A Theorem Concerning Affine Planes

Theorem: In an affine plane of order n, each point has exactly $n+1$ lines passing through it.
Lemma. If ℓ is a line with exactly n points on it (in a finite affine plane of order n) and A is a point not on ℓ, then there are exactly $n+1$ lines passing through A.

Proof. Consider an ℓ with exactly n points on it and a point A not on ℓ. Let P_{1}, \ldots, P_{n} be the points on ℓ. By Axiom A3, for each $j \in\{1,2, \ldots, n\}$, there exists a line ℓ_{j} passing through A and P_{j}. Also, by Axiom A3, these lines are distinct (otherwise, there would be 2 distinct lines passing through 2 distinct P_{j} 's, namely the line ℓ and a line passing through A). By Axiom A4, there is a line ℓ_{n+1} parallel to ℓ passing through A. Since each of $\ell_{1}, \ldots, \ell_{n}$ intersects ℓ, each of these n lines is different from the line ℓ_{n+1}. Thus, we have $n+1$ distinct lines passing through A. To show that there are exactly $n+1$ lines passing through A, we still need to show that there are no more lines passing through A. Let ℓ^{\prime} be an arbitrary line passing through A. By Axiom A3, there is exactly one line passing through a point P_{j} on ℓ and the point A, namely ℓ_{j}. Thus, if ℓ^{\prime} passes through some P_{j}, then $\ell^{\prime}=\ell_{j}$. On the other hand, if ℓ^{\prime} does not pass through some P_{j}, then ℓ^{\prime} is parallel to ℓ. By Axiom A4, ℓ_{n+1} is the unique line passing through A and parallel to ℓ, so in this case $\ell^{\prime}=\ell_{n+1}$. Therefore, there are exactly $n+1$ lines passing through A.

Lemma. If ℓ is a line (in a finite affine plane of order n) and A is a point not on ℓ with exactly $n+1$ lines passing through it, then ℓ has exactly n points on it .

Proof. By Axiom A4, exactly n of the lines passing through A intersect ℓ. By Axiom A3, each of these lines intersects ℓ in exactly one point (otherwise, there would be 2 distinct lines, namely ℓ and a line through A, passing through 2 distinct points on ℓ). Also, by Axiom A3, these points of intersection are distinct (otherwise, there would be 2 distinct lines passing through a point on ℓ and the point A). Thus, ℓ has n distinct points on it. Furthermore, there cannot be another point, say Q, on ℓ; otherwise, by Axiom A3, there would be another line passing through A and intersecting ℓ (namely at Q). Therefore, ℓ has exactly n distinct points on it.

Proof of Theorem. Let P be an arbitrary point. To prove the theorem, we now consider a line ℓ with n points on it (which exists by Axiom A2). If P is not on ℓ, then Lemma 1 implies that there are exactly $n+1$ lines passing through P. So suppose P is on ℓ. Let A, B, C, and D be the points which exist by Axiom A1 so that no 3 of these are collinear. Hence, at most 2 of these 4 points are on ℓ. By relabelling if necessary, we may suppose that A and B are not on ℓ. Since A, C, and D are not collinear, we deduce from Axiom A3 that there is a line ℓ_{1} passing through A and C and a different line ℓ_{2} passing through A and D. Since A, B, and C are not collinear and since A, B, and D are not collinear, the lines ℓ_{1} and ℓ_{2} do not pass through B. Also, by Axiom A3, there can be at most one line passing through A and P; thus, at least one of ℓ_{1} and ℓ_{2}, call it ℓ^{\prime}, does not pass through P.

Recall that B is a point not on ℓ and ℓ has exactly n points on it, so by Lemma 1, we know that there are exactly $n+1$ lines passing through B. Since B is not one ℓ^{\prime}, we deduce now from Lemma 2 that there are exactly n points on ℓ^{\prime}. Since P is not on ℓ^{\prime}, we deduce from another application of Lemma 1 that P must have exactly $n+1$ lines passing through it. This establishes the theorem.

