MATH 532/736I, LECTURE 5

- 1. Finish Projective Plane Theorems from Homework 2
- 2. Homework: Mention Modulo Arithmetic Homework
- 3. Define *a* modulo *m*. Discuss and prove how congruences can be treated almost like equations (see theorems below).
- 4. Theorem 1. Let a, b, c, d, and m be integers with m > 0. Then the following are true:
 - If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
 - If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a \pm c \equiv b \pm d \pmod{m}$.
 - If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.
 - If $a \equiv b \pmod{m}$, then $a^k \equiv b^k \pmod{m}$ for every $k \in \{0, 1, 2, ...\}$.
- 5. Theorem 2. Let a and m be positive integers with no common prime divisors. Then there is a positive integer b such that $ab \equiv 1 \pmod{m}$.

6. Examples:

- Is 25621235904 divisible by 3? ... by 4? ... by 5? ... by 9? ... by 11?
- What is the last digit of 347^{223} ?
- Is 5638287462039703 the sum of 2 squares?
- A Fermat number is a number of the form $F_n = 2^{2^n} + 1$. The first few Fermat numbers are

 $F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537, \text{and} F_5 = 4294967297.$

The first 5 Fermat numbers are primes. Explain why F_5 is divisible by 641 using that $641 = 5 \times 2^7 + 1 = 2^4 + 5^4$.

7. Homework:

- (1) Test the number 1433456304672354 for divisibility by 2, 3, 4, 5, 9, and 11.
- (2) Make up a test for divisibility by 8 and explain why it works.
- (3) What is the last digit of $1^{170469} + 2^{170469} + 3^{170469} + \dots + 100^{170469}$?
- (4) What is the last digit of $12^{(34^{56})}$?
- (5) Using an argument modulo 8, explain why 3462437654807 is not the sum of 3 squares?