Math 532/736I, Lecture 7

1. Homework: Problem Sheet on Vector Notation
2. Theorem 1. Let A and B be distinct points. Then C is on $\overleftrightarrow{A B}$ if and only if there is a real number t such that $C=(1-t) A+t B$.

Basic Ideas of Proof:

- $\overrightarrow{A C}=t \overrightarrow{A B}$
- $C-A=t(B-A)$

3. Comment: In Theorem 1,

$$
\frac{t}{1-t}= \pm \frac{\text { length of } \overline{A C}}{\text { length of } \overline{C B}}
$$

where a plus sign occurs on the right if and only if C is between A and B and one denominator is 0 if and only if the other denominator is 0 .

Basic Idea of Proof: Consider 3 cases depending on the position of C relative to A and B.
4. Theorem 2. If A, B and C are collinear, then there exist real numbers x, y, and z not all 0 such that

$$
x+y+z=0 \quad \text { and } \quad x A+y B+z C=\overrightarrow{0} .
$$

Basic Ideas of Proof:

- If $A=B$, take $x=1, y=-1$, and $z=0$.
- Otherwise, use Theorem 1 and take $x=1-t, y=t$, and $z=-1$.

5. Theorem 3. If A, B and C are points and there exist real numbers x, y, and z not all 0 such that

$$
x+y+z=0 \quad \text { and } \quad x A+y B+z C=\overrightarrow{0}
$$

then A, B and C are collinear.

Basic Ideas of Proof:

- Relabel so $x \neq 0$.
- Deduce $A=(-y / x) B+(-z / x) C$ and $1=-y / x-z / x$.
- Take $t=-z / x$ so that $1-t=-y / x$.
- Use Theorem 1.

6. Theorem 4. If A, B and C are not collinear and there exist real numbers x, y, and z such that

$$
x+y+z=0 \quad \text { and } \quad x A+y B+z C=\overrightarrow{0}
$$

then $x=y=z=0$.
Basic Idea of Proof: This is a rewording of Theorem 3.

