## Math 532/736I, Lecture Notes 8

Theorem 1. Let $A$ and $B$ be distinct points. Then $C$ is on $\overleftrightarrow{A B}$ if and only if there is a real number $t$ such that $C=(1-t) A+t B$.

Theorem 3. If $A, B$ and $C$ are points and there exist real numbers $x, y$, and $z$ not all 0 such that

$$
x+y+z=0 \quad \text { and } \quad x A+y B+z C=\overrightarrow{0}
$$

then $A, B$ and $C$ are collinear.
Definition: Two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are perspective from a point $X$ if the lines $\overleftrightarrow{A A^{\prime}}$ $\overleftrightarrow{B B^{\prime}}$ and $\overleftrightarrow{C C^{\prime}}$ all pass through $X$. (See Figure 1.)

Definition: Two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are perspective from a line if $P, Q$ and $R$ are collinear where $P$ is the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{A^{\prime} B^{\prime}}, Q$ is the intersection of $\overleftrightarrow{B C}$ and $\overleftrightarrow{B^{\prime} C^{\prime}}$ and $R$ is the intersection of $\overleftrightarrow{A C}$ and $\overleftrightarrow{A^{\prime} C^{\prime}}$. (See Figure 2.)


Figure 1


Figure 2

Desargues' Theorem: If two triangles are perspective from a point, then they are perspective from a line.

Comment: Below is the proof for the case that $X, P, Q$ and $R$ are points in the "affine" plane and the points $A, B, C, A^{\prime}, B^{\prime}$ and $C^{\prime}$ are distinct (and also in the affine plane).

Proof. By Theorem 1, there are real numbers $k_{1}, k_{2}$, and $k_{3}$ such that

$$
\begin{equation*}
X=\left(1-k_{1}\right) A+k_{1} A^{\prime}=\left(1-k_{2}\right) B+k_{2} B^{\prime}=\left(1-k_{3}\right) C+k_{3} C^{\prime} . \tag{*}
\end{equation*}
$$

We show that $k_{1} \neq k_{2}$. Assume $k_{1}=k_{2}$. Observe that $k_{1} \neq 0$ since otherwise we would have $X=A=B$, contradicting that $A$ and $B$ are distinct points. Also, $k_{1} \neq 1$ since otherwise we would have $X=A^{\prime}=B^{\prime}$, contradicting that $A^{\prime}$ and $B^{\prime}$ are distinct points. We get that

$$
\left(1-k_{1}\right) A-\left(1-k_{2}\right) B=k_{2} B^{\prime}-k_{1} A^{\prime}
$$

Hence, $\left(1-k_{1}\right) \overrightarrow{B A}=k_{1} \overrightarrow{A^{\prime} B^{\prime}}$ and the vectors $\overrightarrow{B A}$ and $\overrightarrow{A^{\prime} B^{\prime}}$ either have the same direction or the exact opposite direction. This contradicts that the point $P$ exists. Hence, $k_{1} \neq k_{2}$.

From (*), we obtain that

$$
\frac{1-k_{1}}{k_{2}-k_{1}} A+\frac{k_{2}-1}{k_{2}-k_{1}} B=\frac{k_{2}}{k_{2}-k_{1}} B^{\prime}+\frac{-k_{1}}{k_{2}-k_{1}} A^{\prime} .
$$

$\underset{\text { By Theorem } 1 \text { with } t=\left(k_{2}-1\right) /\left(k_{2}-k_{1}\right) \text {, we see that the expression on the left is a point on line }}{\text { B }}$ $\overleftrightarrow{A B}$. By Theorem 1 with $t=-k_{1} /\left(k_{2}-k_{1}\right)$, we see that the expression on the right is a point on line $\overleftrightarrow{A^{\prime} B^{\prime}}$. Therefore,

$$
P=\frac{1-k_{1}}{k_{2}-k_{1}} A+\frac{k_{2}-1}{k_{2}-k_{1}} B .
$$

Hence,

$$
\begin{equation*}
\left(k_{2}-k_{1}\right) P=\left(1-k_{1}\right) A+\left(k_{2}-1\right) B . \tag{1}
\end{equation*}
$$

From (*), we use now that

$$
\left(1-k_{2}\right) B-\left(1-k_{3}\right) C=k_{3} C^{\prime}-k_{2} B^{\prime} .
$$

Similarly to the above, we obtain that $k_{2} \neq k_{3}$, that

$$
\frac{1-k_{2}}{k_{3}-k_{2}} B+\frac{k_{3}-1}{k_{3}-k_{2}} C=\frac{k_{3}}{k_{3}-k_{2}} C^{\prime}+\frac{-k_{2}}{k_{3}-k_{2}} B^{\prime}
$$

and that

$$
\begin{equation*}
\left(k_{3}-k_{2}\right) Q=\left(1-k_{2}\right) B+\left(k_{3}-1\right) C . \tag{2}
\end{equation*}
$$

Using (*) once again, we obtain

$$
\left(1-k_{3}\right) C-\left(1-k_{1}\right) A=k_{1} A^{\prime}-k_{3} C^{\prime} .
$$

Similarly to the above, we deduce that $k_{1} \neq k_{3}$, that

$$
\frac{1-k_{3}}{k_{1}-k_{3}} C+\frac{k_{1}-1}{k_{1}-k_{3}} A=\frac{k_{1}}{k_{1}-k_{3}} A^{\prime}+\frac{-k_{3}}{k_{1}-k_{3}} C^{\prime}
$$

and that

$$
\begin{equation*}
\left(k_{1}-k_{3}\right) R=\left(1-k_{3}\right) C+\left(k_{1}-1\right) A . \tag{3}
\end{equation*}
$$

Take

$$
\begin{gathered}
A=P, \quad B=Q, \quad C=R, \\
x=k_{2}-k_{1}, \quad y=k_{3}-k_{2}, \quad \text { and } z=k_{1}-k_{3}
\end{gathered}
$$

in Theorem 3. Note that $x \neq 0$. We deduce that $P, Q$ and $R$ are collinear, finishing the proof.

