Theorem 3. If A, B and C are points and there exist real numbers x, y, and z not all 0 such that

x + y + z = 0 and xA + yB + zC =
−→
0 ,

then A, B and C are collinear.

Definition: Two triangles 4ABC and 4A′B′C ′ are perspective from a point X if the lines
←→
AA′,←−→

BB′ and
←−→
CC ′ all pass through X . (See Figure 1.)

Definition: Two triangles 4ABC and 4A′B′C ′ are perspective from a line if P , Q and R are
collinear where P is the intersection of

←→
AB and

←−→
A′B′, Q is the intersection of

←→
BC and

←−→
B′C ′ and

R is the intersection of
←→
AC and

←−→
A′C ′. (See Figure 2.)
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Desargues’ Theorem: If two triangles are perspective from a point, then they are perspective
from a line.

Comment: Below is the proof for the case that X , P , Q and R are points in the “affine” plane and
the points A, B, C, A′, B′ and C ′ are distinct (and also in the affine plane).

Proof. By Theorem 1, there are real numbers k1, k2, and k3 such that

X = (1− k1)A + k1A
′ = (1− k2)B + k2B

′ = (1− k3)C + k3C
′. (∗)



We show that k1 6= k2. Assume k1 = k2. Observe that k1 6= 0 since otherwise we would have
X = A = B, contradicting that A and B are distinct points. Also, k1 6= 1 since otherwise we
would have X = A′ = B′, contradicting that A′ and B′ are distinct points. We get that

(1− k1)A− (1− k2)B = k2B
′ − k1A

′.

Hence, (1− k1)
−→
BA = k1

−−→
A′B′ and the vectors

−→
BA and

−−→
A′B′ either have the same direction or the

exact opposite direction. This contradicts that the point P exists. Hence, k1 6= k2.
From (∗), we obtain that

1− k1

k2 − k1

A +
k2 − 1

k2 − k1

B =
k2

k2 − k1

B′ +
−k1

k2 − k1

A′.

By Theorem 1 with t = (k2− 1)/(k2−k1) , we see that the expression on the left is a point on line
←→
AB. By Theorem 1 with t = −k1/(k2 − k1), we see that the expression on the right is a point on
line
←−→
A′B′. Therefore,

P =
1− k1

k2 − k1

A +
k2 − 1

k2 − k1

B.

Hence,
(k2 − k1)P = (1− k1)A + (k2 − 1)B. (1)

From (∗), we use now that

(1− k2)B − (1− k3)C = k3C
′ − k2B

′.

Similarly to the above, we obtain that k2 6= k3, that

1− k2

k3 − k2

B +
k3 − 1

k3 − k2

C =
k3

k3 − k2

C ′ +
−k2

k3 − k2

B′,

and that
(k3 − k2)Q = (1− k2)B + (k3 − 1)C. (2)

Using (∗) once again, we obtain

(1− k3)C − (1− k1)A = k1A
′ − k3C

′.

Similarly to the above, we deduce that k1 6= k3, that

1− k3

k1 − k3

C +
k1 − 1

k1 − k3

A =
k1

k1 − k3

A′ +
−k3

k1 − k3

C ′,

and that
(k1 − k3)R = (1− k3)C + (k1 − 1)A. (3)

Take

A = P, B = Q, C = R,

x = k2 − k1, y = k3 − k2, and z = k1 − k3

in Theorem 3. Note that x 6= 0. We deduce that P , Q and R are collinear, finishing the proof. �


