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x1 Cohomology of Coverings and Bundle Interpretations. A good introductory reference for sheaf

cohomology in the abelian case is Forster []. Information on relative cohomology in the abelian case can

be found in Komatsu []. A discussion of 0th and 1st cohomology (not relative) in the nonabelian case is in

Babbitt Varadarajan []. We will discuss relative cohomology in the nonabelian case. We will not be using

any heavy machinery from algebraic geometry/topology although one of our aims is to make it possible to

do so. Our main emphasis will be on precise de�nitions and geometric interpretations.

We will specify categories using a quotient notation, where the numerator indicates the objects in the

category and the denominator indicates the arrows, e.g. Groups/group homomorphisms. The rule of com-

position of arrows will usually be implicitly understood. All functors will be covariant. In all categorical

concepts and terminology we follow MacLane []. If X is a topological space, and U = fUigi2I is an open

covering of X, then we will use the shorthand notation: Uij = Ui \ Uj and Uijk = Ui \ Uj \ Uk.

Suppose A is a concrete category, i.e. it is equipped with a \forgetful functor" A! Sets/mappings. We

will not introduce any notation for this functor, but we interpret the expression x 2 A, where A is an object

of A, to mean that x is a member of the underlying set associated to the object A by the forgetful functor.

Similarly, we interpret the expression f(x), where f : A ! B is an arrow in A and x 2 A, to denote the

image of x under the function associated to the arrow f by the forgetful functor.

De�nition. Suppose X is a topological space. A sheaf F on X with values in the concrete category A is

a functor F : Open sets of X/reverse inclusions ! A satisfying the following collation condition: for every

open set U � X, for every open covering fVigi2I of U , and for every family ffi 2 F(Vi)g the pairwise

matching condition F(Vi � Vij)(fi) = F(Vj � Vij)(fj) for all i and j implies that there exists a unique

f 2 F(U) such that F(U � Vi)(f) = fi for all i.

Important examples include the following.

(1) The sheaf OX of complex-valued holomorphic functions on a complex manifold X. For every open

subset U of X, OX(U) denotes the C -algebra of all complex-valued functions de�ned and holomorphic

on U , and whenever U � V are open subsets of X, OX(U � V ) denotes the C -algebra homomorphism

OX(U)! OX(V ) which restricts a function de�ned on U to the subset V . If X = C (resp. X = C )

then we will write OX = O (resp. OX = O).

(2) The sheaf C1
X of complex-valued smooth functions de�ned on subsets of a smooth manifold X.

(3) The sheaf GL(n;OX) of groups. This sheaf associates to every open subset U of the complex manifold

X the group of n�n matrices with entries in the ring OX(U) which are invertible in the collection of

marices of the same type. This group is isomorphic to the group of holomorphic maps from U into

the complex Lie group GL(n; C ).

Some of these ideas were obtained while the author visited the University of Ottawa, Ontario, Canada, during June 1992,

and the Pennsylvania State University during July and August 1992. The author thanks professors V. Zurkowski (Ottawa) and

J. Bona (Penn State) for stimulating conversations and �nancial support. The author would like to thank J. L. Brylinski (Penn

State) for discussion and references on nonabelian cohomology.
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Let X be a topological space and S a closed subset. Suppose I � I0 are index sets, and U = fUigi2I is an
open covering of X, and U0 = fUigi2I0 is an open covering of X n S. In this situation we will say (U;U0) is

an open covering of (X;X n S). Let G denote a sheaf of groups on X.

De�nition 1. C0(U;G) is de�ned to be the group of all families ffigi2I such that fi 2 G(Ui) for all i 2 I.

Elements of this group are called 0-cochains associated with the covering U. De�ne C0(U;U0;G) to be the

subgroup of C0(U;G) consisting of those families ffigi2I such that fi = 1 for all i 2 I0. Such families are

called relative 0-cochains.

De�nition 2. Z1(U;G) is de�ned to be the pointed set of all families fgijg(i;j)2I2 such that gij 2 G(Uij)

and

gii = 1

G(Uij � Uijk)(gij) = G(Uik � Uijk)(gik) � G(Ukj � Uijk)(gkj)

for all (i; j; k) 2 I3. Elements of Z1(U;G) are called 1-cocycles associated to the covering U. The distinguished

element of Z1(U;G) is the \unit cocycle", i.e. gij = 1 for all (i; j) 2 I2. De�ne Z1(U;U0;G) to be the subset

of Z1(U;G) consisting of those cocycles fgijg(i;j)2I2 such that gij = 1 for all (i; j) 2 (I0)2. These families are

called relative 1-cocycles.

De�nition 3. If g = fgijg(i;j)2I2 2 Z
1(U;G) and f = ffigi2I 2 C

0(U;G), then de�ne gf to be the family

f(gf )ijg(i;j)2I2 , where

(gf )ij = G(Ui � Uij)(fi)
�1 � gij � G(Uj � Uij)(fj)

is in G(Uij) for all (i; j) 2 I
2.

Fact. The map (g; f) 7! g
f de�nes a right action of the group C0(U;G) on the set Z1(U;G), as well as a

right action of the subgroup C0(U;U0;G) on the subset Z1(U;U0;G).

De�nition 4. H0(U;G) is de�ned to be the the group ff 2 C0(U;G) j 1f = 1g, where 1 denotes the trivial

1-cocycle. This group is called the 0-cohomology group associated to the covering U. De�ne H0(U;U0;G) to

be equal to H0(U;G) \ C0(U;U0;G). It is called the relative 0-cohomology group.

Fact. H0(U;G) �= G(X), and H0(U0;G) �= G(X nS). If X is a complex manifold, G = GL(n;OX), and S is a

closed subset of X with empty interior, then H0(U;U0;G) �= f1g. In particular, these groups are independent

of the coverings U and U0.

De�nition 5. De�ne H1(U;G) to be the pointed set of all orbits in Z
1(U;G) of the right action of the

group C0(U;G). It is called the 1-cohomology set associated to the covering U. The distinguished element of

H
1(U;G) is the orbit of the unit cocycle. De�ne H1(U;U0;G) to be the pointed set of all orbits in Z1(U;U0;G)

of the right action of the group C
0(U;U0;G). It is called the relative 1-cohomology set associated to the

covering (U;U0) of (X;X n S). So in symbols

H
1(U;G) = Z

1(U;G)=C0(U;G)

H
1(U;U0;G) = Z

1(U;U0;G)=C0(U;U0;G):

Remark. The de�nitions of ordinary 0-cochains, 1-cocycles, 0-cohomology, and 1-cohomology are contained

in the de�nitions of the corresponding relative concepts as a special case: take S = X and I0 = ;.
Now we will examine the geometric interpretations of these constructions involving holomorphic principal

bundles over a complex manifold X. Since the correspondence between H1(X;GL(n;OX)) (de�ned in the

next section) and the pointed set of isomorphism classes in the category of principal �bre bundles over X

with structure group GL(n; C )/bundle isomorphisms is well-known, we will explain how things must be

modi�ed to give a geometric interpretation to the relative 1-cohomology set H1(X;X n S;G). By the above

remark our explanation will include the usual case as well. This section will address an interpretation of

cohomology associated to a open covering (U;U0) of (X;X n S); the general case will be completed in the

next section.
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Recall a groupoid is a category all of whose arrows are isomorphisms. Groupoid homomorphisms are

simply functors. If Z1 is a set equipped with a right action of a group C
0, then there is a naturally

associated groupoid de�ned as follows.

(1) The objects are the elements of the set Z1.

(2) The arrows f : g2 ! g1, where g1; g2 2 Z
1 and f 2 C0, are triples (g2; f; g1) where g2 = g

f
1 .

(3) The composition of an arrow h : g3 ! g2 with f : g2 ! g1 is de�ned to be fh : g3 ! g1, i.e. (g3; fh; g1),

since g3 = g
h
2 = (g

f
1 )
h = g

(fh)
1 .

Suppose X is a complex manifold, S � X is a closed subset, and G = GL(n;OX). Suppose I0 � I are

index sets, U = fUigi2I, U
0 = fUigi2I0 , and (U;U0) is an open covering of (X;X n S) as above. Denote by

Z = Z(U;U0) the groupoid associated (as in the previous paragraph) to the set Z1(U;U0;G) equipped with

the right action of the group C0(U;U0;G) given in De�nition 3. We will examine the relation between this

groupoid and the following \geometric" groupoid, denoted by B = B(U;U0), de�ned as follows.

(1) The objects are triples (� : E ! X;B; �), where � : E ! X is a principal �bre bundle with structure

group GL(n; C ), B = f�igi2I is an holomorphically compatible atlas of local trivializations of the

bundle � : E ! X de�ned on preimages of sets in the covering U, i.e. �i : �
�1(Ui)! Ui�GL(n; C ) for

all i 2 I, and � : ��1(X nS)! (X nS)�GL(n; C ) is a (distinguished) trivialization holomorphically

compatible with (but not necessarily a member of) the atlas B such that for all i 2 I0 we have

�j��1(Ui) = �i.

(2) The arrows are isomorphisms of principal �bre bundles over X with structure group GL(n; C ) which

over X n S are given by the identity map with respect to the two distinguished trivializations.

We will show that these two categories (groupoids) are equivalent: we will exhibit an adjoint pair (E ; T ) of
functors, and a unit and counit 1; � of the adjunction which will constitute an equivalence of categories. We

will suppress in our notation the dependence of everything on the covering (U;U0).

First we will de�ne the functor E : Z ! B. Suppose g = fgijg(i;j)2I2 2 Z
1(U;U0;G) � Z

1(U;G). Then

it is well-known that this data can be used to de�ne an holomorphic principal bundle p : E(g) ! X with

structure group GL(n; C ), together with an atlas A of local trivializations de�ned on preimages of sets in

the covering U, as follows. The total space E(g) is a complex manifold obtained by gluing:

E(g) =

"a
i2I

Ui �GL(n; C )

#�
�;

where (x;A) � (y;B), x 2 Ui, y 2 Uj , A;B 2 GL(n; C ) if and only if x = y 2 Uij and A = gij(x) � B. The
conditions on g which insure that it is a 1-cocycle imply that � is an equivalence relation. The projection map

p is de�ned by mapping each � equivalence class of ordered pairs onto the uniquely de�ned �rst component

of the pair. If j 2 I then the map

Uj �GL(n; C ) ,!
a
i2I

Ui �GL(n; C ) ! E(g)

is an injection whose image is p�1(Uj). Let �j : p
�1(Uj) ! Uj � GL(n; C ) denote the inverse of this map.

De�ne A = f�jgj2I. This collection of maps will function as an atlas de�ning the analytic manifold structure

of E(g) since the overlap map of two charts

�
�1
j Æ �i : Uij �GL(n; C ) ! p

�1(Uij)! Uij �GL(n; C ) : (x;B) 7! (x; gij(x) �B)

is analytic. A also is an atlas of holomorphic local trivializations of the bundle p : E(g) ! X, and the

family g = fgijg(i;j)2I2 constitute the transition functions. A canonical trivialization � : p�1(X n S) !
(X n S) � GL(n; C ) can be de�ned by the rule �([(x;A)]) = �i([(x;A)]) whenever i 2 I0 and x 2 Ui. This

map is well-de�ned since gij(x) = 1 whenever x 2 Uij and both i and j are in I0. � is clearly bijective and

holomorphically compatible with the atlas A = f�igi2I. The functor E therefore associates to the object g

of the groupoid Z the object (p : E(g)! X;A; �) of the groupoid B.
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Now suppose f = ffigi2I 2 C
0(U;U0;G), so that f : gf ! g is an arrow in the groupoid Z. Then

g
f 2 Z

1(U;U0;G) determines a principal bundle ~p : E(gf ) ! X, an atlas ~A = f~�igi2I, and a distinguished

trivialization ~� , in the above described manner. But it follows from the de�nition of gf that the maps

Ui �GL(n; C ) ! Ui �GL(n; C ) : (x;A) 7! (x; fi(x)A) for all i 2 I �t together

(x;A) 2 Uij �GL(n; C ) ����! Uij �GL(n; C ) 3 (x; fj(x)A)??y x??~�j

x??�j ??y
[(x;A)] 2 ~p�1(Uij)

~f
����! p

�1(Uij) 3 [(x; fj(x)A)]??y ??y~�i

??y�i ??y
(x; (gf )ij(x)A) 2 Uij �GL(n; C ) ����! Uij �GL(n; C ) 3 (x; gij(x)fj(x)A) = (x; fi(x)(g

f)ij(x)A)

to yield an isomorphism of complex manifolds ~f : E(gf ) ! E(g) which is also an isomorphism of principal

bundles, i.e. p Æ ~f = ~p. Since fi(x) = 1 for all x 2 Ui and all i 2 I0, this isomorphism has the additional

property that it is the identity in the trivializations (~� ; �). Thus the functor E associates to the arrow

f : gf ! g in the groupoid Z the arrow ~f : E(gf )! E(g) in the groupoid B. This association is functorial.

Now we will de�ne the functor T : B ! Z. Let (� : E ! X;B; �) be an object in the groupoid B. Then

the overlap ��1
j Æ �i between two local trivializations will necessarily be expressible in terms of transition

functions g = fgijg(i;j)2I2 . A family of transition functions will necessarily satisfy the conditions de�ning a

1-cocycle. But since each of the trivializations �i for i 2 I
0 is a restriction of the distinguished trivialization

�, we have gij = 1 whenever i; j 2 I0, and thus g 2 Z1(U;U0;G). This g is the object in the groupoid Z that

the functor T associates to (� : E ! X;B; �).

Now suppose (�2 : E2 ! X;B2 = f�2igi2I; �2) and (�1 : E1 ! X;B1 = f�1igi2I; �1) are objects in

the groupoid B and f̂ : E2 ! E1 is an arrow between them in that same goupoid. Then for every i 2

I there is an holomorphic mapping fi : Ui ! GL(n; C ) such that [�1i Æ f̂ Æ �
�1
2i ](x;A) = (x; fi(x)A) for

every (x;A) 2 Ui � GL(n; C ). Thus f = ffigi2I 2 C
0(U;G). In the distinguished trivializations we

have [�1 Æ f̂ Æ �
�1
2 ](x;A) = (x;A) for every (x;A) 2 Ui � GL(n; C ). Since for all i 2 I0 we have that

�ki is a restriction of �k, k = 1; 2, it follows that fi = 1 for such i. Therefore f 2 C
0(U;U0;G). If

g1 = fg1ijg(i;j)2I2 ; g2 = fg2ijg(i;j)2I2 2 Z
1(U;U0;G) denote the families of transition functions of the bundles

�1; �2 respectively, then we have that fi(x)g2ij(x) = g1ij(x)fj(x) for all x 2 Uij . Thus g2 = g
f
1 . So (g2; f; g1)

is the arrow in the groupoid Z which the functor T associates to f̂ . This association is functorial.

It is clear that T E is equal to the identity functor on Z. We will now describe a natural isomorphism

� from ET to the identity functor on B. To each object (� : E ! X;B; �) of the groupoid B we de�ne

the isomorphism �(�;B;�) : E(g) ! E, where g = T (�;B; �), as follows. Since the bundles (� : E ! X;B)

and (p : E(g) ! X;A) have the same transition functions, namely g, we de�ne �(�;B;�) so that for all i 2 I

its local presentation in the trivializations (�i; �i) is the identity map. Clearly we have � Æ � = p. Since

for all i 2 I0 the trivializations �i; �i are restrictions of the distinguished trivializations �; � respectively, it

follows that the local presentation of �(�;B;�) in the distinguished trivializations (�; �) is also the identity

map. So �(�;B;�) determines an isomorphism in B. To see that � is a natural isomorphism suppose that

(�2 : E2 ! X;B2; �2) and (�1 : E1 ! X;B1; �1) are objects in the groupoid B and f̂ : E2 ! E1 is an arrow

between them. Let f 2 C0(U;U0;G) be such that T associates (g2; f; g1) to f̂ . Let ~f : E(g2)! E(g1) be the

arrow that E associates to (g2; f; g1). It follows immediately that �1 Æ f̂ = ~f Æ �2, where �k = �(�k;Bk;�k),

k = 1; 2. Thus we have proved the following.

Fact. Suppose X is a complex manifold, S � X is a closed subset, and G = GL(n;OX). Suppose I
0 � I are

index sets, U = fUigi2I, U
0 = fUigi2I0 , and (U;U0) is an open covering of (X;X n S). Then the groupoids

Z(U;U0) and B(U;U0) are equivalent as categories.

In De�nition 5 we described H1(U;U0;G) as the pointed set of all orbits in Z1(U;U0;G) under the right

action of C0(U;U0;G). Another way of saying this is that H1(U;U0;G) is the set of all isomorphism classes

of objects in the groupoid Z(U;U0) (in any category isomorphism is an equivalence relation). Since the
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categories Z(U;U0) and B(U;U0) are equivalent there is a one-to-one correspondence between the sets of

their isomorphism classes. Therefore we have the following.

Corollary. There is a one-to-one correspondence between H1(U;U0;G) and the pointed set of isomorphism

classes in the groupoid B(U;U0).

x2 Inductive Limits and Bundle Interpretations. Now suppose J is another index set and V = fVjgj2J
is another open covering of X.

De�nition. We say a map � : J ! I is a re�nement inclusion from U to V if for every j 2 J we have

Vj � U�(j). If there exists a re�nement inclusion from U to V then we say the covering V is a re�nement of

the covering U.

Thus we obtain the category: Open coverings of X/re�nement inclusions.

De�nition. If J0 is a subset of J such that V0 = fVjgj2J0 is an open covering of X nS, then a map � : J! I

is said to be a re�nement inclusion from (U;U0) to (V;V0) if � is a re�nement inclusion from U to V and

�(J0) � I0. If there exists a re�nement inclusion from (U;U0) to (V;V0), then we say (V;V0) is a re�nement

of (U;U0).

Thus we obtain the category: Open coverings of (X;X n S)/re�nement inclusions. Suppose again that G

is any sheaf of groups on X. To reduce writing we will suppress from our notation the dependence on the

sheaf G, which will remain �xed in our discussion.

Fact.

(1) C0 is a functor
Open coverings of X

re�nement inclusions
!

Groups

group homomorphisms

provided whenever � : J ! I is a re�nement inclusion from U = fUigi2I to V = fVjgj2J and for all

f 2 C0U and for all j 2 J we de�ne

(C0
�)(f)j = G(U�(j) � Vj)(f�(j)):

The exact same rule causes C0 to be a functor

Open coverings of (X;X n S)

re�nement inclusions
!

Groups

group homomorphisms
:

(2) Z1 is a functor
Open coverings of X

re�nement inclusions
!

Pointed sets

point preserving maps

provided whenever � : J ! I is a re�nement inclusion from U = fUigi2I to V = fVjgj2J and for all

g 2 Z1U and for all (j; k) 2 J2 we de�ne

(Z1
�)(g)jk = G(U�(j)�(k) � Vjk)(g�(j)�(k)):

The exact same rule causes Z1 to be a functor

Open coverings of (X;X n S)

re�nement inclusions
!

Pointed sets

point preserving maps
:

(3) Suppose � is a re�nement inclusion from U to V, g 2 Z1U and f 2 C0U. Then

(Z1
�)(gf ) = (Z1

�)(g)(C
0�)(f)

:

In particular this relationship holds when g 2 Z1(U;U0) and f 2 C0(U;U0).
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Proof. Simple exercise. �

Remark. If we make use of the groupoid Z(U;U0) that we de�ned in the previous section then we can give

a reinterpretation of the above fact. The association (U;U0) 7! Z(U;U0) is the object map of a functor

Z :
Open coverings of (X;X n S)

re�nement inclusions
!

Groupoids

groupoid homomorphisms
:

If � is a re�nement inclusion from (U;U0) to (V;V0) then de�ne Z� : Z(U;U0)! Z(V;V0) to be the groupoid

homomorphism, taking the arrow (gf ; f; g) into ((Z1
�)(g)(C

0�)(f)
; (C0

�)(f); (Z1
�)(g)). Thus the content of

(3) above is that this association is indeed a groupoid homomorphism.

Proposition. Adopt the notation of the previous Fact.

(1) The map Z1
� : Z1U! Z

1V takes orbits to orbits, and hence induces a point-preserving map, denoted

by H1
�, from H

1U to H1V. Thus H1 is a functor

Open coverings of X

re�nement inclusions
!

Pointed sets

point preserving maps

In exactly the same way, H1 is a functor

Open coverings of (X;X n S)

re�nement inclusions
!

Pointed sets

point preserving maps
:

(2) If V is a re�nement of U, then the map H1
� is injective and independent of the re�nement inclusion

� from U to V. Similarly, if (V;V0) is a re�nement of (U;U0), then the map H1
� is injective and

independent of the re�nement inclusion � from (U;U0) to (V;V0).

Proof. (1) is obvious from part (3) of the above Fact. We will prove (2) in the relative case, following

the proof of the usual case in Babbitt Varadarajan [], page 111. First we will show that the map H
1
� is

independent of the re�nement inclusion �. Suppose � : J! I is another re�nement inclusion from (U;U0) to

(V;V0), i.e. Vj � U�(j) for all j 2 J and �(J0) � I0. Suppose g 2 Z1(U;U0). We must show that the orbit of

(Z1
�)(g) and the orbit of (Z1

�)(g) under the action of C0(V;V0) coincide. This will happen if and only if there

is an f 2 C
0(V;V0) such that (Z1

�)(g)f = (Z1
�)(g). For all j 2 J de�ne fj = G(U�(j)�(j) � Vj)(g�(j)�(j)).

Now compute:

[(Z1
�)(g)f ]jk = G(Vj � Vjk)(fj)

�1 � (Z1
�)(g)jk � G(Vk � Vjk)(fk)

= G(U�(j)�(j) � Vjk)(g�(j)�(j))
�1 � G(U�(j)�(k) � Vjk)(g�(j)�(k)) � G(U�(k)�(k) � Vjk)(g�(k)�(k))

= G(U�(j)�(k) � Vjk)(g�(j)�(k))

= (Z1
�)(g)jk:

Furthermore, if j 2 J0 then �(j) 2 I0 and �(j) 2 I0 and therefore g�(j)�(j) = 1. Thus f 2 C0(V;V0).

Now we will show that the map H1
� : H1(U;U0)! H

1(V;V0) is injective. So suppose g; ~g 2 Z1(U;U0) are

such that the image under H1
� of the orbit of g and of the orbit of ~g coincide, i.e. there is an f 2 C0(V;V0)

such that (Z1
�)(~g) = (Z1

�)(g)f . We want to �nd an h 2 C
0(U;U0) such that ~g = g

h and f = (C0
�)(h).

Let i 2 I and j 2 J and de�ne Wi;j = Ui \ Vj and

hi;j = G(Ui�(j) �Wi;j)(gi�(j)) � G(Vj �Wi;j)(fj) � G(U�(j)i �Wi;j)(~g�(j)i):

If k 2 J then de�ne Wi;jk = Ui \Vjk. First we will show that G(Wi;k �Wi;jk)(hi;k) = G(Wi;j �Wi;jk)(hi;j).

If we restrict the known relation (Z1
�)(~g) = (Z1

�)(g)f to Wi;jk and use the cocycle conditions we get

G(Wi;k �Wi;jk)(hi;k) = G(Ui�(k) �Wi;jk)(gi�(k)) � G(Vj �Wi;jk)(fk) � G(U�(k)i �Wi;jk)(~g�(k)i)

= G(Ui�(k) �Wi;jk)(gi�(k)) � G(U�(k)�(j) �Wi;jk)(g�(k)�(j)) � G(Vj �Wi;jk)(fj)

� G(U�(j)�(k) �Wi;jk)(~g�(j)�(k)) � G(U�(k)i �Wi;jk)(~g�(k)i)

= G(Ui�(j) �Wi;jk)(gi�(j)) � G(Vj �Wi;jk)(fj) � G(U�(j)i �Wi;jk)(~g�(j)i)

= G(Wi;j �Wi;jk)(hi;j):
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Since Ui = [j2JWi;j we have by the collation condition for the sheaf G that there exists hi 2 G(Ui) such

that G(Ui �Wi;j)(hi) = hi;j for all j 2 J. Note also that if i 2 I0 then Ui = [j2J0Wi;j , hi;j = 1 for all j 2 J0

(since �(j) 2 I0), and thus hi = 1. Therefore h 2 C
0(U;U0). To show that f = (C0

�)(h) note that for all

j 2 J0 we have Vj � U�(j) and hence Vj =W�(j);j . Thus for all j 2 J we have

(C0
�)(h)j = G(U�(j) � Vj)(h�(j)) = G(U�(j) �W�(j);j)(h�(j)) = h�(j);j = fj :

Finally it only remains to show that ~g = g
h, i.e. for all (i; l) 2 I2 we have G(Ui � Uil)(hi) � ~gil = gil � G(Ul �

Uil)(hl). Let (i; l) 2 I2 be given. Since Uil = [j2JWil;j , where Wil;j = Uil \ Vj , it suÆces by the collation

property to show that for all j 2 J the above equality holds when restricted to Wil;j .

G(Ui �Wil;j)(hi) � G(Uil �Wil;j)(~gil)

= G(Wi;j �Wil;j)(hi;j) � G(Uil �Wil;j)(~gil)

= G(Ui�(j) �Wil;j)(gi�(j)) � G(Vj �Wil;j)(fj) � G(U�(j)i �Wil;j)(~g�(j)i) � G(Uil �Wil;j)(~gil)

= G(Uil �Wil;j)(gil) � G(Ul�(j) �Wil;j)(gl�(j)) � G(Vj �Wil;j)(fj) � G(U�(j)l �Wil;j)(~g�(j)l)

= G(Uil �Wil;j)(gil) � G(Wl;j �Wil;j)(hl;j)

= G(Uil �Wil;j)(gil) � G(Ul �Wil;j)(hl): �

De�nition 6. We de�ne H1(X;G) to be the inductive limit of the functor H1(�;G). More concretely,

H
1(X;G) =

a
U

H
1(U;G)

�
�;

where the disjoint union is over all open coverings U of X, and h � ~h, h 2 H1(U;G), ~h 2 H1(~U;G) if and only

if there exists an open covering V which is a re�nement of both U and ~U such thatH1(�;G)(h) = H
1(~�;G)(~h),

where � (resp. ~�) is any re�nement inclusion from U (resp. ~U) to V. Using the exactly analogous construction,

we de�ne H1(X;X n S;G) to be the inductive limit of the functor H1(�; �;G).

Fact. Suppose X is a complex manifold, G = GL(n;OX), U is an open covering of X, and g 2 Z
1(U;G).

Suppose also that V is a re�nement of U, � : J ! I is a re�nement inclusion from U to V, and let h =

Z
1(�;G)(g). Then the assignments (x;A) 2 Vj � GL(n; C ) 7! (x;A) 2 U�(j) � GL(n; C ), for j 2 J, �t

together to form an isomorphism �� : E(V; h)! E(U; g) of principal bundles over X.

Thus, in the situation of the previous fact, we see that an element of H1(X;G) has a similar geometric

interpretation as elements of H1(U;G), except now a broader type of isomorphisms of principal bundles is

allowed. If � : E ! X is any principal �bre bundle over X with structure group GL(n; C ), then any atlas

of local trivializations of this bundle will be over some open covering U of X, and the family of transition

functions of this atlas determines a 1-cocycle g 2 Z
1(U;G). It is a well-known geometric fact that there is

an isomorphism � : E ! E(U; g) of principal �bre bundles, i.e. p Æ � = �. So up to such an isomorphism,

every principal �bre bundle over X with structure group GL(n; C ) is accounted for in H
1(X;G). Finally,

suppose p : E(U; g) ! X and ~p : E(~U; ~g) ! X are two isomorphic principal �bre bundles with structure

group GL(n; C ). De�ne J = I� ~I and V = fV(i;~i) = Ui \ ~U~ig(i;~i)2J. De�ne � (resp. ~a) to be the re�nement

inclusion from U (resp. ~U) to V given by the mapping J! I : (i;~i) 7! i (resp. J! ~I : (i;~i) 7! ~i). De�ne h =

Z
1(�;G)(g) and ~h = Z

1(~�;G)(g). By the previous Fact we have isomorphisms �� : E(V; h) ! E(U; g) and

�~� : E(V; ~h) ! E(~U; ~g) of principal �bre bundles. Thus we have that p : E(V; h) ! X and ~p : E(V; ~h) ! X

are two isomorphic principal �bre bundles. Thus there exists f 2 C
0(V;G) such that ~h = h

f , i.e. h and ~h

determine the same element of H1(V;G). Thus we have proved the following.

Fact. Suppose X is a complex manifold, and G = GL(n;OX). Then there is a point-preserving one-to-one

correspondence between H1(X;G) and the set of isomorphism classes in the category Holomorphic principal

�bre bundles over X with structure group GL(n; C )/bundle maps.

Suppose S is a closed subset of X as before. A principal �bre bundle over X is said to be trivial over

X n S if it possesses an atlas of local trivializations containing a trivialization over X n S. We will de�ne
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a new category called, for want of a better name, Hyperbundles on X, supported on S/hyperbundle maps.

The objects of this category will be pairs (p : E ! X; �), where p : E ! X is a holomorphic principal �bre

bundle on X with structure group GL(n; C ) and � : p�1(X n S) ! (X n S) � GL(n; C ) is a distinguished

local trivialization contained in the atlas of the bundle p. Hyperbundle maps will be ordinary bundle maps

which are the identity over X n S, as computed using the distinguished local trivializations.

Fact. Suppose X is a complex manifold, S is a closed subset of X, and G = GL(n;OX). Then there is a

point-preserving one-to-one correspondence between H
1(X;X n S;G) and the set of isomorphism classes in

the category Hyperbundles on X, supported on S/hyperbundle maps.

3 \Long Exact Sequence" of Non-Abelian Relative Cohomology. Now suppose (U;U0) is an open

covering of (X;X n S), and consider the following \commutative diagram":

1 1 1??y ??y ??y
H

0(U;U0;G)
�1����! H

0(U;G)
�2����! H

0(U0;G)

a1

??y a2

??y a3

??y
1 ����! C

0(U;U0;G)
�1

����! C
0(U;G)

�2
����! C

0(U0;G) ����! 1

b1

??y b2

??y b3

??y
1 ����! Z

1(U;U0;G)
1

����! Z
1(U;G)

2
����! Z

1(U0;G)

c1

??y c2

??y c3

??y
H

1(U;U0;G)
Æ1����! H

1(U;G)
Æ2����! H

1(U0;G)??y ??y ??y
1 1 1

All the maps above and including the �s and the 0-cochains are group homomorphisms. All the maps below

that point are point-preserving maps. The ais are subgroup inclusions. �1 is a normal subgroup inclusion.

�2 retains only the portion of the 0-cochain on U0. The �is are just the restrictions of the �is. All the

sequences of group homomorphisms are exact at every interior node, and the two rectangles formed by

group homomorphisms commute.

The bis map 0-cochains f to 1f , so that the vertical sequences are \exact" at the 0-cochain nodes, i.e.

the image of ai is the inverse image under bi of 1. 1 is an inclusion. It has the property that for all

g 2 Z1(U;U0;G) and for all f 2 C0(U;U0;G), 1(g
f ) = 1(g)

�1(f). 2 retains only that portion of a 1-cocyle

which pertains only to the covering U0. It has the property that for all g 2 Z1(U;G) and for all f 2 C0(U;G),

2(g
f ) = 2(g)

�2(f). If X is a Riemann surface then 2 is surjective, although we will not need to use this

fact. In general the horizontal sequence of the is and the 1-cocycles is \exact" at the two interior nodes.

The two rectangles between the �is and the is commute.

The maps ci map a 1-cocycle into its orbit under the action of the 0-cochains. The cis are surjective

by de�nition. The image of bi is the inverse image under ci of 1. Consequently, the vertical sequences

are \exact" at every interior node. Because of the above described compatibility of the is with the group

actions, the is map orbits into orbits, and hence induce the maps Æ1; Æ2 between orbit spaces, such that

the two rectangles between the is and the Æis commute. Æ2 Æ Æ1 is trivial. A \diagram chase" veri�es our

geometric intuition by proving that the image of Æ1 coincides with the inverse image under Æ2 of 1.

Theorem. Suppose f 2 H
0(U0;G) and �;  2 �

�1
2 (f) (always nonempty). Then 1�; 1 2 Z

1(U;U0;G),

�
�1
 2 C0(U;U0;G), and 1 = (1�)�

�1 . Thus there is a well-de�ned map

K : H0(U0;G)! H
1(U;U0;G) : f 7! c1(1

�); where �2(�) = f .
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This map has the following properties.

(1) The image of �2 is equal to the inverse image under K of 1. More generally, the inverse image of

every point in the image of K is a right coset of the image of �2 in H0(U0;G).

(2) The image of K in H1(U;U0;G) is equal to the inverse image under Æ1 of 1.

Proof. (1) Let G be the image of �2 in H
0(U0;G). Let f 2 H

0(U0;G) and g = K(f). We want to show

that Gf = K
�1(g). First we claim: K(Gf) = fgg. Let h 2 H

0(U;G); we will show K(�2(h)f) = g. If

� 2 C
0(U;G) is such that �2(�) = f , then �2(h�) = �2(h)�2(�) = �2(h)f . So K(�2(h)f) = c1(1

h�) =

c1((1
h)�) = c1(1

�) = g.

Now suppose f1 2 H
0(U0;G) and g = K(f1). We claim that f1 2 Gf . Let �1 2 C

0(U;G) be such that

�2(�1) = f1. Since c1(1
�) = c1(1

�1), there exists  2 C0(U;U0;G) such that 1�1 = (1�) . So 1�1 
�1��1

= 1,

i.e. �1 
�1
�
�1 2 H0(U;G). Also �2(�1 

�1
�
�1) = �2(�1 

�1
�
�1) = �2(�1)�2( 

�1)�2(�
�1) = f1 �1 �f

�1 2 G.
(2) First we show Æ1(K(f)) = 1 for all f 2 H

0(U0;G). Let � 2 C
0(U;G) be such that �2(�) = f . Then

Æ1(c1(1
�)) = c2(1(1

�)) = c2(1
�) = 1. Next suppose Æ1(g) = 1 for some g 2 H

1(U;U0;G). We want to

show that g = K(f) for some f 2 H
0(U0;G). There exists h 2 Z

1(U;U0;G) such that g = c1(h). Therefore

c2(h) = 1, i.e. there exists � 2 C
0(U;G) such that h = 1�. But 1�2(�) = 2(1

�) = 2(h) = 1. Therefore

f = �2(�) 2 H
0(U0;G), and g = c1(1

�) = K(f). �

Corollary. Suppose X is a Riemann surface, S is a closed subset with empty interior, and G = GL(n;OX).

Then the map K de�ned in the previous Theorem establishes a point-preserving bijection between the pointed

set G(X)nG(X nS) and the subset of H1(X;X nS;G) consisting of those hyperbundles which are trivializable

over X as ordinary bundles. If X is noncompact, G(X)nG(X n S) �= H
1(X;X n S;G).

4 Relative Cohomology as a Sheaf. Suppose X is a connected Riemann surface, and U1 � U2 are

open subsets. Suppose S is a closed subset of X with empty interior. Suppose (U1;U
0
1) is a covering of

(U1; U1 n S). Then intersecting every subset in these coverings with U2 produces an associated covering

(U2;U
0
2) of (U2; U2 n S). Let GUi

denote the restriction of the sheaf G to the sets Ui, where G = GL(n;OX).

We also get restriction maps

� : C0(U1;U
0
1;GU1)! C

0(U2;U
0
2;GU2); � : Z1(U1;U

0
1;GU1)! Z

1(U2;U
0
2;GU2):

Furthermore, if f 2 C0(U1;U
0
1;GU1) and g 2 Z

1(U1;U
0
1;GU1), then (g

f ) = (g)�(f). Thus  maps orbits to

orbits, and hence de�nes a map

� : H1(U1;U
0
1;GU1)! H

1(U2;U
0
2;GU2):

In a similar way we get restrictions

� : H0(U1;GU1)! H
0(U2;GU2); �

0 : H0(U01;GU1nS)! H
0(U02;GU2nS):

If U1 is noncompact, then the map K induces a bijection G(Ui)nG(Ui n S) �= H
1(Ui;U

0
i;GU1), i = 1; 2.

Via these bijections, the restriction map � is induced by the restriction �
0 of coset representatives to U2.

Extending this idea to the inductive limits we are led to the following.

Theorem. H1(�; � n S;G�) determines a functor from Open subsets of X/reverse inclusions to Pointed

sets/point-preserving maps. Furthermore, this functor is in fact a sheaf of pointed sets.

Proof. The functoriality is trivial. The collation property follows from a use of the mapping K as follows.

Let U � X be an open subset, and suppose fUigi2I00 is an open covering of U . If any of the sets Ui are

compact, then they are closed, and hence are either X or ;. The collation property is trivially satis�ed

for any covering such that Ui = X for some i. Furthermore, if the collation condition is satis�ed by every

covering of U by nonempty sets then it is satis�ed by all coverings. So assume Ui 6= X and is nonempty for

all i. Since Ui is a noncompact Riemann surface, we have H1(Ui; Ui nS;GUi
) �= G(Ui)nG(Ui nS). So, suppose

for each i 2 I we are given mi 2 G(Ui n S) satisfying the pairwise matching property: for every (i; j) 2 I2

there exists gij 2 G(Ui \ Uj) such that mijUi\Uj
= gijmj jUi\Uj

. If Ui \ S = ; then we may assume mi = 1.
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Suppose k =2 I00 and let I = I00[fkg. De�ne Uk = U nS and I0 = fi 2 I00 j Ui\S = ;g[fkg. Set U = fUigi2I
and U0 = fUigi2I0 . Clearly (U;U0) is an open covering of (U;U n S). De�ne mk = 1 on Uk. Using the rule

gij = mim
�1
j on Ui \ Uj for all (i; j) 2 I

2 we can extend gij to a 1-cocycle in Z1(U;U0;GjU ). �
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