Math 532/736I, Lecture 5

1. Finish Projective Plane Theorems from Homework 2
2. Homework: Mention Modulo Arithmetic Homework
3. Define a modulo m. Discuss and prove how congruences can be treated almost like equations (see theorems below).
4. Theorem 1. Let a, b, c, d, and m be integers with $m>0$. Then the following are true:

- If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a \pm c \equiv b \pm d(\bmod m)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.
- If $a \equiv b(\bmod m)$, then $a^{k} \equiv b^{k}(\bmod m)$ for every $k \in\{0,1,2, \ldots\}$.

5. Theorem 2. Let a and m be positive integers with no common prime divisors. Then there is a positive integer b such that $a b \equiv 1(\bmod m)$.
6. Examples:

- Is 25621235904 divisible by 3 ? ... by 4 ? ... by 5 ? ... by 9 ? ... by 11 ?
- What is the last digit of 347^{223} ?
- Is 5638287462039703 the sum of 2 squares?
- A Fermat number is a number of the form $F_{n}=2^{2^{n}}+1$. The first few Fermat numbers are

$$
F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537, \text { and } F_{5}=4294967297
$$

The first 5 Fermat numbers are primes. Explain why F_{5} is divisible by 641 using that $641=5 \times 2^{7}+1=2^{4}+5^{4}$.

7. Homework:

(1) Test the number 1433456304672354 for divisibility by $2,3,4,5,9$, and 11 .
(2) Make up a test for divisibility by 8 and explain why it works.
(3) What is the last digit of $1^{170469}+2^{170469}+3^{170469}+\cdots+100^{170469} ?$
(4) What is the last digit of $12^{\left(34^{56}\right)}$?
(5) Using an argument modulo 8 , explain why 3462437654807 is not the sum of 3 squares?

