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Abstract

This thesis addresses the problem of describing the time evolution of a genetic chem-

ical system using a stochastic approach: the Master equation approach, which is the

consequence of the fundamental hypothesis of the stochastic formulation of chemical

kinetics. The Master equation can be used to compute the time dependent probabil-

ity distribution of the state of a chemical system. The Master equation is built on

a Markov model foundation. We derive the Master equation under the assumption

that there exits a Markov process satisfying three particular postulates.

A mathematical formulism called Petri net which represents a chemical system is

introduced. The Petri net and a positive integer k together determine a State graph.

We also explore the properties of the solution of the Master equation associated with

the State graph.

We give a construction of a Markov process on an infinite product space and prove

that the constructed Markov process satisfies the three postulates, hence satisfies the

Master equation.

We also give the time evolution outcomes of the stochastic simulations of a genetic

auto-regulatory system using computer software, which are consistent with the long

time behavior property of the solution of the Master equation.
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Chapter 1

Introduction

The process linking genes to proteins is called Gene Expression. The details of

the biology background of processes of gene expression are given in Chapter 2. In

a genetic regulatory system, it is possible for the protein produced from a gene to

influence the rate of expression of that same gene. A genetic regulatory system can be

represented by the chemical species and reactions involved in the regulatory process,

hence can be considered as a homogeneous chemical system.

In Chapter 3 we introduce a mathematical representation for chemical systems

called Petri net, and discuss how to describe the time behavior of a chemical system

in a mathematical way. A Petri net for a chemical system determines an oriented

bipartite graph whose edges are labeled by numbers C specifying the reaction rates;

A Petri net and an integer k > 0 together determine a directed graph called the State

graph whose oriented edges are labeled by numbers W specifying the probabilities of

the occurrences of reactions per unit time. It is shown that a system of ordinary dif-

ferential equations called the Reaction Rate equation is completely determined by

the labeled Petri net. The relationship between functions C and W is given in Section

3.2. There are two mathematical approaches to describe the time evolution of a homo-

geneous chemical system: the deterministic approach via the Reation Rate equations

and the stochastic approach. The fundamental hypothesis of the stochastic

formulation of chemical kinetics and relationship between the deterministic ap-
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proach and stochastic approach are discussed in Section 3.2. The stochastic nature of

a genetic network in single cells cannot be neglected when modeling cellular control

circuits. Hence a Markov process is needed to describe the stochastic trajectories

of the system behavior.

In Chapter 4, a system of differential equations called the Master Equations is

derived, which can be used to describe the stochastic model of a chemical system and

to compute the time dependent probability distribution of the state of the system. It

is shown that under the assumption of the existence of a Markov process whose con-

ditional probabilities satisfy three particular postulates, the probability distribution

of the Markov process satisfies the Master equation. The properties of the solution

of the Master equation associated with an abstract directed graph are given and the

long time behavior of the solution of the Master equation is explored.

We construct the Markov process which can describe the system behavior in Chap-

ter 5. Also the three postulates of the constructed process have been verified, which

complete the proof that the time dependent probability distribution of the state of

the system satisfies the Master equation.

Petri net

Reaction Rate equation

State graph

Master equation

Markov process

Figure 1.1: Relationships between Petri Net, Reaction Rate Equation, etc.

Figure 1.1 shows the relationships between Petri net, Reaction Rate equation,

State graph, Markov process and Master equation: A Petri net determines a Reaction
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Rate equation and a State graph; a State graph determines a Markov process and a

Master equation; the relationship between the Reaction Rate equation and the Master

equation is discussed in Section 3.2.

A model of a auto-regulating genetic system is constructed and studied in Chapter

6. The corresponding Master equation is then written down.

In Chapter 7 we simulate the time evolution of a simplified model of an auto-

regulating genetic system using a biochemical simulation software called Jarnac,

which uses the Gillespie algorithm. Several outcomes of the simulation have been

given and discussed. The behavior observed in the simulation coincides with that

predicted in the theorem of the long time behavior of the solution of the Master

equation we give in Chapter 4.
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Chapter 2

Overview of Processes Linking
Genes to Proteins

All prokaryotes and eukaryotes are composed of cells, and the inner workings of

all cells are remarkably similar, being dominated by the production and reactions

of biopolymers: nucleic acids, proteins, and carbohydrates. A polymer is a long

chainlike molecule consisting of many identical or similar building blocks linked by

covalent bonds, much as a train consists of a chain of cars.

Proteins are the most structurally sophisticated molecules known and the molec-

ular tools of the cell. Consistent with their diverse functions, they vary extensively

in structure, each type of protein having a unique three-dimensional shape. Diverse

though proteins may be, they are all polymers constructed from the same set of 20

amino acids. Amino acids are organic molecules possessing both carboxyl and amino

groups. Polymers of amino acids are called polypeptides. A protein consists of one or

more polypeptide folded and coiled into specific conformations. More details of the

protein structure can be found in ([2]).

In this chapter, we will overview the processes of production of protein from the

corresponding gene to provide the biological setting for the type of mathematical

models we will study. Genes provide the instructions for making specific proteins.

Nucleic acids and proteins have specific sequences of monomers that convey informa-
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tion. In DNA or RNA, the monomers are the four types of nucleotides, which differ

in their nitrogenous bases. Each gene has a specific sequence of bases, which might

be hundreds or thousands of nucleotides long. The monomers of proteins are the

20 amino acids. Thus nucleic acids and proteins contain information written in two

different chemical languages. A cell does not directly translate a gene into a chain of

amino acids. The bridge between DNA and protein synthesis is RNA.

To get from DNA to protein requires two major stages, transcription, and trans-

lation. In this thesis, we only discuss how these two processes take place in prokary-

otes, which is much easier than the situation in eukaryotes. The following details are

adapted from ([4]).

Transcription

Transcription is the synthesis of RNA under the direction of DNA. Both types of

nucleic acids use the same language, except thymine in DNA is converted to uracil

in RNA, and deoxyribonuclieotides are replaced by ribonucleotides. The information

is simply transcribed from one molecule to the other. A DNA strand provides a

template for assembling a sequence of RNA nucleotides. An enzyme called an RNA

polymerase (RNAP) pries the two strands of DNA apart and hooks together the

RNA nucleotides as they pair along the DNA template. The type of RNA molecule

created in this manner is called messenger RNA (mRNA). The three stages of

transcription are initiation, elongation, and termination of the RNA chain, as shown

in Figure 2.1.

Initiation: At the first stage, RNA polymerase binds to some region of DNA.

The region where RNA polymerase attaches and initiates transcription is called a

promoter. In addition to determining where transcription starts, the promoter also

determines which of the two strands of the DNA helix is used as the template, and

therefore the direction along duplex DNA in which transcription will proceed. The
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Figure 2.1: Transcription Processes
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completed assembly of promoter and RNA polymerase is called a transcription initi-

ation complex.

Elongation: As RNA polymerase moves along the DNA, it continues to untwist

the double helix. One of the strands provides a template for assembling a sequence

of RNA nucleotides. The enzyme adds a nucleotide to only one end of the growing

RNA molecule as it moves along the double helix. In the wake of this advancing

wave of RNA synthesis, the DNA double helix reforms and the new RNA molecule

peels away from its DNA template. A single gene can be transcribed successively by

several molecules of RNAP following each other. The growing strands of RNA trail

off from each polymerase, with the length of each new strand reflecting how far along

the template the enzyme has traveled from the start-point.

Termination: Transcription proceeds until shortly after the RNA polymerase

transcribes a DNA sequence called a Terminator. The transcribed terminator, which

is an RNA sequence, functions as the actual termination signal, which leads to disso-

ciation of RNAP from DNA and complete reformation of the double helix of DNA.

In the genetic code, the genetic instructions for a polypeptide chain are written

in the DNA as a series of three-nucleotide words. During transcription, the gene

determines the sequence of base triplets along the length of an mRNA molecule. The

mRNA base triplets are called Codons. Each codon specifies which one of the 20

amino acids will be incorporated at the corresponding position along a polypeptide

by translation.

An mRNA’s stability is controlled by the RNA degradation enzyme, for example,

the one which is called RNase E in phage λ−infected Escherichia coli cells. The RNA

degradation enzyme can initiate degradation (i.e. chemical decay) of the mRNA when

it binds to mRNA.

7



The agents of translation of mRNA are large molecules called Ribosomes. RNA

degradation enzyme cannot bind to mRNA when mRNA is bound by a Ribosome,

which can prevent the mRNA from degradating until the site is again exposed as the

Ribosome finishes translating the mRNA. At each exposure of the Ribosome binding

site and RNA degradation enzyme binding site on mRNA, there is a direct compe-

tition between Ribosome and RNA degradation enzyme binding. This competition

leads either to successful production of a protein or to degradation of the mRNA.

Translation

Translation is the actual synthesis of a polypeptide under the direction of an

mRNA. The cell interprets a genetic message and builds a protein accordingly. The

interpreter is called transfer RNA (tRNA). The function of tRNA is to transfer

amino acids from the cytoplasm’s amino acid pool to a ribosome. The Ribosome then

adds each amino acid brought to it by tRNA to the growing end of a polypeptide

chain. The key to translating a genetic message into a specific amino acid sequence

is that each type of tRNA molecule links a particular mRNA codon with a particular

amino acid.

Ribosomes facilitate the specific coupling of tRNA anticodons with mRNA codons

during protein synthesis. A Ribosome is made up of two subunits, termed the large

and small subunits. The structure of a Ribosome reflects its function of bringing

mRNA together with two amino acids, as shown in Figure 2.2. In addition to a

binding site for mRNA, each Ribosome has three binding sites for tRNA. The P site

holds the tRNA carrying the growing polypeptide chain, while the A site holds the

tRNA carrying the next amino acid to be added to the chain. Discharged tRNAs

leave the Ribosome from the E site.

Like transcription, translation can be divided into three stages: initiation, elon-

gation and termination.
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Figure 2.2: Structure of Ribosome
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Figure 2.3: Initiation Process of Translation
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Figure 2.4: Elongation Process of Translation
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Initiation: This stage brings together mRNA, a tRNA bearing the first amino

acid of the polypeptide, and the two subunits of a Ribosome, as shown in Figure 2.3.

First, a small Ribosome subunit binds to both the leader segment of the mRNA and

a special initiator tRNA. Then it is followed by the attachment of a large Ribosomal

subunit, completing a translation initiation complex.

Elongation: Amino acids are added one by one to the first amino acid in this

stage, as shown in Figure 2.4. Each addition occurs in a three-step cycle: codon

recognition, peptide bond formation, and translocation. First the mRNA codon in

the A site of the Ribosome forms hydrogen bonds with the incoming tRNA carrying

its appropriate amino acid. Then the large Ribosome subunit catalyzes the formation

of a peptide bond that joins the polypeptide extending from the P site to the newly

arrived acid in the A site. At last, the tRNA in the A site is translocated to the

P site. The mRNA moves along with it and brings the next codon to be translated

into the A site. Meanwhile, the tRNA that was in the P site moves to the E site,

disconnects from mRNA and leaves the Ribosome.

Termination: Elongation continues until a stop codon reaches the A site of the

Ribosome. The polypeptide is released from the Ribosome. The remainder of the

translation assembly then comes apart.

It is possible for the protein produced from a gene to influence the rate of tran-

scription of that same gene. Such a genetic system is called the auto-regulating genetic

system, which will be discussed in Chapter 6. A genetic regulatory system can be

considered as a chemical system.
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Chapter 3

Stochastic Basis of Chemical
Models

3.1 Representation of Molecular Interactions as

Petri Nets

A system of molecular interactions can be represented as a mathematical formalism

called a labeled Petri net. A Petri net (S,R,A,B) is defined as follows:

(1) S and R are finite sets with S ∩ R = ∅;

(2) A ⊂ S × R and B ⊂ R × S.

where elements of S are called chemical species, elements of R are called chemical

reactions, A ∪ B is called the flow relation ([17]).

A labeling (I, O,C) of the Petri net (S,R,A,B) consists of functions:

(1) I : A → N ∪ {0} and O : B → N ∪ {0};

(2) C : R → (0,∞).

where functions I and O are called input and output functions, and the function C

specifies the reaction rate constants ([11]).

A Petri net determines an oriented bipartite graph (S ∪R,A ∪B), where species

are drawn as circles, reactions as rounded rectangles, and members of A∪B are drawn

13



as arrows, referred to as directed arcs (see Fig 3.1). Values of the input and output

functions greater than one are indicated as labels of the corresponding directed arcs

([11]).

To express a chemical system as a Petri net, let A be the set of all pairs (s, r)

where s is a chemical species required as a reactant in the chemical reaction r, and

B be the set of all pairs (r, s) where s is a chemical species produced as a result of

the chemical reaction r. The input and output functions capture the stoichiometry of

all the reactions being considered, i.e., if (s, r) is in A then I(s, r) gives the number

of molecules of reactant s consumed through reaction r, and for (r, s) in B, O(r, s)

denotes the number of molecules of product s produced through reaction r. We also

assume for every reaction r ∈ R that the integers

{I(s, r) | (s, r) ∈ A} ∪ {O(r, s) | (r, s) ∈ B}

have no common prime factors.

Let us take the following reaction as an example:

r : 2s1 + s2 −→ 2s3.

We have I(s1, r) = 2, I(s2, r) = 1, and O(r, s3) = 2. These three integers have no

common prime factors. We could also represent the reaction r as:

r : 4s1 + 2s2 −→ 4s3.

For simplicity, however, we will not do so.

A state of the Petri net (S,R,A,B) is a mapping X : S −→ N ∪ {0}. X (s)

specifies the number of molecules of species s present in the system. After a reaction

occurs, the molecule numbers of the input species decrease and molecule numbers of

the output species increase according to the stoichiometric coefficients. Let nr ∈ Z
S

14



denote the difference between the states of the system before and after reaction r,

then

nr(s) =




I(s, r) if (s, r) ∈ A,
−O(r, s) if (r, s) ∈ B,
0 otherwise.

Hence if state X is reached from state X ′ after the occurrence of reaction r, we have

X ′ = X + nr. We assume that the mapping R −→ Z
S : r 7−→ nr is one to one. That

is, if two reactions have the same values for the vector nr, then we simply consider

these two reactions to be identical.

The following is an example of a Petri net for the dimerization reactions 2P  P2.

Let s1 denote P , s2 denote P2, r1 represents 2P → P2, and r2 represents P2 → 2P ,

we have:

S = {s1, s2};

R = {r1, r2};

A = {(s1, r1), (s2, r2)};

B = {(r1, s2), (r2, s1)};

I(s1, r1) = 2, I(s2, r2) = 1, O(r1, s2) = 1, O(r2, s1) = 2.

And nr1 = (2,−1),nr2 = (−2, 1), where nr = (nr(s1),nr(s2)).

The corresponding graphical form of the Petri net is shown as Fig 3.1:

2

2

r2

r1

s2s1

Figure 3.1: Petri Net for Dimerization Reactions 2P  P2.
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A Petri net (S,R,A,B) and an integer k > 0 together determine a directed

graph G = (V , E) with no loops as follows. Let k represent the maximum value

of the number of molecules of any species allowed, and V = {0, 1, ..., k}S be the

finite set of vertices of G, each element of which is a state of the system. Define

∆ = {(v, v) | v ∈ V} ⊂ V ×V, and let E ∈ (V ×V)\∆ be the following set of oriented

edges:

E = {(X ′,X ) ∈ V × V | ∃r ∈ R,X ′ = X + nr}.

Hence a reaction r might determine an oriented edge (X ′,X ) connecting the two

vertices X ′ = X + nr and X . G = (V , E) is called the State graph associated to the

Petri net (S,R,A,B) and the integer k.

3.2 Fundamental Hypothesis of the Stochastic For-

mulation of Chemical Kinetics

There are two mathematical models to describe the time evolution of a homogeneous

chemical system: the deterministic model and the stochastic model. The following

discussion of the differences between these two models is adapted from ([9]). The

deterministic model assumes the change of concentration of each chemical species

over time is a continuous and deterministic process, governed by a set of coupled

ordinary differential equations, which are called the Reaction-Rate Equations.

In this model, the system will always evolve in an identical way if given the same

initial concentration vector. By the contrast, the stochastic model regards the time

evolution of the system as a discrete and stochastic process, where two independent

simulations of the same system with the same initial state would generate different

time evolutions. The stochastic model is formulated in terms of probabilities, which

are governed by a system of ordinary differential equations, the Master Equation.

The simplest way to view a stochastic model is to take it as a device for ignoring
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all the physical factors and details which are necessary to make a deterministic pre-

diction of the future. To illustrate what we mean, suppose using all the physical laws

governing molecular motions and interactions we construct a ‘super model’ which ac-

counts for the positions and velocities of all the atoms in a large system with a fixed

volume V. Assume equations of motion are formulated, whose solutions give the time

dependent trajectories of the system ([6]) ([10]).

Suppose there are N particles in the system. Let Φ = R
6N be the phase space of

this system; each point φ in Φ specifies all the positions and the velocities of all the

particles in the system at some instant of time. Let the function H be defined on

Φ giving the total energy of the system; here we assume that the system is isolated.

If given a specified φ of the system at time 0, then the trajectory function ψt(φ) is

uniquely determined for all time, and H(ψt(φ)) is independent of t.

Let

Z(θ) =

∫
Φ

exp[−H(φ)/(kBθ)] dφ

where kB is Boltzmann’s constant, θ is the absolute temperature of the system, and

dφ is the Lebesgue measure on Φ. Then

ρ(φ) = exp[−H(φ)/(kBθ)]/Z(θ)

defines a probability density function on Φ such that the probability of a subset A of

Φ coincides with the probability of the subset ψt(A) for all t.

Suppose using the particles within the system it is possible to form various chem-

ical species s in S, where S is the set of all chemical species to be considered. Let Xs

be a function on Φ which assigns to each φ in Φ the number of copies of the molec-

ular species s present in the system as described by φ. Thus Xs(ψt(φ)) is a function

which describes how this number of copies changes as time evolves. Xs(ψt(φ)) is a

stochastic process on the probability space (Φ, ρ dφ), but it is not Markovian, see
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section 3.3. Since Xs has values in the nonnegative integers this function will have

discontinuities. Note that it is impossible for us to know the initial φ. What we know

about φ is the above probability function on Φ. Each random sample φ from this

probability distribution generates a distinct time history of the number of molecules

of the species.

In the following we will adopt the notation we used in Petri net representation.

Suppose various chemical reactions r from set R are possible in our system. A chem-

ical reaction r must take place between actual molecules of species s where (s, r) is in

A; I(s, r) actual molecules are required for each species s involved. There are
(Xs(φ)

I(s,r)

)
different ways to group the Xs(φ) molecules of species s into groups of size I(s, r).

Thus there are ∏
(s,r)∈A

(
Xs(φ)

I(s, r)

)

different ways the reaction r could potentially happen in the system as described by

φ in Φ.

However in many of these groupings the molecules are not sufficiently close to-

gether in space for the reaction to occur. Suppose all the reactant molecules need to

be in a volume of size Vr in order for the reaction r to proceed, and the volume V is

divided into V/Vr cells each of volume Vr. There are

lr =
∑

(s,r)∈A

I(s, r)

reactant molecules taking part in reaction r. If these are randomly assigned to cells,

the first assignment determines the common cell, and for each of the lr − 1 remaining

assignments the fraction Vr/V land in the common cell. Hence the probability that a

given combination of lr reactant molecules will end up close enough together to react

is proportional to (Vr/V )lr−1. However the quantity Vr is difficult to know exactly.

18



Even if the reactant molecules are close enough together in space they might not

be travelling in the correct directions so that the reaction can proceed. Even if they

are close enough together in space and travelling in the right directions they may

not be moving fast enough to overcome some potential energy barriers so that the

reaction can proceed. This factor is influenced by the temperature θ, which is fixed in

our discussion. Thus it is very difficult to quantify the necessary physical conditions

to calculate which of the possible groupings will actually lead to the reaction r when

the system is described by φ. However we will assume that it is possible to count the

number of times the chemical reaction r actually occurs during a time interval (t, t+dt)

for a particular system trajectory ψt(φ); let this number be denoted by N(r, t, dt, φ).

Then the expected number of times the reaction r occurs per theoretical opportunity

in the time interval (t, t + dt) is

∫
Φ

N(r, t, dt, φ)∏
(s,r)∈A

(
Xs(ψt(φ))

I(s, r)

)ρ(φ) dφ.

This quantity should be roughly proportional to V 1−lrdt as long as dt is small

but not as small as the time required for the reaction r to occur. The Fundamen-

tal Hypothesis of the Stochastic Formulation of Chemical Kinetics is that

there is a constant C(r) (independent of time t) such that the above quantity is

C(r)V 1−lrdt + o(dt) as dt tends to zero ([8]) ([15]). The constant C(r) will in general

depend upon the temperature θ but will not depend on the volume V. Obviously this

hypothesis cannot be true when dt is as small as the time required for the reaction r

to occur, but we take this as an assumption giving rise to a model whose usefulness

must be tested empirically. We may understand C(r)V 1−lrdt, for dt small, as the
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following:

C(r)V 1−lrdt = to the first order in dt, the probability that a particular combination

of the reactant molecules will undergo reaction r in any time

interval of duration dt. (3.1)

where C(r) contains in one parameter all the complex factors which were difficult to

determine from first principles.

This hypothesis and the values of the constants {C(r) | r ∈ R} can be used to

construct a vector stochastic process {Xs(t) | s ∈ S, t ≥ 0}, where the trajectories of

the stochastic process Xs(t) are thought to be similar to the quantities Xs(ψt(φ)). In

the stochastic model the occurrence of a chemical reaction in the future is independent

of events in the past; it only depends on the availability of the reactants at the current

state and the constant C(r). This is clearly not true in the process {Xs(ψt(φ))},

although there may be only weak dependencies. Unfortunately almost no rigorous

mathematical results are known in this direction that would support our underlying

hypothesis. The details of the construction of this stochastic process are given in

Chapter 5.

We have given the function W (X ,X ′) which labels the oriented edge (X ,X ′) in

the discussion of the State graph determined by the corresponding Petri net; we also

give the function C(r) which specifies the reaction rate for reaction r in the discussion

of Petri net. Now if we let C(r) to be defined as (3.1), and define W (X ,X ′) as (see

section 4.1):

W (X ′,X )dt = to the first order in dt, the probability that a reaction r would occur

to reach state X in the time interval (t, t + dt), given state X ′ at

time t,
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then we can relate these two functions as follows:

W (X ,X − nr) = C(r)V 1−lr
∏

(s,r)∈A

(
X (s)

I(s, r)

)
. (3.2)

Next we will explain how the constant C(r) is measured or estimated. Macroscopic

rates of chemical reactions are expressed in terms of the concentration Xs(φ)/V of

molecules of the species s in the volume V . The Reaction-Rate Constant of

reaction r, which is denoted by Kr, forms the basis for the deterministic approach to

chemical kinetics. When the number Xs(φ) is large compared to the typical variations

Xs(φ) − 1

2 dt

∫ dt

−dt

Xs(ψt(φ)) dt

for dt small (but again not too small), then we may approximate Xs(ψt(φ))/V by

a continuous function of time: Ys(t). It is postulated that in such situations these

functions satisfy a system of ordinary differential equations called the Reaction Rate

equation:

Y ′
s (t) =

∑
(r,s)∈B

KrO(r, s)
∏

(s′,r)∈A

Ys′(t)
I(s′,r) −

∑
(s,r)∈A

KrI(s, r)
∏

(s′,r)∈A

Ys′(t)
I(s′,r). (3.3)

The reaction-rate constants Kr can usually be measured for each reaction r sep-

arately, and then these rates are assumed to continue to hold in combination with

other reactions. The mathematical relation between this ordinary differential equa-

tion model and the stochastic model based on the above hypothesis is elucidated in

the case where all the reactions involved are reversible in ([15]): if

C(r) = Kr

∏
(s,r)∈A

I(s, r)!, (3.4)

then ∀T > 0, ∀ε > 0, and ∀s ∈ S,

lim
V →∞

P{sup
t≤T

|V −1Xs(t) − Ys(t)| > ε} = 0,
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where Xs(t) is the stochastic process whose jumping rates are determined by the

constants C(r), and Ys(t) solves the system of ordinary differential equations (3.3),

and where Ys(0) = lim
V →∞

V −1Xs(0) with probability one.

Measurements of Kr are done on a laboratory scale whereas the stochastic model is

employed for individual cells, so comparatively speaking Kr is measured in a context

of nearly infinite volume. The assumption that C(r) is independent of volume allows

an extrapolation to a small volume situation. Since it is much easier to obtain the

value of Kr than C(r) of reaction r, we can use (3.4) to find the value of C(r) from

Kr.

The relation (3.4) shows that the Reaction Rate equation (3.3) is completely

determined by the labeled Petri net.

We give a couple of simple examples which specialize the relation between C(r)

and Kr by (3.4) in the following.

Suppose a chemical system with volume V contains species s1 and s2 which un-

dergo the reaction r:

s1 → 2s2,

we have lr = 1, and C(r) = Kr.

Consider a reaction r′, the reverse reaction of r:

2s2 → s1,

we have lr = 2, and C(r) = 2Kr.

From above we can see, from a numerical point of view, the stochastic reaction

constant and the reaction-rate constant only differ at most by a simple constant

factor. But from a theoretical point of view, the difference between them is much
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more complicated related to the basic conceptual differences between the stochastic

and deterministic approaches ([9]).

The deterministic approach is good to adopt when the number of molecules of

every species in the system is large and the fluctuation is relatively small, where we

consider the system is determined by molecule concentrations that vary continuously.

But for the chemical system with low molecule concentrations and slow reaction rates,

a stochastic description of the temporal behavior of the reaction system seems to have

a more rigorous physical basis ([9]). The deterministic approach may not apply even

at higher concentrations and reaction rates when the system experiences large and

rapid transitions. More discussion about the deterministic and stochastic models of

chemical system can be found in ([6]) and ([15]).

On the cellular level the discrete property of the system is important due to

the small number of molecules. Changes in concentration are not continuous but

fluctuating. Also simulation shows that proteins are produced from an activated

promoter in short bursts of variable numbers which occur at random time intervals

([16]). Hence we will adopt the stochastic approach to describe the time evolution of

a genetic system involving the processes of gene expression. ([3]) and ([13]) give us a

systematical discussion about how to use the deterministic and stochastic approaches

to model and simulate the genetic and biochemical networks.

3.3 Markov Processes and Birth and Death Pro-

cesses

To understand the whole trajectory of the state of a chemical system, we need a

stochastic process.

A Stochastic Process is a collection of random variables {X(t), t ∈ Γ} indexed

by Γ defined on a common probability space (T ,M, P ). A process is said to have
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continuous time if Γ = [0,∞). A Markov Process is a stochastic process with the

property that the future behavior of the process depends on the past only through

its most recent value ([18]). In chemical systems, the Markov property translates

into the requirement that the reactions rates depend only on the current state of the

system ([20]).

To make sense of this statement we recall that a conditional probability is defined

for any events A,B ∈ M, where P (A) > 0, by the rule:

P (B | A) =
P (B ∩ A)

P (A)
.

The random variables X(t) can be used to define interesting events. So now we can

define a Markov process in formal terms: a process {X(t), t ≥ 0} with a countable

state space V is said to be Markovian if, given t1 < t2 < ... < tn < tn+1, and

X1, ...,Xn+1 ∈ V ,,

P (X(tn+1) = Xn+1 | X(t1) = X1, X(t2) = X2, ..., X(tn) = Xn)

= P (X(tn+1) = Xn+1 | X(tn) = Xn)

whenever P (X(t1) = X1, X(t2) = X2, ..., X(tn) = Xn) > 0.

It means we can define the time evolution of the process in terms of its conditional

probabilities. For example, suppose t1 < t2 < t3. Then from the Markov property,

we have

P (X(t1) = X1, X(t2) = X2, X(t3) = X3)

= P (X(t2) = X2, X(t3) = X3 | X(t1) = X1) · P (X(t1) = X1)

= P (X(t3) = X3 | X(t1) = X1, X(t2) = X2)

· P (X(t2) = X2 | X(t1) = X1) · P (X(t1) = X1)

= P (X(t3) = X3 | X(t2) = X2) · P (X(t2) = X2 | X(t1) = X1)

· P (X(t1) = X1)
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whenever P (X(t1) = X1, X(t2) = X2) > 0.

Similarly, an arbitrary joint probability can be simply expressed as

P (X(t1) = X1, X(t2) = X2, ..., X(tn) = Xn)

=
[n−1∏

j=1

P (X(tj+1) = Xj+1 | X(tj) = Xj)
]
· P (X(t1) = X1)

whenever P (X(t1) = X1, X(t2) = X2, ..., X(tn−1) = Xn−1) > 0.

For A,B ∈ M, define

P ∗(B | A) =




P (B∩A)
P (A)

when P (A) > 0,

0 otherwise.

Suppose that the state space V of the Markov process is countable. Using the

Markovian property of the process, it can be derived that for t1 < t2 < t3, when

P (X(t1) = X1) > 0,

P (X(t3) = X3 | X(t1) = X1)

=
∑
X2∈V

P (X(t2) = X2, X(t3) = X3 | X(t1) = X1)

=
∑
X2∈V

P ∗(X(t3) = X3 | X(t1) = X1, X(t2) = X2)P (X(t2) = X2 | X(t1) = X1)

=
∑
X2∈V

P ∗(X(t3) = X3 | X(t2) = X2) · P (X(t2) = X2 | X(t1) = X1).

The equation

P (X(t3) = X3 | X(t1) = X1)

=
∑
X2∈V

P ∗(X(t3) = X3 | X(t2) = X2) · P (X(t2) = X2 | X(t1) = X1)

(3.5)

holding whenever P (X(t1) = X1) > 0 is called the Chapman-Kolmogorov equa-

tion in the countable state space.
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A Birth and Death Process is a particular type of continuous time, discrete

state Markov process. We deal with a family of random variables {X(t), t ≥ 0} whose

possible values are nonnegative integers, i.e. V = N ∪ {0}. If at time t the process

is in state n it may, after a random waiting time, move to either of the neighboring

states n + 1 because of the occurrence of the birth reaction or n − 1 because of the

occurrence of the death reaction.

The associated State graph of the Birth and Death process is given in Fig 3.2,

where i ≥ 1 represents a state of the process, and there is no largest state, i.e. k → ∞.

W(i+1, i)W(i, i-1)

W(i, i+1)W(i-1, i)

i+1ii-10

Figure 3.2: State Graph for the Birth and Death Process with k → ∞

The transition probability of a Birth and Death process is denoted by

Pij(t) = P (X(t + s) = j | X(s) = i), i, j ∈ V = {0, 1, 2, ...}

when P (X(s) = i) > 0. Here we assume that {X(t)} has the stationary transition

property, i.e. P (X(t + s) = j | X(s) = i) is independent of s ≥ 0.

When t = 0, we have

Pij(0) = 0, i 6= j

Pij(0) = 1, i = j (3.6)

In addition we assume Pij(t) satisfies the following properties when Pij(t) is well-

defined:

(1) µ0 = 0, λ0 > 0, and µi > 0, λi > 0 for i ≥ 1.
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(2) Pi,i+1(h) = λih + o(h) as h ↓ 0, ∀i ≥ 0.

(3) Pi,i−1(h) = µih + o(h) as h ↓ 0, ∀i ≥ 1.

(4) Pii(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, ∀i ≥ 0.

(5) ∀j ≥ 0, ∃ε > 0, sup{Pij(h)

h
| 0 < h < ε, i ≥ 0, i 6= j − 1, j, j + 1} < ∞.

The parameters λi and µi are called the infinitesimal birth and death rates re-

spectively. Since the Pij(t) are probabilities, we have Pij(t) ≥ 0 and
∑∞

j=0 Pij(t) = 1.

By postulates 2 and 3, if the process starts from state i, then in a small time

interval the probabilities of the population increasing or decreasing by 1 are essentially

proportional to the length of the interval. Given a transition from state i occurs at

time t, the probability that this transition is to state i + 1 is λi(λi + µi)
−1, and to

state i− 1 is µi(λi +µi)
−1. The postulates and properties about the Birth and Death

processes are adapted from ([14]).

The following equations

d

dt
Pij(t) = λj−1Pi,j−1(t) + µj+1Pi,j+1(t) − (λj + µj)Pij(t) for j ≥ 1, (3.7)

and

d

dt
Pi0(t) = −λ0Pi0(t) + µ1Pi1(t), (3.8)

when Pij(t) is well defined are called the forward Kolmogorov differential equa-

tion for Birth and Death processes with initial conditions (3.6).

In the following, we will compare a Markov process which describes the time

behavior of a chemical system with a Birth and Death process.

Let X be a state of the system, and X (s) be the number of molecules of species s,

where X : S −→ N ∪ {0}, then X = (X (s))s∈S. X (s) decreases as a reaction occurs

27



in which s is involved as a reactant, and increases when a reaction occurs in which

s is a product. It is easy to see that for each chemical species, the fluctuation of

its molecule number is similar to a birth and death process in the sense that it can

either increase or decrease. We can also observe two differences between the process

of a species involving in reactions of the chemical system we are concerning with and

the Birth and Death process. First, suppose the current state of a species s is X (s),

when the next reaction involving this species occurs at a random later time, it may

jump directly to the states X (s) + j or X (s) − j, where j > 1. While in the birth

and death process, the next state of the species could only be X (s) + 1 or X (s) − 1.

Second, the transition probabilities of s depends not only on its own present state

but also the present states of other species involved in the same reactions which s is

involved in. But in the Birth and Death process, the transition probabilities of one

species only depend on its own present state.

Let us consider the following chemical system involving the following two reactions

r1 and r2 as an example:

r1 : A −→ 2B,

r2 : B + C −→ D.

The Petri net representation for this system is shown in Fig 3.3.

r2

r1
2

D

C

BA

Figure 3.3: Petri Net for the System involving Reactions r1 and r2.
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The changes in the population structure of B are effected as follows: if at time t

the number of B molecules is i it may, after a random waiting time, move to another

state i + 2, as 2 molecules of the product B are ’born’ when the first reaction occurs.

At a random later time, the state of B may decrease from i+2 to i+1, as 1 molecule

of B ’dies’ when the second reaction occurs.

Therefore, to describe the time evolution of a chemical system, we must deal with

the state of the whole system instead of each species separately.
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Chapter 4

Master Equation Approach for
Chemical Systems

4.1 Derivation of the Master Equation from a

Markov Process

In this section we are concerned with an abstract directed graph G = (V , E) with a

countable number of vertices and no loops. The main example we have in mind are

the State graphs associated to Petri nets. Suppose a function W : V ×V → (0,∞) is

given, then for two vertices v′ and v, where (v′, v) ∈ E, we may consider the oriented

edge (v′, v) to be labeled by the number W (v′, v).

The Master equation associated with the above labeled directed graph has the

following form:

d

dt
fv(t) =

∑
(v′,v)∈E

W (v′, v)fv′(t) − [
∑

(v,v′′)∈E

W (v, v′′)]fv(t), (4.1)

where for each v ∈ V , fv : R → R is a C1 function.

The following is an example of the Master equation for the Birth and Death

process. The system contains only one species s and two simple chemical reactions:

r1(Birth) : ∅ → s, (4.2)

r2(Death) : s → ∅, (4.3)
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i.e., for j ≥ 1,

r1 : j − 1
W (j−1,j)−−−−−→ j,

r2 : j + 1
W (j+1,j)−−−−−→ j,

where W (j, j + 1) = λj and W (j, j − 1) = µj.

Let fj(t) denote the probability that the state of the system is state j at time t,

then the Birth-Death Master Equation ([7]) takes the form:

d

dt
fj(t) = W (j − 1, j)fj−1(t) + W (j + 1, j)fj+1(t) − [W (j, j + 1) + W (j, j − 1)]fj(t).

(4.4)

When j = 0,

d

dt
f0(t) = W (1, 0)f1(t) − W (0, 1)f0(t). (4.5)

Another example is the Master equation for a chemical system with volume V

which contains chemical species s ∈ S interreacting through chemical reactions r ∈ R.

We know that given a state X ′ ∈ V , a reaction r determines a possible transition

from X ′ to another state X ∈ V . Define W (X ′,X ) to be the probability of direct

transition from state X ′ to X through some reaction r per unit time ([20]), then

W (X ′,X )dt = to the first order in dt, the probability that a reaction r would occur

to reach state X in the time interval (t, t + dt), given state X ′ at

time t. (4.6)

Observe that given the state X ′, if (X ′,X ) /∈ E, then W (X ′,X ) = 0.

Hence we can represent a labeled edge (X ′,X ) of the State graph G = (V , E)

arising from the reaction r as follows:

X ′ W (X ′,X )−−−−−→ X (4.7)
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where X = X ′ − nr.

Let fX (t) denote the probability that the state of the system is X at time t, i.e.

fX (t) = P (X(t) = X ). Then the corresponding Master equation for the chemical

system is:

d

dt
fX (t) =

∑
(X ′,X )∈E

W (X ′,X )fX ′(t) − [
∑

(X ,X ′′)∈E

W (X ,X ′′)]fX (t).

From above, we see that the Master equation can be used to compute the time

dependent probability distribution of the state of a chemical system.

Next, we will derive the Master equation associated with the abstract directed

graph G = (V , E). Assume now there exist a Markov process {X(t), t ≥ 0} on the

probability space (T ,M, P ) which has values in the set V , which we will continue

to call the set of states. Such a Markov process is a continuous time process with

stationary transition probabilities. Thus X(t) : [0,∞) −→ V ∀t ≥ 0. The traditional

stochastic approach to compute the probabilities fv(t) of a particular state v at a given

time t is to set up and solve the corresponding Master Equation for the process, which

is built on the Markov model foundation. This derivation of the Master equation is

adapted from ([9]).

Assume the Markov process satisfies the following postulates:

for P (X(t) = v′) > 0,

(1) If (v′, v) ∈ E, then P (X(t + dt) = v | X(t) = v′) = W (v′, v)dt + o(dt) as dt ↓ 0;

(2) If v ∈ V , then P (X(t+dt) = v | X(t) = v) = 1−
∑

v′′∈V,(v,v′′)∈E

W (v, v′′)dt+ o(dt)

as dt ↓ 0;

(3) ∀v ∈ V, ∃ε > 0, sup{P (X(t + dt) = v | X(t) = v′)

dt
| 0 < dt < ε, v′ ∈ V, (v′, v) /∈

E ∪ ∆} < ∞.
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Here E is the set of oriented edges in G, and ∆ = {(v, v) | v ∈ V} ⊂ V × V.

Let P (X(t) = v | X(0) = v0) be the probability that the state of the process is v

at time t given the initial state is v0 at time 0, then

fX (t) =
∑
v0∈V

P ∗(X(t) = v | X(0) = v0) · fv0(0)

=
∑
v0∈V

P ∗(X(t) = v | X(0) = v0) · P (X(0) = v0). (4.8)

In the following we will show the conditional probability P (X(t) = v | X(0) = v0)

satisfies the Master equation based on these 3 postulates when P (X(0) = v0) > 0.

To reach state v during time interval (t, t+dt) from the initial state v0 at time t0 =

0, there are several possibilities: the process arrives at state v through a transition

during (t, t + dt) from an appropriate once-removed state v′ at time t; the process

reaches state v at time t, and remains in that state in (t, t + dt); the process reaches

state v through two or more transitions during (t, t+dt). From Chapman-Kolmogorov

equation (3.5), we have if P (X(0) = v0) > 0, then

P (X(t + dt) = v | X(0) = v0)

=
∑
v′∈V

P ∗(X(t + dt) = v | X(t) = v′) · P (X(t) = v′ | X(0) = v0)

=
∑

v′∈V,(v′,v)∈E

P ∗(X(t + dt) = v | X(t) = v′) · P (X(t) = v′ | X(0) = v0)

+ P ∗(X(t + dt) = v | X(t) = v) · P (X(t) = v | X(0) = v0)

+
∑

v′∈V,(v′,v)/∈E∪∆

P ∗(X(t + dt) = v | X(t) = v′) · P (X(t) = v′ | X(0) = v0).
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When P (X(t) = v′) > 0, by postulates 1, 2, and

∑
v∈V

P (X(t + dt) = v | X(t) = v′) =
∑

v∈V,(v′,v)∈E

P (X(t + dt) = v | X(t) = v′)

+ P (X(t + dt) = v′ | X(t) = v′)

+
∑

v∈V,(v′,v)/∈E∪∆

P (X(t + dt) = v | X(t) = v′)

= 1,

we can easily obtain that, for any v′ ∈ V with P (X(t) = v′) > 0,

0 ≤
∑

v∈V,(v′,v)/∈E∪∆

P (X(t + dt) = v | X(t) = v′) = o(dt).

Hence ∀v′ ∈ V with P (X(t) = v′) > 0, ∀v ∈ V , s.t. (v′, v) /∈ E ∪ ∆,

P (X(t + dt) = v | X(t) = v′) = o(dt), (4.9)

i.e.

lim
dt→0

P (X(t + dt) = v | X(t) = v′)

dt
= 0.

By postulate 3 we have, for any v ∈ V , ∃C < ∞, ∃ε > 0, s.t. ∀ 0 < dt < ε,

∀v′ ∈ V with P (X(t) = v′) > 0, and (v′, v) /∈ E ∪ ∆,

P (X(t + dt) = v | X(t) = v′)

dt
< C,

thus

∑
v′,(v′,v)/∈E∪∆

P (X(t + dt) = v | X(t) = v′)

dt
· P (X(t) = v′ | X(0) = v0)

≤ C ·
∑

v′,(v′,v)/∈E∪∆

P (X(t) = v′ | X(0) = v0)

≤ C.

When P (X(t) = v′) = 0, we have P ∗(X(t + dt) = v | X(t) = v′) = 0 by the

definition of P ∗, i.e. ∀v′ ∈ V with P (X(t) = v′) = 0,

P ∗(X(t + dt) = v | X(t) = v′) · P (X(t) = v′ | X(0) = v0) = 0. (4.10)
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Hence by the Dominated Convergence theorem, we obtain

lim
dt→0

∑
v′∈V,(v′,v)/∈E∪∆

P ∗(X(t + dt) = v | X(t) = v′)

dt
· P (X(t) = v′ | X(0) = v0)

=
∑

v′∈V,(v′,v)/∈E∪∆

lim
dt→0

P ∗(X(t + dt) = v | X(t) = v′)

dt
· P (X(t) = v′ | X(0) = v0)

= 0,

i.e.,

∑
v′∈V,(v′,v)/∈E∪∆

P ∗(X(t + dt) = v | X(t) = v′) · P (X(t) = v′ | X(0) = v0) = o(dt).

(4.11)

By postulates 1, 2, (4.10) and (4.11), we have

P (X(t + dt) = v | X(0) = v0)

=
∑

v′∈V,(v′,v)∈E

[W (v′, v)dt + o(dt)] · P (X(t) = v′ | X(0) = v0)

+ [1 −
∑

v′∈V,(v,v′′)∈E

W (v, v′′)dt + o(dt)] · P (X(t) = v | X(0) = v0)

+ o(dt). (4.12)

We obtain directly from (4.12):

d

dt
P (X(t) = v | X(t0) = v0)

=
∑

v′∈V,(v′,v)∈E

W (v′, v) · P (X(t) = v′ | X(0) = v0)

− [
∑

v′′∈V,(v,v′′)∈E

W (v, v′′)] · P (X(t) = v | X(0) = v0). (4.13)

We have derived that the conditional probability P (X(t) = v | X(0) = v0) satisfies

the Master equation under the assumption that P (X(0) = v0) > 0. For P ∗(X(t) =

v | X(0) = v0) when P (X(0) = v0) = 0, again it has been assigned value 0 by the

definition of P ∗. Then we will show that fv(t) also satisfies the Master equation. By

(4.8) and (4.13) we have ∀v ∈ V ,
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d

dt
fv(t) =

d

dt

∑
v0∈V

P ∗(X(t) = v | X(0) = v0)fv0(0)

=
∑
v0∈V

[
d

dt
P ∗(X(t) = v | X(0) = v0)]fv0(0)

=
∑
v0∈V

[
∑

(v′,v)∈E

W (v′, v)P ∗(X(t) = v′ | X(0) = v0)]fv0(0)

−
∑
v0∈V

[
∑

(v,v′′)∈E

W (v, v′′)]P ∗(X(t) = v | X(0) = v0)fv0(0)

=
∑

(v′,v)∈E

W (v′, v)[
∑
v0∈V

P ∗(X(t) = v′ | X(0) = v0)fv0(0)]

−
∑

(v,v′′)∈E

W (v, v′′)[
∑
v0∈V

P ∗(X(t) = v | X(0) = v0)fv0(0)]

=
∑

(v′,v)∈E

W (v′, v)fv′(t) − [
∑

(v,v′′)∈E

W (v, v′′)]fv(t).

which is exactly the Master Equation.

4.2 Theory of the Master Equation

In this section we will derive the major properties of solutions of the Master Equation

associated with the abstract labeled directed graph G = (V , E) with a finite number

of vertices and no loops.

For v ∈ V, define α(v) =
∑

(v,v′′)∈E

W (v, v′′) and α = max
v∈V

α(v), then α(v) ≥ 0 and

α > 0. And

d

dt
fv(t) =

∑
v′∈V

Avv′fv′(t),

where A is a matrix whose entries are

Avv′ =




−α(v) if v′ = v,
W (v′, v) if (v′, v) ∈ E,
0 otherwise.

It is easy to see that the matrix A has the following properties: each row and each
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column has |R| + 1 nonzero entries at most; each column of A sums to zero since

∑
v∈V

Avv′ =
∑

(v′,v)∈E

W (v′, v) − α(v′)

=
∑

(v′,v)∈E

W (v′, v) −
∑

(v′,v)∈E

W (v′, v)

= 0.

Observe that the number of entries in each column may not be equal because of the

boundary conditions, but the statement above still holds true by the way we defined

α(v).

Since V is finite, we have max
(v′,v)∈E

W (v′, v) < ∞. Thus the solution of the Master

Equation (4.1) exists, where f(t) = eAtf(0), where f(t) is the vector (fv(t))v∈V .

Theorem 4.1:
∑
v∈V

fv(t) ≡ C ∀t ∈ R. In particular, if
∑
v∈V

fv(0) = 1, then∑
v∈V

fv(t) = 1 ∀t ∈ R.

Proof: We have

d

dt

∑
v∈V

fv(t) =
∑
v∈V

[
∑

(v′,v)∈E

W (v′, v)fv′(t)] −
∑
v∈V

[
∑

(v,v′′)∈E

W (v, v′′)]fv(t)

=
∑
e∈E

W (e)fπ1(e)(t) −
∑
e∈E

W (e)fπ1(e)(t)

= 0,

where π1(v, v′) = v. This implies that
∑
v∈V

fv(t) is independent of t. ¤

Theorem 4.2: The solution fv of Master equation satisfies the non-negative

property, i.e., if ∀ v ∈ V , fv(0) ≥ 0, then fv(t) ≥ 0, ∀ t > 0 ∀ v ∈ V.

Proof: Since

d

dt
fv(t) + α(v)fv(t) =

∑
(v′,v)∈E

W (v′, v)fv′(t),
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i.e.,

d

dt
[eα(v)tfv(t)] =

∑
(v′,v)∈E

W (v′, v)fv′(t)eα(v)t,

then

eα(v)tfv(t) − fv(0) =
∑

(v′,v)∈E

W (v′, v)

∫ t

0

fv′(s)eα(v)sds,

we obtain

fv(t) = fv(0)e−α(v)t +
∑

(v′,v)∈E

W (v′, v)

∫ t

0

fv′(s)e−α(v)(t−s)ds. (4.14)

Define g(t) = min{0, min
v∈V

fv(t)}, β(v) =
∑

(v′,v)∈E

W (v′, v), and β = max
v∈V

β(v), then

g(t) ≤ 0 and g(t) ≤ fv(t) for all t, β(v) ≥ 0, and β > 0. We have

fv(t) ≥ g(0)e−α(v)t +
∑

(v′,v)∈E

W (v′, v)

∫ t

0

g(s)e−α(v)(t−s)ds

≥ g(0) + β(v)

∫ t

0

g(s)ds

≥ g(0) + β

∫ t

0

g(s)ds

since e−α(v)t ≤ 1. Hence

min
v∈V

fv(t) ≥ g(0) + β

∫ t

0

g(s)ds,

i.e.,

g(t) ≥ g(0) + β

∫ t

0

g(s)ds. (4.15)

Let G(t) =
∫ t

0
g(s)ds. g(t) is continuous, so G is C1. Therefore,

G′(t) − βG(t) ≥ g(0),

i.e.,

d

dt
[e−βtG(t)] ≥ g(0)e−βt.
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Hence

e−βtG(t) − G(0) ≥ g(0)

∫ t

0

e−βtds,

e−βtG(t) ≥ g(0)

β
(1 − e−βt),

G(t) ≥ g(0)

β
(eβt − 1).

We obtain from (4.15)

g(t) − g(0)

β
≥ g(0)

β
(eβt − 1),

i.e.,

g(t) ≥ g(0)eβt. (4.16)

The meaning of (4.16) is that if g(0) = 0, then g(t) ≡ 0 ∀t ≥ 0. That is, if ∀v ∈ V ,

fv(0) ≥ 0, then fv(t) ≥ 0 ∀ t ≥ 0 ∀v ∈ V . ¤

For each v ∈ V , define

Iv = {v′ ∈ V | there is an oriented path of length at least 1 in (V , E) from v′ to v},

and given fv(0) ≥ 0 ∀v ∈ V , define

V0 = {v ∈ V | ∃v′ ∈ Iv, fv′(0) > 0} ∪ {v ∈ V | fv(0) > 0}.

Thus, v ∈ V \ V0 if and only if fv(0) = 0 and ∀v′ ∈ Iv, fv′(0) = 0.

Theorem 4.3: Assume fv(0) ≥ 0 ∀v ∈ V . If v ∈ V \ V0, then fv(t) ≡ 0 ∀ t ≥ 0.

Proof: If v ∈ V \ V0 and v′ ∈ Iv, then fv′(0) = 0; also ∀ v′′ ∈ Iv′ , fv′′(0) = 0 since

Iv′ ⊂ Iv. This implies that v′ ∈ V \ V0. Hence by (4.14) ∀ v ∈ V \ V0,

fv(t) =
∑

(v′,v)∈E

W (v′, v)

∫ t

0

fv′(s)e−(t−s)α(v)ds

≤
∑

(v′,v)∈E

W (v′, v)

∫ t

0

[ max
v′′∈V\V0

fv′′(s)]e−(t−s)α(v)ds

≤ β

∫ t

0

h(s)ds,
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where h(s) = max
v′′∈V\V0

fv′′(s) ≥ 0. Then

h(t) ≤ β

∫ t

0

h(s)ds. (4.17)

Let H(t) =
∫ t

0
h(s)ds, then H ′(t) = h(t) since h(t) is continuous, and

H ′(t) − βH(t) ≤ 0,

d

dt
[H(t)e−βt] ≤ 0,

H(t)e−βt − H(0) ≤ 0,

H(t) ≤ 0.

By (4.17), we have h(t) ≤ 0.

Hence, h(t) = 0, i.e., fv(t) ≡ 0 ∀ t ≥ 0, ∀ v ∈ V \ V0. ¤

Theorem 4.4: Assume fv(0) ≥ 0 ∀v ∈ V . If v ∈ V0, then fv(t) > 0 ∀ t > 0.

Proof: Define V1 = {v ∈ V0 | ∃t > 0, fv(t) = 0}. Then it suffices to show that V1

is an empty set. We prove it by contradiction.

∀v ∈ V1, we have ∃t > 0 s.t. fv(t) = 0. Hence by (4.14), we have

fv(0) = 0 (4.18)

and

fv′(s) = 0 ∀(v′, v) ∈ E ∀0 ≤ s ≤ t (4.19)

∀v ∈ V1, Since v ∈ V0, (4.18) implies that ∃v1 ∈ Iv, s.t. fv1(0) > 0. Choose v1 ∈ Iv

s.t. fv1(0) > 0 and the path from v1 to v is as short as possible. Hence from (4.19),

the path from v1 to v has length at least 2, we denote this length as l(v). Then for

any v ∈ V1, we have (4.18), (4.19) and l(v) ≥ 2 defined, where l : V1 −→ {2, 3, ...}.
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Choose v ∈ V1 s.t. l(v) is as small as possible. l(v) ≥ 2 implies that v1 ∈ Iv′ for

some v′ where (v′, v) ∈ E. Hence this v′ ∈ V0 since fv1(0) > 0. Since fv′(t) = 0 by

(4.19), we have that v′ ∈ V1 and l(v′) < l(v). Hence we get a contradiction. ¤

Next, we discuss the long time behavior of the nonnegative solutions of the Master

equation.

We know that A+αI is a matrix with non-negative entries, hence by the Perron-

Frobenius theorem ([21]), we have that there exists a nonnegative eigenvalue λ

of A + αI such that no eigenvalue of A + αI has absolute value greater than λ,

and corresponding to this eigenvalue λ there is at least one nonnegative eigenvector

h = {hv}, s.t, ∑
v′∈V

(Avv′ + αδvv′)hv′ = λhv,

i.e. ∑
v′∈V

Avv′hv′ = (λ − α)hv.

Hence

(λ − α)
∑
v∈V

hv =
∑
v∈V

∑
v′∈V

Avv′hv′ =
∑
v′∈V

(
∑
v∈V

Avv′)hv′ = 0.

Since hv ≥ 0 ∀v ∈ V and h is an eigenvector, we have
∑
v∈V

hv > 0, thus λ = α, i.e., A

has a zero eigenvalue with a nonnegative eigenvector h.

Suppose λ′ is any other eigenvalue of A distinct from 0, then λ′+α is an eigenvalue

of A + αI, and | λ′ + α |≤ α, i.e.

√
[Re(λ′ + α)]2 + [Im(λ′ + α)]2 ≤ α,

[Re(λ′)]2 + 2αRe(λ′) + α2 + [Im(λ′)]2 ≤ α2,

since Re(α) = α and Im(α) = 0. Hence

Re(λ′)[Re(λ′) + 2α] ≤ −[Im(λ′)]2 ≤ 0.
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Since α > 0, we must have −2α ≤ Re(λ′) ≤ 0. If Re(λ′) = 0, then [Im(λ′)]2 = 0; thus

either λ′ = 0 or Re(λ′) < 0. Therefore all the eigenvalues of A distinct from 0 have

negative real parts.

Suppose fv(0) ≥ 0 ∀v ∈ V and

fv(0) =
∑

λ

∑
J(λ)

∑
h

chhv,

where the first summation is over all the eigenvalues λ of the matrix A, the second

is over all the Jordan blocks J(λ) belonging to the particular eigenvalue λ, the last

is over the eigenvector and all generalized eigenvectors h belonging to the particular

Jordan block J(λ), and ch ∈ C depends on the generalized eigenvector h. We say h

is a j−eigenvector belonging to the eigenvalue λ if

(A − λI)j+1h = 0,

but

(A − λI)jh 6= 0.

Note that (A − λI)0 = I.

Consider a Jordan block of size (p+1)×(p+1), then correspondingly we have one

eigenvector h0 and p generalized eigenvectors h1, ..., hp, where hj is a j−eigenvector

and hj−1 = (A − λI)hj. When p = 0, we have one eigenvector and no generalized

eigenvectors. Observe that (Ah0, Ah1..., Ahp) = (λh0, h0 + λh1, ..., hp−1 + λhp), i.e.,

for 0 ≤ q ≤ p,

(A − λI)p−qhp = hq 6= 0.
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Hence

eAthq = e(λI+A−λI)thq

= eλte(A−λI)thq

= eλt

q∑
n=0

tn

n!
(A − λI)nhq

= eλt[hq + t(A − λI)hq + ... +
tq

q!
(A − λI)qhq]

= eλt[hq + thq−1 + ... +
tq

q!
h0] (4.20)

For a general Jordan block J(λ), let its size be [p(J(λ)) + 1]× [p(J(λ)) + 1], thus

we obtain

fv(t) = eAtfv(0)

=
∑
J(0)

p(J(0))∑
q=0

chq [(eAt)hq]v +
∑
λ6=0

∑
J(λ)

p(J(λ))∑
q=0

chq [(eAt)hq]v (4.21)

It is understood that h0, h1, ..., hp(J(λ)) depend on the Jordan block J(λ).

Let ε = 1
2
minλ |Re(λ)|, where λ ranges over the eigenvalues of A with Re(λ) < 0.

Thus

|eλttq| = |e(Reλ+iImλ)t||tq|

= e(Reλ)t|tq|

≤ e−2εt|tq|

= e−εt(e−εt|tq|)

= O(e−εt)

since e−εt|tq| → 0 as t → ∞. Hence the second term in (4.21) satisfies

∑
λ6=0

∑
J(λ)

p(J(λ))∑
q=0

chq [(eAt)hq]v = O(e−εt).

which tends to 0 as t → ∞.
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We have proved that fv(t) ≥ 0 if fv(0) ≥ 0, and fv(t) ≤
∑
v∈V

fv(t) =
∑
v∈V

fv(0), i.e.

fv(t) is bounded above by a constant, then by (4.20) and (4.21),

∑
J(0)

p(J(0))∑
q=0

chq [(eAt)hq]v =
∑
J(0)

p(J(0))∑
q=0

chq(hq
v + thq−1

v + ... +
tq

q!
h0

v)

is a bounded polynomial, i.e. it must be a constant. So set t = 0, we have ∀v ∈ V

∑
J(0)

p(J(0))∑
q=0

chq [(eAt)hq]v =
∑
J(0)

p(J(0))∑
q=0

chqhq
v,

and ∑
J(0)

p(J(0))∑
q=1

chq(thq−1
v + ... +

tq

q!
h0

v) = 0.

Since the eigenvector and generalized eigenvectors corresponding to distinct Jor-

dan blocks are linearly independent, we have for any Jordan block corresponding to

the eigenvalue 0,
p(J(0))∑

q=1

chq(thq−1 + ... +
tq

q!
h0) = 0,

i.e., if p = p(J(0)),

ch1(th0) + ch2 [th1 +
t2

2!
h0] + · · · + chp [thp−1 + · · · + tp

p!
h0] = 0,

where h0, ..., hp are linearly independent. Hence chp = 0, which implies that chp−1 = 0,

and so on...; Hence

chq ≡ 0 ∀1 ≤ q ≤ p.

We obtain the following theorem:

Theorem 4.5: If (V , E) is a finite directed graph with no loops, and

d

dt
fv(t) =

∑
(v′,v)∈E

W (v′, v)fv′(t) − [
∑

(v,v′′)∈E

W (v, v′′)]fv(t),

where fv(0) ≥ 0 ∀v ∈ V , and fv(0) =
∑

λ

∑
J(λ)

p(J(λ))∑
q=0

chqhq
v, then for t ≥ 0,

fv(t) =
∑
h0

ch0h0
v + O(e−εt),
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where h0 ranges over the eigenvectors belonging to the Jordan blocks J(0) belonging

to the eigenvalue 0 of the matrix A, ε = 1
2
min

λ
|Reλ|, λ ranges over all eigenvalues of

A with Reλ < 0.

Note: It follows that
∑
h0

ch0h0
v ≥ 0 for all v ∈ V. Although A must have at least

one nonnegative eigenvector h0 belonging to the eigenvalue 0 (by Perron-Frobenius

theorem), we do not know if all these eigenvectors are nonnegative.
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Chapter 5

Construction of the Markov
Process

5.1 Products of Countably Many Measure Spaces

A key step in the construction of a Markov process is to find a probability space

(Tγ ,Mγ , Pγ) on which a sufficiently rich family of independent random variables

can be defined. Infinite products of probability spaces are the natural chocies for

(Tγ ,Mγ , Pγ).

Let (Tγ,Mγ , Pγ) denote a measure space for each γ contained in an index set Γ,

where Γ = N = {1, 2, 3, ...}, and Pγ(Tγ) = 1 for every γ ∈ Γ. Let T =
∏
γ∈Γ

Tγ, and

for t ∈ T let t = (tγ), where tγ denotes the value of t at γ. Let Ω, with or without a

subscript, be reserved for finite subsets of Γ. For any Ω = {γ1, γ2, ..., γn} ⊂ Γ, let εΩ

be the collection of all sets of the form

AΩ = Aγ1 × Aγ2 × · · · × Aγn ,

where Aγj
∈ Mγj

∀j. If ∆ ⊂ Γ, let ∆′ = Γ \ ∆, and T∆ =
∏
γ∈∆

Tγ . In particular,

T = TΓ. Let N∆ be the smallest algebra of subsets of T∆ that contains all sets of the

form AΩ×T∆∩Ω′ (the product is not ordered), where Ω runs through all finite subsets

of ∆ and AΩ through all sets in εΩ. Let M∆ be the σ-algebra generated by N∆, and

write N for NΓ, M for MΓ.
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Our goal in this section is to construct a unique countably additive measure P on

M such that

(1) P (T ) = 1,

(2) P ((Aγ1 × · · · × Aγn) × T{γ1,...,γn}′) = Pγ1(Aγ1) · · · Pγn(Aγn), (5.1)

where Aγj
∈ Mγj

∀j.

We will use the following 5 lemmas to prove the above statement in this section.

The proof is adapted from ([12]).

Lemma 5.1: Let Ω = {γ1, γ2, ..., γn} be any finite nonempty subset of Γ, then

there is a unique measure PΩ on MΩ such that

PΩ(
n∏

j=1

Aγj
) =

n∏
j=1

Pγj
(Aγj

) (5.2)

for all
n∏

j=1

Aγj
∈ εΩ.

Lemma 5.2: If Ω1 ∩ Ω2 = ∅ and BΩj
∈ MΩj

(j = 1, 2), then

PΩ1∪Ω2(BΩ1 × BΩ2) = PΩ1(BΩ1) · PΩ2(BΩ2). (5.3)

Lemma 5.3: Let T be an arbitrary set and N an algebra of subsets of T . Let

P be a set function on N satisfying the following conditions:

(1) 0 ≤ P (A) ≤ ∞ for all A ∈ N ;

(2) P (A ∪ B) = P (A) + P (B) for A,B ∈ N and A ∩ B = ∅;

(3) if A1, A2, ... ∈ N , A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·, and ∩∞
n=1An = ∅, then

lim
n→∞

P (An) = 0.
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For S ⊂ T , let

P (S) = inf{
∞∑

n=1

P (An) : S ⊂ ∪∞
n=1An, and A1, ..., An, ... ∈ N}, (5.4)

then P can be extended to the countably additive measure P defined on the collection

of all P−measurable subsets of T (A set A ∈ T is P measurable if for all set E ∈ T ,

P (E) = P (E ∩ A) + P (E \ A)), which is a σ−algebra of subsets of T that contains

N . This lemma is given as (10.37) in ([12]).

Lemma 5.4: Let T be an arbitrary set and N an algebra of subsets of T . If the

family F of subsets of T contains N and satisfies the following two conditions:

(1) If En ∈ F and En ⊂ En+1 for n = 1, 2, 3, ..., then ∪∞
n=1En ∈ F ;

(2) If Fn ∈ F and Fn ⊃ Fn+1 for n = 1, 2, 3, ..., then ∩∞
n=1Fn ∈ F .

then F contains the σ−algebra M generated by N . This lemma is given as (21.6) in

([12]).

Lemma 5.5: Let (T ,M, P ) be a measure space. If {En}∞n=1 is a sequence of

sets in M such that E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·, then

P (∪∞
n=1En) = lim

n→∞
P (En);

If {Fn}∞n=1 is a sequence of sets in M such that P (F1) < ∞ and F1 ⊃ F2 ⊃ · · · ⊃

Fn ⊃ · · ·, then

P (∩∞
n=1Fn) = lim

n→∞
P (Fn).

This lemma is given as (10.15) in ([12]).

We begin with the following theorem.

Theorem 5.1: There is a unique finitely additive measure P on the algebra of

sets N such that

P (AΩ × TΩ′) = PΩ(AΩ) (5.5)
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for all Ω and all AΩ ∈ MΩ.

Proof Let (5.5) define P . First we show that P is well defined. Suppose

AΩ1 × TΩ′
1

= AΩ2 × TΩ′
2
.

Let Ω3 = Ω1 ∪ Ω2. Then (5.5) can be rewritten as

AΩ1 × TΩ3∩Ω′
1
× TΩ′

3
= AΩ2 × TΩ3∩Ω′

2
× TΩ′

3
. (5.6)

Since the sets AΩ1 × TΩ3∩Ω′
1

and AΩ2 × TΩ3∩Ω′
2

are in MΩ3 , (5.6) shows that they are

equal. By Lemma 5.2, we have

PΩ3(AΩ1 × TΩ3∩Ω′
1
) = PΩ1(AΩ1) · 1 = PΩ1(AΩ1),

and

PΩ3(AΩ2 × TΩ3∩Ω′
2
) = PΩ2(AΩ2) · 1 = PΩ2(AΩ2).

Hence

PΩ1(AΩ1) = PΩ2(AΩ2),

i.e. P is well defined.

We claim that for any set A ∈ N , there exists an Ω and a set BΩ ∈ NΩ, such that

A = BΩ × TΩ′ .

The proof is given as follows.

Let C = {A ∈ N : A = BΩ × TΩ′ , BΩ ∈ NΩ, Ω ⊂ Γ}, then C ⊂ N . It is clear

that ∅ ∈ C, T ∈ C, and for any Ω ⊂ Γ, the subset of TΩ of the form AΩ × TΩ′ where

AΩ ∈ εΩ is in C. To prove our claim, it suffices to show that C is an algebra, then

C ⊃ N by the definition of N , and then we obtain C = N .
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C is closed under finite union: let A1 ∈ C and A2 ∈ C, where A1 = BΩ1×TΩ′
1
, BΩ1 ∈

NΩ1 , and A2 = BΩ2 × TΩ′
2
, BΩ2 ∈ NΩ2 . Let Ω3 = Ω1 ∪ Ω2, then

A1 ∪ A2 = BΩ1 × TΩ′
1
∪ BΩ2 × TΩ′

2

= BΩ1 × TΩ3∩Ω′
1
× TΩ′

3
∪ BΩ2 × TΩ3∩Ω′

2
× TΩ′

3

= (BΩ1 × TΩ3∩Ω′
1
∪ BΩ2 × TΩ3∩Ω′

2
) × TΩ′

3
.

Since NΩj
× TΩ3∩Ω′

j
is the smallest algebra of subsets of TΩ3 that contains all sets

BΩj
×TΩ3∩Ω′

j
, where BΩj

∈ εΩj
, we have NΩj

×TΩ3∩Ω′
j
⊂ NΩ3 . That is, BΩ1 ×TΩ3∩Ω′

1
∈

NΩ3 and BΩ2 × TΩ3∩Ω′
2
∈ NΩ3 , and their union is also in NΩ3 , hence A1 ∪ A2 ∈ C.

And C is closed under complement: let A ∈ C, then A = BΩ×TΩ′ for some Ω ⊂ Γ,

where BΩ ∈ NΩ. We have

A′ = (BΩ × TΩ′)′ = B′
Ω × TΩ′ .

Since BΩ ∈ NΩ, then B′
Ω ∈ NΩ, i.e. A′ ∈ C. This proves our claim.

Let A1 and A2 be two disjoint sets in N , where A1 = BΩ1 × TΩ′
1
, BΩ1 ∈ NΩ1 , and

A2 = BΩ2 × TΩ′
2
, BΩ2 ∈ NΩ2 . Let Ω3 = Ω1 ∪ Ω2, then write

Aj = B
(j)
Ω3

× TΩ′
3

(j = 1, 2),

where B
(j)
Ω3

∈ NΩ3 . And since B
(1)
Ω3

∩ B
(2)
Ω3

= ∅, then using (5.5) and the additivity of

PΩ3 from lemma 5.1, we have

P (A1 ∪ A2) = PΩ3(B
(1)
Ω3

∪ B
(2)
Ω3

)

= PΩ3(B
(1)
Ω3

) + PΩ3(B
(2)
Ω3

)

= P (A1) + P (A2),

i.e., P is finitely additive on N . ¤

Theorem 5.2: The finitely additive measure P on N admits a unique extension

over M that is countably additive.
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Proof Existence: By lemma 5.3, to prove that P has some countably additive

extension over M, we need only show that

lim
n→∞

P (Fn) = 0

for every sequence (Fn)∞n=1 such that Fn ∈ N , F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ · · ·, and

∩∞
n=1Fn = ∅. Each Fn has the form BΩn × TΩ′

n
, where BΩn ∈ NΩn .

Let kn = max(Ωn). Without loss of generality, we can assume that Ωn =

{1, 2, ..., kn} and that k1 < k2 < k3 < · · ·. Define the sequence of sets (Em)∞m=1

as follows:

Em =

{
T if 1 ≤ m < k1,
Fn if km ≤ m < kn+1.

Then we have ∩∞
m=1Em = ∩∞

n=1Fn = ∅, and lim
m→∞

P (Em) = lim
n→∞

P (Fn). Hence to

prove lim
n→∞

P (Fn) = 0, we need to show lim
m→∞

P (Em) = 0. Let Θm = {1, 2, ...,m} for

each m, then each Em has the form Bm × TΘ′
m
, where Bm ∈ NΘm .

From lemma 5.2, we have PΘm+1 = PΘm+1 × Pm for all m, and a set in NΘm+1 is

MΘm ×Mm+1− measurable. By the Fubini Theorem and theorem 5.1, we obtain

P (Em) = PΘm(Bm)

=

∫
TΘm

1Bm(t)dPΘm
(t)

=

∫
TΘm−1

∫
Tm

1Bm(t∗, tm)dPm(tm)dPΘm−1
(t∗), (5.7)

where t∗ denotes a generic element of TΘm−1 . By the Fubini Theorem, the inner

integral in (5.7) is MΘm−1− measurable, then we can apply the Fubini Theorem and

theorem 5.1 again. After doing this m − 1 times, we have

P (Em) =

∫
T1

∫
T2

· · ·
∫
Tm

1Bm(t1, t2, ..., tm)dPm(tm) · · · dP2(t2)dP1(t1).

We will prove by contradiction: Assume that lim
m→∞

P (Em) 6= 0. For s1 ∈ T1, let

f1,m(s1) =

∫
T2

· · ·
∫
Tm

1Bm(s1, t2, ..., tm)dPm(tm) · · · dP2(t2)
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for m = 2, 3, ..., then

P (Em) =

∫
T1

f1,m(t1)dP1(t1),

and f1,m(T1) ⊂ [0, 1]. By our assumption, we know that lim
m→∞

f1,m(t1) = 0 cannot

hold true everywhere on T1; otherwise, the dominated convergence theorem would

imply that

lim
m→∞

P (Em) = lim
m→∞

∫
T1

f1,m(t1)dP1(t1) =

∫
T1

lim
m→∞

f1,m(t1)dP1(t1) = 0.

Hence there exist a point a1 ∈ T1 such that lim
m→∞

f1,m(a1) 6= 0.

Next define

f2,m(s2) =

∫
T3

· · ·
∫
Tm

1Bm(a1, s2, t3, ..., tm)dPm(tm) · · · dP3(t3)

for m = 3, .... Similarly, if it is true that lim
m→∞

f2,m(t2) = 0 for all s2 ∈ T2, then we

would also have

lim
m→∞

∫
T2

f2,m(t2)dP2(t2) = lim
m→∞

f1,m(a1) = 0.

Hence there is a point a2 ∈ T2 such that lim
m→∞

f2,m(a2) 6= 0.

In this way we construct a sequence of points a = (a1, a2, ..., an, ...) in T with the

following property: for every n ∈ N , the sequence of numbers

fn,m(an) =

∫
Tn+1

∫
Tn+2

· · ·
∫
Tm

1Bm(a1, a2, ..., an, tn+1, ..., tm)dPm(tm) · · · dPn+1(tn+1)

(5.8)

for m > n, does not converge to 0 as m → 0. Therefore the integrand in (5.8) cannot

be identically equal to 0 for all large m. So

(a1, a2, ..., an, sn+1, ..., sm) ∈ Bm

for appropriate sj ∈ Tj, and for any large m. Since Em = Bm × TΘ′
m
, we can choose

a point s(m,n) ∈ TΘ′
m

such that

(a1, a2, ..., an) × s(m,n) ∈ Em.
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Since m > n, we have Em ⊂ En, hence

(a1, a2, ..., an) × s(m,n) ∈ En,

which implies

(a1, a2, ..., an) × TΘ′
n
⊂ En,

since En = Bn × TΘ′
n
. In particular, a ∈ En ∀n ≥ 1.

Since n is an arbitrary positive integer, we have

a ∈ ∩∞
n=1En.

This contradicts ∩∞
n=1En = ∅.

Thus now we have a countably additive measure P on the σ−algebra M of subsets

of T , which is extended from the finitely additive measure P on N according to

Lemma 5.3.

Uniqueness: Suppose there exists two different countably additive measures ex-

tended from P , denoted by P and P ′, on M. Define

F = {F ∈ M : P (F ) = P ′(F )}.

We claim that F is the σ−algebra generated by N , i.e., F = M. Hence P is unique

on M.

It is obvious that N ⊂ F since P and P ′ on F are extended from the same

measure P on N . If we can prove that F satisfies the two conditions in lemma 5.4,

then F is a σ−algebra containing N , i.e., F contains M. And since F ⊂ M, we

obtain F = M.

Let {En}∞n=1 be the sequence of elements in F such that E1 ⊂ E2 ⊂ ··· ⊂ En ⊂ ···,

and {Fn}∞n=1 be the sequence of elements in F such that F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ · · ·,
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then En ∈ M, Fn ∈ M, P (En) = P ′(En), and P (Fn) = P ′(Fn) for all n. Let

E = ∪∞
n=1En, F = ∩∞

n=1Fn, since P (T ) = P ′(T ) = 1 < ∞, by lemma 5.5, we have

P (E) = lim
n→∞

P (En) = lim
n→∞

P ′(En) = P ′(E),

and

P (F ) = lim
n→∞

P (Fn) = lim
n→∞

P ′(Fn) = P ′(F ).

Hence E ∈ F and F ∈ F , i.e. F satisfies the two conditions in lemma 5.4. ¤

Theorem 5.3: There exists a countable family of independent identically dis-

tributed (i.i.d) random variables on the probability space (T ,M, P ), where (T ,M, P )

is the product of countably many copies of (R,MR, PR), where MR is a σ−algebra

on R and PR : MR −→ [0, 1] is a probability measure describing the distribution of

each of these random variables.

Proof: For n ≥ 1, define

πn : T → R,

i.e.

πn(t1, t2, ...) = tn.

Let J = {j1, ..., jm} be an arbitrary subset of N = {1, 2, 3, ...}, where ji < jk if i <

k, and Ij ∈ MR where j ∈ J . Observe that π−1
j (Ij) is the collection of all (tn)∞n=1

such that tj ∈ Ij, i.e.

π−1
j (Ij) = R ×1 · · · ×j−2

R ×j−1 Ij ×j T .

Thus

m⋂
k=1

π−1
jk

(Ijk
) = R ×1 · · · ×j1−2

R ×j1−1 Ij1 ×j1 R × · · · × R ×jm−1 Ijm ×jm T .

Also P (π−1
j (Ij)) = PR(Ijk

) showing that πj has the same distribution PR ∀j ≥ 1.
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By (5.1) we have

P (
m⋂

k=1

π−1
jk

(Ijk
)) = PR(Ij1) · · ·PR(Ijm).

And since ∀jk ∈ J ,

P (π−1
jk

(Ijk
)) = PR(Ijk

),

then

P (
m⋂

k=1

π−1
jk

(Ijk
)) =

m∏
k=1

P (π−1
jk

(Ijk
)), (5.9)

i.e. {πn}∞n=1 is a family of i.i.d random variables on (T ,M, P ). ¤

5.2 Facts about the Exponentially Distributed Ran-

dom Variables

Before constructing the Markov process, we first introduce three facts about the

exponentially distributed random variables. If α > 0, then the random variable V is

said to be exponentially distributed with parameter α if P (V > t) = e−αt ∀t > 0.

Property 1: Let V be exponentially distributed with unit mean, then V
α

is

exponentially distributed with parameter α.

Proof: We have

P (V > t) = e−t,

hence

P (
V

α
> t) = P (V > αt) = e−αt,

i.e. V
α

is exponentially distributed with parameter α. ¤

Property 2: Let E(α) be exponentially distributed with parameter α, then E(α)

has the forgetfulness property: for s, t > 0,

P (E(α) > t + s | E(α) > s) = P (E(α) > t) = e−αt.
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Proof: We calculate

P (E(α) > t + s | E(α) > s) =
P (E(α) > t + s, E(α) > s)

P (E(α) > s)

=
P (E(α) > t + s)

P (E(α) > s)

=
e−α(t+s)

e−αs

= e−αt

= P (E(α) > t). ¤

Property 3: Let E(α) and E(β) be independent with exponential distributions

with parameter α, β respectively, where α > 0, β > 0. Denote the minimum of two

numbers x, y by x∧ y, then E(α)∧E(β) is exponentially distributed with parameter

α + β for t > 0, i.e.

P (E(α) ∧ E(β) > t) = e−(α+β)t.

Proof: Since E(α) and E(β) are independent, we have

P (E(α) ∧ E(β) > t) = P (E(α) > t, E(β) > t)

= e−αte−βt

= e−(α+β)t. ¤

Given the state of a stochastic process is X ′ at time t, we claim that the hold-

ing time of state X ′ is exponentially distributed with parameter W (X ′,X ) under

the assumption of (4.6): Let E(W (X ′,X )), which is exponentially distributed with

parameter W (X ′,X ), denote the holding time of state X ′, then by Property 2, the

probability that a reaction r, which connects the states X ′ and X , would occur once

in (t, t + dt) is

P (E(W (X ′,X )) < t+dt | E(W (X ′,X )) ≥ t) = 1−e−W (X ′,X )dt = W (X ′,X )dt+o(dt).
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5.3 Construction of the Markov Process on an In-

finite Product Space

We want to construct a Markov process {X(t), t ≥ 0} on the probability space

(T ,M, P ) which describes the time evolution of a random walk on V , where (V , E) is

a directed graph with no loops, |V| < ∞, and W : E −→ (0,∞) giving the probability

per unit time of a transition along a given edge. But we will describe the construction

in the case where (V , E) is a State graph of a labeled Petri net and an interger k. Let

T =
( ∞∏

m=0

(0, 1]
)
×

( ∞∏
n=0

(0,∞)
)
, and P be defined to be P as in section 5.1, where (0, 1]

has the Lebesgue measure, and (0,∞) has the measure e−vdv. The construction is

based on a sequence of i.i.d uniformly distributed random variables {Um} defined on

(0, 1], and a sequence of i.i.d exponentially distributed random variables {Vn} with

unit mean defined on (0,∞). The existence of Um and Vn which are all independent

has been verified by Theorem 5.3. An element t ∈ T has the form (u, v), where

u = (u0, u1, ...), v = (v0, v1, ...), Um(t) = um, and Vn(t) = vn.

The usual approach to construct a continuous time Markov process {X(t), t ≥ 0}

with a countable state space V follows 2 steps: first, we construct a discrete param-

eter Markov chain {Xn, n = 0, 1, 2, ...} with the state space V to govern movements

through the state space, and then construct the Markov process {X(t)} from the

Markov chain {Xn} and a supply of independent exponentially distributed random

variables with unit mean which control how rapidly these movements take place ([18]).

First we will construct the Markov chain {Xn, n = 0, 1, 2, ...}. We may think of

this Markov chain as a discrete time random walk on the directed graph G = (V , E),

where transitions are controlled by the oriented edges in E. Let the set R be linearly

ordered by <. For each state X ∈ V , define

RX = {r ∈ R | X − nr ∈ V}
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Then RX becomes linearly ordered. Define βX : RX −→ (0, 1]:

βX (r) =
∑

r′<r, r′∈RX

W (X ,X − nr′)

α(X )
,

where α(X ) =
∑

r∈RX

W (X ,X − nr). Also let the state space V be enumerated, i.e.

V = {X1,X2,X3, ...}.

We start with initial distribution {fX (0)}X∈V , where fX (0) ≥ 0,
∑
X∈V

fX (0) = 1.

Define the initial state

X0(t) =




X1 if 0 < U0(t) ≤ fX1(0),

X2 if fX1(0) < U0(t) ≤
2∑

j=1

fXj
(0),

· · ·

Xi if
i−1∑
j=1

fXj
(0) < U0(t) ≤

i∑
j=1

fXj
(0),

· · ·.

Given X = Xn(t) for n ≥ 0, define Xn+1 as follows:

Xn+1(t) = X − nr,

where r ∈ RX is such that

βX (r) < Un+1(t) ≤ βX (r) +
W (X ,X − nr)

α(X )
,

i.e. ∑
r′<r, r′∈RX

W (X ,X − nr)

α(X )
< Un+1(t) ≤

∑
r′≤r, r′∈RX

W (X ,X − nr)

α(X )
.

Observe X1 is a function of X0 and U1 and hence is a function of U0 and U1, X2

is a function of X1 and U2 and hence is a function of U0, U1 and U2, and so on, hence

in general we have Xn is a function of U0, U1, U2, ..., Un.

We next construct the continuous time Markov process {X(t), t ≥ 0} based on

the discrete Markov chain {Xn} and the sequence of independent exponentially dis-

tributed random variables {Vn}.
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Let T0(t) = 0 be the initial time ∀t ∈ T . For n ≥ 0, define

Tn+1(t) = Tn(t) +
Vn(t)

α(Xn(t))
=

n∑
i=0

Vi(t)

α(Xi(t))
,

X(t)(t) = Xn(t), for Tn(t) ≤ t < Tn+1(t).

We construct the holding time of state Xn(t) = X as Vn(t)/α(X ) because of the

following reason: The waiting time of the occurrence of a reaction r from state X to

reach X ′ is exponentially distributed with parameter W (X ,X ′). The holding time

of state X in fact is the waiting time of the occurrence of the reaction which occurs

first, which is exponentially distributed with parameter α(X ) =
∑

(X ,X ′)∈E W (X ,X ′)

by Property 3 of the exponentially distributed random variables.

Define T∞(t) = lim
n→∞

Tn(t). We claim that the Markov process we constructed is

Regular under the assumption that the state space V is finite, i.e. P (T∞ = ∞ |

X0 = X0) = 1. The proof is given as follows:

Conditional on the sequence of states {Xn}, T∞ is a sum of independent expo-

nential random variables with different parameters. By the Kolmogorov Zero-One

Law, we have the event that T∞ converges to finite limit has conditional probability

0 or 1 (conditioning on {Xn}).

By the Proposition 5.2.1 of ([18]):

P (T∞ < ∞ | X0 = X0, {Xn}) = 1 iff
∞∑

n=1

1

α(Xn)
< ∞ P − a.s.,

we have that P−a.s.

P (T∞ < ∞ | X0 = X0, {Xn}) =




1, if
∑∞

n=1
1

α(Xn)
< ∞

0, if
∑∞

n=1
1

α(Xn)
= ∞.

Thus

P (T∞ < ∞ | X0 = X0, {Xn}) = 1[
∑∞

n=1
1

α(Xn)
<∞] P − a.s.

59



Taking expectations yields

P (T∞ < ∞ | X0 = X0) = P (
∞∑

n=1

1

α(Xn)
< ∞ | X0 = X0).

Since the state space V is finite, we have W (X ′,X ) < K < ∞ for some K,

∀X ′,X ∈ V . Thus α(Xn) =
∑

r∈RXn

W (Xn, Xn − nr) < |R|K, and

∞∑
n=1

1

α(Xn)
=

∞∑
n=1

1∑
r∈RXn

W (Xn, Xn − nr)
>

∞∑
n=1

1

|R|K = ∞.

Hence the Markov process is regular, which indicates that only finitely many

reactions will take place in any finite time interval P−a.s. if the state space is finite.

The claim is proved.

5.4 Properties of the Conditional Probability from

the Construction

The process constructed in last section has the Markov property: for any n > 0, time

points t1 < t2 < ... < tn < tn+1 and states X1, ...,Xn−1,Xn,Xn+1,

P (X(tn+1) =Xn+1 | X(t1) = X1, ..., X(tn−1) = Xn−1, X(tn) = Xn)

= P (X(tn+1) = Xn+1 | X(tn) = Xn)

whenever P (X(t1) = X1, ..., X(tn−1) = Xn−1, X(tn) = Xn) > 0. This is proved in

Section 5.2.1 in ([18]).

We claim that the constructed process has the stationary transition probabilities

([18]), i.e. the transition probability is only dependent on the time interval between

two states: for s, t ≥ 0, and states X and X ′, P (X(t + s) = X ′ | X(t) = X ) is

independent of t ≥ 0. The proof is given as follows:
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For X ∈ V and u ∈ (0, 1], define J(X , u) = X − nr where r is the unique element

of RX satisfying

βX (r) < u ≤ βX (r) +
W (X ,X − nr)

α(X )
.

Then by the construction Xn+1 = J(Xn, Un+1) for n ≥ 0. Thus Xn+1 depends on

Un+1 explicitly but on U0, ..., Un implicitly through the value of Xn.

For T ≥ 0, X ∈ V , and v ∈ (0,∞), define K(T,X , v) = T + v
α(X )

, then

Tn+1 = K(Tn, Xn, Vn)

for n ≥ 0. Thus Tn+1 depends on Vn explicitly but on U0, ..., Un, V0, ..., Vn−1 implicitly

through the values of Tn and Xn.

Define X̃1(X0, u1), ..., X̃n(X0, u1, ..., un) recursively by the rule:

X̃1(X0, u1) = J(X0, u1),

X̃n+1(X0, u1, ..., un+1) = J(X̃n(X0, u1, ..., un), un+1), for n ≥ 1.

For t0 ≥ 0, define T̃1(X0, t0, v0), ..., T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1) recursively

by the rule:

T̃1(X0, t0, v0) = K(t0,X0, v0),

T̃n+1(X0, t0, u1, ..., un, v0, ..., vn) = K(T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1),

X̃n(X0, u1, ..., un), vn), for n ≥ 1.

We have the following two facts:

X̃n+l(X0, u1, ..., un+l) = X̃l(X̃n(X0, u1, ..., un), un+1, ..., un+l),

and

T̃n+l(X0, t0, u1, ..., un+l−1, v0, ..., vn+l−1)

= T̃l(X̃n(X0, u1, ..., un), T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1),

un+1, ..., un+l−1, vn+1, ..., vn+l−1).
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To prove the first fact, we first check the case when l = 1. We have

X̃n+1(X0, u1, ..., un+1) = J(X̃n(X0, u1, ..., un), un+1)

= X̃1(X̃n(X0, u1, ..., un), un+1).

Hence the result holds true for l = 1. Assuming the result for l ≥ 1, we next prove

the result is true for l + 1:

X̃n+l+1(X0, u1, ..., un+l+1) = J(X̃n+l(X0, u1, ..., un+l), un+l+1)

= J(X̃l(X̃n(X0, u1, ..., un), un+1, ..., un+l), un+l+1)

= X̃l+1(X̃n(X0, u1, ..., un), un+1, ..., un+l+1).

The second fact holds true when l = 1 since

T̃n+1(X0, t0, u1, ..., un, v0, ..., vn)

= K(T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1), X̃n(X0, u1, ..., un), vn)

= T̃1(X̃n(X0, u1, ..., un), T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1), vn).

Assuming the result is true for l ≥ 1, then

T̃n+l+1(X0, t0, u1, ..., un+l, v0, ..., vn+l)

= K(T̃n+l(X0, t0, u1, ..., un+l−1, v0, ..., vn+l−1), X̃n+l(X0, u1, ..., un+l), vn+l)

= K(T̃l(X̃n(X0, u1, ..., un), T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1),

un+1..., un+l−1, vn, ..., vn+l−1), X̃l(X̃n(X0, u1, ..., un), un+1, ..., un+l), vn+l)

= T̃l+1(X̃n(X0, u1, ..., un), T̃n(X0, t0, u1, ..., un−1, v0, ..., vn−1),

un+1..., un+l, vn, ..., vn+l).

So the result is true for l + 1 as well.

Hence we have the formulas: for n ≥ 1,

Xn(t) = X̃n(X0(t), U1(t), ..., Un(t)),

Tn(t) = T̃n(X0(t), 0, U1(t), ..., Un−1(t), V0(t), ..., Vn−1(t)).
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Thus

Xn+l = X̃n+l(X0, U1, ..., Un+l)

= X̃l(X̃n(X0, U1, ..., Un), Un+1, ..., Un+l)

= X̃l(Xn, Un+1, ..., Un+l).

Also

Tn+l =T̃n+l((X0, 0, U1, ..., Un+l−1, V0, ..., Vn+l−1))

= T̃l(X̃n(X0, U1, ..., Un), T̃n(X0, 0, U1, ..., Un−1, V0, ..., Vn−1),

Un+1, ..., Un+l−1, Vn+1, ..., Vn+l−1)

= T̃l(Xn, Tn, Un+1, ..., Un+l−1, Vn+1, ..., Vn+l−1).

To verify that the process has the stationary transition probabilities, it suffices to

prove that

P (X(t + s) = X | X(t) = X ′) = P (X(s) = X | X(0) = X ′).

We have

P (X(t) = X ′) =
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n+1

P (Xn = X ′, Tn ≤ t < Tn+1

| Ui = ui, Vi = vi, 0 ≤ i ≤ n)

e−
∑n

i=0 vi du0, ..., dvn

=
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n+1

1A(t)e−
∑n

i=0 vi du0, ..., dvn,

where

A = {t | X̃n(X0(u0), u1, ..., un) = X ′,

T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) ≤ t,

t − T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) <
vn

α(X ′)
},
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and

T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) =
v0

α(X0(u0))
+

n−1∑
i=1

vi

α(X̃i(X0(u0), u1, ..., ui))
.

Then A can be written as the intersection of two sets:

A1 = {t | X̃n(X0(u0), u1, ..., un) = X ′,
v0

α(X0(u0))
+

n−1∑
i=1

vi

α(X̃i(X0(u0), u1, ..., ui))
≤ t},

and

A2 = {t | t − v0

α(X0(u0))
−

n−1∑
i=1

vi

α(X̃i(X0(u0), u1, ..., ui))
<

vn

α(X ′)
}.

Hence

P (X(t) =X ′)

=
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n

[∫ ∞

0

1A1(t)1A2(t)e
−vn dvn

]
e−

∑n−1
i=0 vi du0, ..., dvn−1

=
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n

[∫ ∞

0

1A2(t)e
−vn dvn

]
1A1(t)e

−
∑n−1

i=0 vi du0, ..., dvn−1

=
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n

[∫ ∞

α(X ′)(t−Tn)

e−vn dvn

]
1A1(t)e

−
∑n−1

i=0 vi du0, ..., dvn−1

=
∞∑

n=0

∫
(0,1]n+1

∫
(0,∞)n

e−α(X ′)(t−Tn)1A1(t)e
−

∑n−1
i=0 vi du0, ..., dvn−1.

Similarly, we have

P (X(t + s) =X , X(t) = X ′)

=
∞∑

n=0

∞∑
l=0

∫
(0,1]n+l+1

∫
(0,∞)n+l+1

P (Xn+l = X , Tn+l ≤ t + s < Tn+l+1,

Xn = X ′, Tn ≤ t < Tn+1 | Ui = ui,

Vi = vi, 0 ≤ i ≤ n + l)

e−
∑n+l

i=0 vidu0, ..., dvn+l

=
∞∑

n=0

∞∑
l=0

∫
(0,1]n+l+1

∫
(0,∞)n+l+1

1A′(t)e−
∑n+l

i=0 vi du0, ..., dvn+l,
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where

A′ = {t | X̃l(X ′, un+1, ..., un+l) = X , X̃n(X0(u0), u1, ..., un) = X ′,

T̃l(X ′, 0, un+1, ..., un+l−1, vn, ..., vn+l−1)+

T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) ≤ t + s,

[t − T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1)]+

[s − T̃l(X ′, 0, un+1, ..., un+l−1, vn, ..., vn+l−1)] <
vn+l

α(X )
,

T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) ≤ t,

t − T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) <
vn

α(X ′)
},

and

T̃l(X ′, 0, un+1, ..., un+l−1, vn, ..., vn+l−1) =
vn

α(X ′)
+

l−1∑
i=1

vn+i

α(X̃i(X ′, un+1, ..., un+i))
.

Hence

P (X(t + s) =X , X(t) = X ′)

=
∞∑

n=0

∞∑
l=0

∫
(0,1]n+l+1

∫
(0,∞)n+l

[∫ ∞

0

1A′(t)e−vn dvn

]
e−

∑n−1
i=0 vie−

∑l
i=1 vn+i

du0, ..., dvn−1, dvn+1, ..., dvn+l.

Change variables

v′′
n

α(X ′)
=

vn

α(X ′)
+ T̃n(X0(u0), 0, u1, ..., un−1, v0, ..., vn−1) − t,

=
vn

α(X ′)
+

v0

α(X0(u0))
+

n−1∑
i=1

vi

α(X̃i(X0(u0), u1, ..., ui))
− t,

then dv′′
n = dvn, and∫ ∞

0

1A′ (..., vn, ...)e−vn dvn

= e−α(X ′)(t−Tn)

∫ ∞

α(X ′)(Tn−t)

1A′(..., v′′
n + α(X ′)(t − Tn), ...)e−v′′

n dv′′
n. (5.10)
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Since A contains the condition that v′′
n

α(X ′) = vn

α(X ′) +Tn − t > 0, then the integrand

vanishes unless v′′
n

α(X ′) > 0. Hence (5.10) can be written as

e−α(X ′)(t−Tn)

∫ ∞

0

1A′(..., v′′
n + α(X ′)(t − Tn), ...)e−v′′

n dv′′
n.

Then A′ can also be split into two parts: A′
1 = A1 and

A′
2 = {t′ | X̃l(X ′, un+1, ..., un+l) = X ,

0 ≤ s − v′′
n

α(X ′)
−

l−1∑
i=1

vn+i

α(X̃i(X ′, un+1, ..., un+i))
<

vn+l

α(X )
},

where t′ = (u0, ..., un+l, v0, ..., vn−1, v
′′
n, vn+1, ..., vn+l).

Let un+i = u′
i and vn+i = v′

i for 1 ≤ i ≤ l, and v′′
n = v′

0, then

A′
2 = {t′ | X̃l(X ′, u′

1, ..., u
′
l) = X ,

0 ≤ s − v′
0

α(X ′)
−

l−1∑
i=1

v′
i

α(X̃i(X ′, u′
1, ..., u

′
i))

<
v′

l

α(X )
},

Hence

P ( X(t + s) = X , X(t) = X ′)

=

[ ∞∑
n=0

∫
(0,1]n+1

∫
(0,∞)n

e−α(X ′)(t−Tn)1A′
1
(..., v′

0 + α(X ′)(t − Tn), ...)

e−
∑n−1

i=0 vi du0, ..., dun, dv0, ..., dvn−1

]
[ ∞∑

l=0

∫
(0,1]l

∫
(0,∞)l

[∫ ∞

0

1A′
2
(..., v′

0 + α(X ′)(t − Tn), ...)e−v′
0 dv′

0

]
e−

∑l
i=1 v′

i du′
1, ..., du′

l, dv′
1, ..., dv′

l

]

= P (X(t) = X ′)
∞∑
l=0

∫
(0,1]l

∫
(0,∞)l+1

1A′
2
(..., v′

0 + α(X ′)(t − Tn), ...)

e−
∑l

i=0 v′
i du′

1, ..., du′
l, dv′

0, ..., dv′
l. (5.11)
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We have

P (X(s) = X | X(0) = X ′) =
P (X(s) = X , X(0) = X ′)

P (X0 = X ′)

=
P (X(s) = X , X(0) = X ′)

fX ′(0)
.

We can obtain the similar representation using the above approach for the numerator

P (X(s) = X , X(0) = X ′). For this representation of P (X(s) = X , X(0) = X ′), since

X(0) = X ′ is given, the integrand integrating on du0 vanishes unless u0 is in a unique

subinterval of (0, 1] with length fX ′(0) by our construction. Hence the integrand

integrating on du0 is equal to the constant fX ′(0), which cancels the denominator.

By the similar operations demonstrated above, we can obtain

P (X(s) = X | X(0) = X ′)

=
∞∑
l=0

∫
(0,1]l

∫
(0,∞)l+1

1A′
2
(..., v′

0 + α(X ′)(t − Tn), ...)

e−
∑l

i=0 v′
i du′

1, ..., du′
l, dv′

0, ..., dv′
l.

By (5.11), we have

P (X(t + s) = X | X(t) = X ′) =
P (X(t) = X ′) · P (X(s) = X | X(0) = X ′)

P (X(t) = X ′)

=P (X(s) = X | X(0) = X ′),

i.e. the process we constructed has the stationary transition probabilities.

Assume that the state space V is finite. We claim that the conditional probabilities

derived from our construction of the Markov process satisfies the three postulates we

listed about the conditional probability to derive the Master equation, and hence the

time dependent probability distribution for this Markov process satisfies the Master

Equation.

We starts with the first postulate: (X ′,X ) ∈ E, i.e. ∀X ′,X = X ′ − nr ∈ V, as

dt ↓ 0,

P (X(t + dt) = X | X(t) = X ′) = W (X ′,X )dt + o(dt).
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By the stationary transition probability property of the constructed Markov pro-

cess, we have ∀X ′,X = X ′ − nr ∈ V ,

P (X(t + dt) = X | X(t) = X ′) = P (X(dt) = X | X(0) = X ′). (5.12)

The state of the process is X at time dt given the state is X ′ at time 0 indicates

that the holding time of state X0 = X ′ is less than or equal to dt, and this probability

is

P (
V0

α(X0)
< dt | X0 = X ′) = 1 − e−α(X ′)dt = α(X ′)dt + o(dt)

since V0

α(X ′) is exponentially distributed with parameter α(X ′) by our construction.

Since

P (X(dt) = X | X(0) = X ′) =
∞∑

n=0

P (Xn = X , Tn ≤ dt < Tn+1 | X0 = X ′),

we have to reach state X = X ′−nr from X ′ in time interval (0, dt] as dt ↓ 0, we have

the following ways:

Through one reaction r in (0, dt] where r connects the states X ′ and X , i.e. n = 1.

This probability is equal to the joint probability that the holding time of state X ′ is

less than or equal to dt, and the only reaction occurs during that time interval is r,

which is W (X ′,X )
α(X ′) by the construction. Hence this joint probability is

[α(X ′)dt + o(dt)] · W (X ′,X )

α(X ′)
= W (X ′,X )dt + o(dt);

Through two reactions in (0, dt]: the state of the process starts from X ′ to some

X ′′ then to X in (0, dt], i.e. n = 2. For the first step, the process can reach less than

or equal to |R| different states from X ′ through the first reaction in the time duration

less than dt, and the corresponding probability is less than |R| · [α(X ′) · dt + o(dt)];

Step 2 is that from these |R| states we must reach the state X through the second
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reaction in the time interval less than dt, and the corresponding probability is less

than α · dt + o(dt), where α = max
X∈V

α(X ). Hence the probability that the process

reaches state X from X ′ through two reactions in time interval (0, dt] is less than:

|R| · [α · dt + o(dt)]2;

Through three reactions in (0, dt], , i.e. n = 3. Using the same idea as above, we

obtain this probability is less than:

|R|2 · [α · dt + o(dt)]3;

Continue in this way we can obtain that the probability to reach state X from X ′

in time interval (0, dt] through k + 1 reactions is less than:

|R|k · [α · dt + o(dt)]k+1,

where k ≥ 1.

As dt ↓ 0,

∞∑
k=1

|R|k[α · dt + o(dt)]k+1 = α · dt
∞∑

k=1

[|R| · α · dt]k + o(dt)

=
|R| · α2 · dt2

1 − |R| · α · dt
+ o(dt)

= o(dt).

Hence we obtain the probability to reach state X from X ′ in time interval (0, dt] is

[W (X ′,X )dt + o(dt)] + o(dt) = W (X ′,X )dt + o(dt),

i.e., ∀X ′,X = X ′ − nr ∈ V , as dt ↓ 0,

P (X(t + dt) = X | X(t) = X ′) = W (X ′,X )dt + o(dt).
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To prove the second postulate

P (X(t + dt) = X | X(t) = X ) = 1 − α(X )dt + o(dt),

it suffices to prove that

P (X(dt) = X | X(0) = X ) = 1 − α(X )dt + o(dt).

We observe that there are two possible ways to be at state X at time dt given

X(0) = X : no reaction occurs in the time interval (0, dt], whose probability is

P (
V0

α(X0)
> dt | X0 = X ) = e−α(X )dt + o(dt) = 1 − α(X )dt + o(dt);

or more than one reaction occur in (0, dt] to reach X from X , and this probability is

o(dt) by the proof of postulate 1.

Hence, ∀X ∈ V , as dt ↓ 0,

P (X(t + dt) = X | X(t) = X ) = 1 − α(X )dt + o(dt).

Last, we verify the third postulate. ∀X ,X ′ ∈ V , where (X ′,X ) /∈ E ∪ ∆, the

process reaches state X at time dt from state X ′ at time 0 implies that the holding

time of state X0 = X ′ is less than dt. Hence ∀X ∈ V , for some ε > 0,

sup{P (X(t + dt) = X | X(t) = X ′)

dt
| 0 < dt < ε, (X ′,X ) /∈ E ∪ ∆}

= sup{P (X(dt) = X | X(0) = X ′)

dt
| 0 < dt < ε, (X ′,X ) /∈ E ∪ ∆}

< sup{
P ( V0

α(X0)
< dt | X0 = X ′)

dt
| 0 < dt < ε, (X ′,X ) /∈ E ∪ ∆}

= sup{α(X ′)dt + o(dt)

dt
| 0 < dt < ε, (X ′,X ) /∈ E ∪ ∆}

< sup{α(X ′) | (X ′,X ) /∈ E ∪ ∆} + ε

< ∞

since the state space V is finite, i.e. α(X ′) < ∞ ∀X ′ ∈ V .
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Chapter 6

Derivation of the Model

6.1 The Auto-Regulating Genetic Model

We will use the following notation in this section and later:

If A and B are two macromolecules, then A · B denotes a complex comprised of

one A and one B molecule bound together by hydrogen bounds, other non-covalent

electrostatic attractions and hydrophobic effects; A ·B ·DNA(m,n) denotes a complex

of A, B and DNA, where A is bound at site m and B at site n on the DNA strand.

Figure 6.1 is a representative auto-regulating prokaryotic genetic circuit, where

the protein P is encoded by gene p, and the protein dimer P · P = P2 auto-controls

the expression of p.

mRNA

degradation

P

P-P
Ribosome

RNase

degradation

to P-P site of action

+ -

RNAP

gene pDNA -1 DNA 0
promoter  PRP

DNA

Figure 6.1: Mechanism of Auto-Regulating Prokaryotic Genetic Circuit
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The mechanism for information transmission in the autoregulatory genetic net-

work is as follows: RNAP combines with the promoter PRP at position DNA0 in a

closed form RNAPc ·DNA0, where the based pairs on DNA are not separated. After

RNAP separates the paired bases, i.e., the closed complex becomes the open complex

RNAPo · DNA0, transcription of gene p can be initiated. Later, the transcription

processes produce a transcript mRNA of gene p, which can either be translated to

form protein P when combined with Ribosome, or can be degraded when acted upon

by RNase. Protein P accumulates if its production rate exceeds its degradation rate.

The dimerization process from P to P2 is reversible.

The active form of a regulating protein is commonly a multimer, which in our case

is the dimer P2. P2 regulates the expression of gene p in the following way: P2 has

a much higher affinity for the binding site DNA−1 than for the site DNA0. RNAP

only binds at DNA0 to yield RNAPc · DNA0. However the isomerization process

from RNAPc ·DNA0 to RNAPo ·DNA0 is slow. On the other hand, when P2 binds

to DNA−1, it can facilitate the closed complex P2 ·RNAPc ·DNA−1,0 isomerizing into

the open form P2 ·RNAPo ·DNA−1,0, thereby increasing the rate of transcription of

gene p. This positive auto-regulating effect then leads to the accumulation of P and

of P2. As the concentration of P2 increases, the chance that P2 binds to the promoter

at DNA0 increases, which prevents RNAP from gaining access to the promoter and

hence blocks the initiation of transcription of gene p.

In addition we assume the system has the following properties:

(1) Each binding site binds one protein at a time.

(2) RNAP and Ribosome can only bind to DNA and mRNA respectively when

there is no other RNAP and Ribosome already bound to them.

(3) P2 can bind at both the binding sites DNA−1 and DNA0, while RNAP only

binds at DNA0.
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(4) P2 can bind to DNA−1 even when there is already an RNAP on DNA0; simi-

larly, RNAP can bind to DNA0 even when there is already a P2 on DNA−1.

More discussion on the gene regulation system can be found in ([19]).

6.2 Petri Net and Master Equation for the Model

The processes of gene expression consists of coupled chemical reactions. We consider

the cell as a spatially homogeneous chemical system, which has a fixed volume con-

taining many chemical species which can interreact through some specified chemical

reaction channels.

Suppose the length of gene p is M nucleotides and the length of mRNA is N

codons. The auto-regulating genetic circuit involves the following chemical reaction

species:

Chemical Species:

s1: DNA

s2: RNAP

s3: mRNA

s4: Ribosome

s5: RNase

s6: P

s7: P2

s8: P2 · DNA−1

s9: P2 · DNA0

s10: RNAPc · DNA0

s11: P2 · RNAPc · DNA(−1,0)
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s12+m: RNAPo · DNAm (m = 0, ...,M)

s13+M+m: P2 · RNAPo · DNA(−1,m) (m = 0, ...,M)

s14+2M+n: Ribosome · mRNAn (n = 0, ..., N).

Suppose the system would reach state X at a particular time, then the parameters

W (X ,X − nr) and W (X + nr,X ) would have specified values at state X for each

reaction r involved in the system. In the following we will list the chemical reactions

and the corresponding values for W (X ,X − nr) and W (X + nr,X ) using (3.2) (for

simplicity, only the states of reactants and products are listed for each reaction):

Transcription Reactions:

Initiation:

r1 :

DNA + RNAP −→ RNAPc · DNA0

s1 + s2 −→ s10

X + nr1 = (X (s1) + 1,X (s2) + 1,X (s10) − 1)

lr1 = 2

W (X ,X − nr1) = C(r1)X (s1)X (s2)/V

W (X + nr1 ,X ) = C(r1)(X (s1) + 1)(X (s2) + 1)/V

r2 :

RNAPc · DNA0 −→ RNAPo · DNA0

s10 −→ s12

X + nr2 = (X (s10) + 1,X (s12) − 1)

lr2 = 1

W (X ,X − nr2) = C(r2)X (s10)

W (X + nr2 ,X ) = C(r2)(X (s10) + 1)
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r3 :

RNAP + P2 · DNA−1 −→ P2 · RNAPc · DNA(−1,0)

s2 + s8 −→ s11

X + nr3 = (X (s2) + 1,X (s8) + 1,X (s11) − 1)

lr3 = 2

W (X ,X − nr3) = C(r3)X (s2)X (s8)/V

W (X + nr3 ,X ) = C(r3)(X (s2) + 1)(X (s8) + 1)/V

r4 :

P2 · RNAPc · DNA(−1,0) −→ P2 · RNAPo · DNA(−1,0)

s11 −→ s13+M

X + nr4 = (X (s11) + 1,X (s13+M) − 1)

lr4 = 1

W (X ,X − nr4) = C(r4)X (s11)

W (X + nr4 ,X ) = C(r4)(X (s11) + 1)

Elongation: (m = 1, ...,M)

r4+m :

RNAPo · DNAm−1 −→ RNAPo · DNAm

s11+m −→ s12+m

X + nr4+m = (X (s11+m) + 1,X (s12+m) − 1)

lr4+m = 1

W (X ,X − nr4+m) = C(r4+m)X (s11+m)

W (X + nr4+m ,X ) = C(r4+m)(X (s11+m) + 1)

r4+M+m :

P2 · RNAPo · DNA(−1,m−1) −→ P2 · RNAPo · DNA(−1,m)
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s12+M+m −→ s13+M+m

X + nr4+M+m
= (X (s12+M+m) + 1,X (s13+M+m) − 1)

lr4+M+m
= 1

W (X ,X − nr4+M+m
) = C(r4+M+m)X (s12+M+m)

W (X + nr4+M+m
,X ) = C(r4+M+m)(X (s12+M+m) + 1)

Termination:

r5+2M :

RNAPo · DNAM −→ DNA + RNAP + mRNA

s12+M −→ s1 + s2 + s3

X + nr5+2M
= (X (s1) − 1,X (s2) − 1,X (s3) − 1,X (s12+M) + 1)

lr5+2M
= 1

W (X ,X − nr5+2M
) = C(r5+2M)X (s12+M)

W (X + nr5+2M
,X ) = C(r5+2M)(X (s12+M) + 1)

r6+2M :

P2 · RNAPo · DNA(−1,M) −→ RNAP + mRNA + P2 · DNA−1

s13+2M −→ s2 + s3 + s8

X + nr6+2M
= (X (s2) − 1,X (s3) − 1,X (s8) − 1,X (s13+2M) + 1)

lr6+2M
= 1

W (X ,X − nr6+2M
) = C(r6+2M)X (s13+2M)

W (X + nr6+2M
,X ) = C(r6+2M)(X (s13+2M) + 1)

Translation Reactions:

Initiation:

r7+2M :

mRNA + Ribosome −→ Ribosome · mRNA0
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s3 + s4 −→ s14+2M

X + nr7+2M
= (X (s3) + 1,X (s4) + 1,X (s14+2M) − 1)

lr7+2M
= 2

W (X ,X − nr7+2M
) = C(r7+2M)X (s3)X (s4)/V

W (X + nr7+2M
,X ) = C(r7+2M)(X (s3) + 1)(X (s4) + 1)/V

Elongation: (n = 1, ..., N)

r7+2M+n :

Ribosome · mRNAn−1 −→ Ribosome · mRNAn

s13+2M+n −→ s14+2M+n

X + nr7+2M+n
= (X (s13+2M+n) + 1,X (s14+2M+n) − 1)

lr7+2M+n
= 1

W (X ,X − nr7+2M+n
) = C(r7+2M+n)X (s13+2M+n)

W (X + nr7+2M+n
,X ) = C(r7+2M+n)(X (s13+2M+n) + 1)

Termination:

r8+2M+N :

Ribosome · mRNAN −→ mRNA + Ribosome + P

s14+2M+N −→ s3 + s4 + s6

X + nr8+2M+N
= (X (s3) − 1,X (s4) − 1,X (s6) − 1,X (s14+2M+N) + 1)

lr8+2M+n
= 1

W (X ,X − nr8+2M+N
) = C(r8+2M+N)X (s14+2M+N)

W (X + nr8+2M+N
,X ) = C(r8+2M+N)(X (s14+2M+N) + 1)

Other reactions:

Dimerization:

r9+2M+N :
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2P −→ P2

2s6 −→ s7

X + nr9+2M+N
= (X (s6) + 2,X (s7) − 1)

lr9+2M+n
= 2

W (X ,X − nr9+2M+N
) = C(r9+2M+N)X (s6)(X6 − 1)/2V

W (X + nr9+2M+N
,X ) = C(r9+2M+N)(X6 + 2)(X (s6) + 1)/2V

r10+2M+N :

P2 −→ 2P

s7 −→ 2s6

X + nr10+2M+N
= (X (s6) − 2,X (s7) + 1)

lr10+2M+N
= 1

W (X ,X − nr10+2M+N
) = C(r10+2M+N)X (s7)

W (X + nr10+2M+N
,X ) = C(r10+2M+N)(X (s7) + 1)

Degradation:

r11+2M+N :

mRNA + RNase −→ RNase

s3 + s5 −→ s5

X + nr11+2M+N
= (X (s3) + 1,X (s5))

lr11+2M+N
= 1

W (X ,X − nr11+2M+N
) = C(r11+2M+N)X (s3)X (s5)

W (X + nr11+2M+N
,X ) = C(r11+2M+N)(X (s3) + 1)X (s5)

r12+2M+N :

P −→ ∅

s6 −→ ∅
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X + nr12+2M+N
= (X (s6) + 1)

lr12+2M+N
= 1

W (X ,X − nr12+2M+N
) = C(r12+2M+N)X (s6)

W (X + nr12+2M+N
,X ) = C(r12+2M+N)(X (s6) + 1)

r13+2M+N :

P2 −→ ∅

s7 −→ ∅

X + nr13+2M+N
= (X (s7) + 1)

lr13+2M+N
= 2

W (X ,X − nr13+2M+N
) = C(r13+2M+N)X (s7)

W (X + nr13+2M+N
,X ) = C(r13+2M+N)(X (s7) + 1)

Binding and Releasing: (m = 1, ...,M)

r14+2M+N :

DNA + P2 −→ P2 · DNA−1

s1 + s7 −→ s8

X + nr14+2M+N
= (X (s1) + 1,X (s7) + 1,X (s8) − 1)

lr14+2M+N
= 2

W (X ,X − nr14+2M+N
) = C(r14+2M+N)X (s1)X (s7)/V

W (X + nr14+2M+N
,X ) = C(r14+2M+N)(X (s1) + 1)(X (s7) + 1)/V

r15+2M+N :

DNA + P2 −→ P2 · DNA0

s1 + s7 −→ s9

X + nr15+2M+N
= (X (s1) + 1,X (s7) + 1,X (s9) − 1)

lr15+2M+N
= 2
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W (X ,X − nr15+2M+N
) = C(r15+2M+N)X (s1)X (s7)/V

W (X + nr15+2M+N
,X ) = C(r15+2M+N)(X (s1) + 1)(X (s7) + 1)/V

r16+2M+N :

P2 · DNA−1 −→ DNA + P2

s8 −→ s1 + s7

X + nr16+2M+N
= (X (s1) − 1,X (s7) − 1,X (s8) + 1)

lr16+2M+N
= 1

W (X ,X − nr16+2M+N
) = C(r16+2M+N)X (s8)

W (X + nr16+2M+N
,X ) = C(r16+2M+N)(X (s8) + 1)

r17+2M+N :

P2 · DNA0 −→ DNA + P2

s9 −→ s1 + s7

X + nr17+2M+N
= (X (s1) − 1,X (s7) − 1,X (s9) + 1)

lr17+2M+N
= 1

W (X ,X − nr17+2M+N
) = C(r17+2M+N)X (s9)

W (X + nr17+2M+N
,X ) = C(r17+2M+N)(X (s9) + 1)

r18+2M+N :

P2 + RNAPc · DNA0 −→ P2 · RNAPc · DNA(−1,0)

s7 + s10 −→ s11

X + nr18+2M+N
= (X (s7) + 1,X (s10) + 1,X (s11) − 1)

lr118+2M+N
= 2

W (X ,X − nr18+2M+N
) = C(r18+2M+N)X (s7)X (s10)/V

W (X + nr18+2M+N
,X ) = C(r18+2M+N)(X (s7) + 1)(X (s10) + 1)/V
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r18+2M+N+m :

P2 · DNA−1 + RNAPo · DNA(−1,m) −→ P2 + RNAPo · DNAm

s8 + s13+M+m −→ s7 + s12+m

X + nr18+2M+N+m
= (X (s7) − 1,X (s8) + 1,X (s12+m) − 1,X (s13+M+m) + 1)

lr18+2M+N+m
= 2

W (X ,X − nr18+2M+N+m
) = C(r18+2M+N+m)X (s8)X (s13+M+m)/V

W (X + nr18+2M+N+m
,X ) = C(r18+2M+N+m)(X (s8) + 1)(X (s13+M+m) + 1)/V

Fig 6.2 gives the Petri net for this system in the case when M = 3, N = 2.

Now we can apply the Master Equation approach to the model using the values

listed above for W (X + nrj
,X ) and W (X ,X − nrj

) for 1 ≤ j ≤ 18 + 3M + N :

d

dt
fX (t) =

18+3M+N∑
j=1

W (X + nrj
,X )fX+nrj

(t) − [
18+3M+N∑

j=1

W (X ,X − nrj
)]fX (t) (6.1)

where fX (t) is the probability that the state of the system is X at time t.

([1]) and ([16]) discussed how to use the stochastic model to simulate the develop-

mental pathway bifurcation in a more complicated gene regulating system: a Phage

λ-infected Escherichia Coli cell.
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Figure 6.2: Petri Net for the Model when M = 3, N = 2.
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Chapter 7

Simulation of Models Using the
Gillespie Algorithm

7.1 Introduction of the Simulation Software and

Gillespie Algorithm

In this chapter, we will use a biochemical simulation software called Jarnac (version

1.19) ([22]) and the Gillespie algorithm to simulate the stochastic time evolution of a

simplified model of the auto-regulating genetic circuit.

Jarnac is a language for describing and manipulating cellular system models and

can be used to describe any physical system which can be described in terms of a

network and associated flows including gene networks. It can support deterministic

as well as stochastic simulation of a biochemical network, perform time course or

steady state based simulations.

To input the model which we want to simulate, we have to first define the chemical

system in Jarnac. For a gene network, the system is usually a cell. Each chemical

reaction in Jarnac is specified by the species involved in the reaction, the stoichio-

metric details of the reaction and the reaction rate of the reaction. The following is

an example to input a gene network involving the reactions 2s1 → s2 and s2 → 2s1
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in Jarnac, where the reaction rate for the first reaction is 1 and for the second is 0.5:

p = defn cell

2s1 → s2; k1;

s2 → 2s1; k2;

end;

p.k1 = 1;

p.k2 = 0.5;

The stochastic simulation algorithm we will use in Jarnac is called the Gillespie

algorithm. The Gillespie algorithm is a Monte Carlo simulation technique, which use

the same idea as the construction of the Markov process. The Gillespie algorithm and

the Master equation approach are equivalent in the sense that both are consequences

of the fundamental hypothesis (3.1) ([9]). ([5]) gives a modified Gillespie algorithm to

simulate the genetic networks. The following introduction of the algorithm is given

by ([8]) and ([9]).

To simulate the time evolution of a chemical system with P species and Q reactions

by the Gillespie algorithm, the steps are:

Step 0. Input the values of the reaction constants for the Q reactions and the

initial state of the system, i.e., the initial number of molecules of P species. Set the

time variable t = 0. Specify the stopping time tstop.

Step 1. Calculate and store the number of distinct molecular combinations for

each reaction at current state.

Step 2. Generate two random numbers using a unit-interval uniform random

number generator, and calculate which reaction will occur next and the holding time

of the current state as we construct the Markov process.
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Step 3. Increase t by the holding time of current state, and update the numbers

of molecules of the reactants and products involved in the reaction which will occur

next, to reflect the occurrence of this reaction.

Step 4. If t > tstop, or if no more reactants remain, terminate the simulation;

otherwise, return to step 1.

To perform the Gillespie algorithm of the model p defined earlier in Jarnac, we

use the following script:

m = gillespie(p, 1000, [< p.Time >,< p.s1 >,< p.s2 >]);

graph(m);

where the simulation runs from time 0 to 1000 seconds, and the command graph(m)

will give us the outcome of time evolution of numbers of molecules of s1 and s2

obtained from the simulation.

7.2 Petri Net of a Simplified Model

In the simplified auto-regulating genetic system, we combine the transcription and

translation processes as a single protein synthesis process. The model contains a single

copy of gene, which is initially inactive, but which may be activated subsequently by

a initiation process. The activated gene can produce protein which may be degraded

at any time. The dimerization reaction of protein is reversible. The dimer protein

can either facilitate or block the initiation process by binding to different position of

the DNA strand.

We use the following chemical species and reactions to represent the simplified

model:
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Chemical Species:

s1 : inactive gene

s2 : active gene

s3 : protein

s4 : protein dimer

s5 : blocked gene

Chemical Reactions:

Slow Initiation:

r1 : s1 −→ s2

Gene Expression:

r2 : s2 −→ s1 + s3

Dimerization:

r3 : 2s3 −→ s4

r4 : s4 −→ 2s3

Degradation:

r5 : s3 −→

r6 : s4 −→

Fast Initiation:

r7 : s1 + s4 −→ s2 + s4

Blocking Process:

r8 : s1 + s4 −→ s5

Releasing Process:

r9 : s5 −→ s1 + s4

The Petri net representation of the simplified model of the auto-regulating genetic

circuit is shown in Fig (7.1).
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Figure 7.1: Petri Net for the Simplified Model.

7.3 Simulation Outcomes

Let the rates for reactions from r1 to r9 be 0.1, 0.1, 0.04, 0.02, 0.002, 0.002, 0.3, 0.02

and 0.05, which are adapted from ([1]). We will use the following script to simulate

the model at an initial state (s1, s2, s3, s4, s5) = (1, 0, 0, 0, 0) from time 0 to 10000

seconds:

p = defn cell

s1 → s2; k1;

s2 → s1 + s3; k2;

2s3 → s4; k3;

s4 → 2s3; k4;

s3 →; k5;

s4 →; k6;
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s1 + s4 → s2 + s4; k7;

s1 + s4 → s5; k8;

s5 → s1 + s4; k9;

end;

p.k1 = 0.1;

p.k2 = 0.1;

p.k3 = 0.04;

p.k4 = 0.02;

p.k5 = 0.002;

p.k6 = 0.002;

p.k7 = 0.3;

p.k8 = 0.02;

p.k9 = 0.05;

p.s1 = 1;

p.s2 = 0;

p.s3 = 0;

p.s4 = 0;

p.s5 = 0;

p.s6 = 0;

m = gillespie(p, 1000, [< p.Time >,< p.s4 >]);

graph(m);

From each run of the simulation we obtain a graph of the time evolution of number

of molecules of the protein dimer. Five such graphs are shown in Fig 7.2-7.6:

We can observe from these 5 graphs that the number of molecules of the protein

dimer first increase from 0 to 25 during the time interval [0, 2000], then oscillates

around 23 as time goes on. This coincides with our earlier discussion about the
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Figure 7.2: Outcome of Simulation 1.

Figure 7.3: Outcome of Simulation 2.

Figure 7.4: Outcome of Simulation 3.
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Figure 7.5: Outcome of Simulation 4.

Figure 7.6: Outcome of Simulation 5.
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theorem of the long time behavior of the Master equation: as time increases, the

probability of a particular state of the system approaches to a constant, which is

determined by the eigenvalue 0 of the matrix A in the Master equation.
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