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INTRODUCTION

An octahedronis a polyhedron with six vertices, twelve edges, and eight triangular

faces. Since a hexagon has six vertices and six edges, it is possible to embed a hexagon

within an octahedron in many different ways. Suppose we determine the lengths of all

six edges of the hexagon and the measure of the angle between each of the two edges

incident on each vertex. In the octahedron, the length of thethird side of the triangular face

containing two edges of the hexagon will then be determined.Hence all the lengths of all

twelve edges of the octahedron will be determined. Bricard [2] studied octahedra where

all twelve edges had specified lengths. In general one might expect any such octahedron

to be rigid, but Bricard found that when the lengths of the twelve edges had certain types

of symmetry the octahedron could be flexible. This means thatit is possible for hexagons

to be flexible. This has long been known to be the case for an equilateral hexagon where

all the angles are cos−1(−1
3), since the molecule cyclohexane has that structure; in organic

chemistry the flexible family of shapes of cyclohexane is known as the twist/boat family

[6]. Dr. Dix [6] continued Bricard’s research by finding explicit solutionsfor flexible

FIGURE 1. An Octahedron

and rigid hexagons when the six lengths and six angles have a two-fold symmetry as one
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cycles around the hexagon. An interesting feature of the family of two fold symmetric

hexagons was that none of them were knotted. Hexagons are thepolyhedra with the fewest

number of sides which could possibly be knotted [7]. We do not know if an explicit formula

for knotted hexagons has ever been published. In Dix [6], it was conjectured that such

formulas could be obtained for hexagons whose six lengths and six angles have three-fold

symmetry as one cycles around the hexagon. We will henceforth refer to such hexagons as

three− f old symmetric.

Using the same methodology as used on the two fold symmetric case in [6], we will

study in this thesis how to classify three-fold symmetric hexagons. We will gain a full

understanding of a three-fold symmetric hexagon under the assumptions that all six angles

are equal. When all six angles are equal, we give a sufficient condition on the lengths and

angles for the existence of a knotted hexagon and conjecturethat it is also necessary. Even

when all the angles are not equal, if the two independent lengths and the two indepen-

dent angles are specified, we can enumerate all possible shapes the hexagon can assume

(excluding certain cases where certain triples of verticesare collinear).
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CHAPTER 1

PREVIOUS RESEARCH

Our tool for studying the shape of a three-fold symmetric hexagon in three dimensional

space is the Z-System. The Z-System was created to specify the three dimensional shape

of a molecule. In this thesis, we are studying the special case of hexagons. This gives us a

general idea of how Z-Systems can be used in a simpler case.

In the next four sections, we will develop this general theory of Z-Systems which will

be demonstrated by the study of our hexagons. From the last section, we will learn how to

build hexagons with three-fold symmetry from its bonds, angles, and wedges.

1.1. Z-SYSTEM

The concept of a Z-System [6] starts with an arbitrary graphG. For example, we could

takeG to be the graph associated to a molecule: the atoms would be the vertices and the

covalent bonds would be the edges. In this paper, we are identifying G as a hexagonal

cycle, or a closed path with six vertices.

An unoriented Z-System builds onG by specifying three tree graphs namedτ1,τ2, and

τ3. Recall that a tree is a connected acyclic graph. This means that any two vertices are

connected in the graph by some path and the graph contains no cycle (as a subgraph). The

treeτ1 is chosen to be a spanning tree inG. This tells us thatτ1 is a tree subgraph of G

containing all the vertices ofG. The line graphL(τ1) of τ1 is a graph where each edge of

τ1 is an vertex ofL(τ1). Also, any two distinct edges ofτ1 constitute an edge ofL(τ1) if

and only if the corresponding edges ofτ1 share a common vertex inτ1 [3]. Next we choose

τ2 to be a spanning tree in the line graphL(τ1) of τ1. Finally, we can chooseτ3 to be a
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spanning tree inL(τ2) of τ2. The vertices of our spanning treeτ1 will be calledatoms. In

τ2 is the red tree graph.
τ3 is the green tree graph.

τ1 is the blue tree graph.

FIGURE 2. An unoriented Z-System built onG

our three-fold symmetric hexagonG, there exists only six atoms. The edges connecting

those atoms inτ1 will be referred to asbonds. Sinceτ2 has vertices that are edges ofτ1, we

will also refer to the vertices ofτ2 as bonds. The edges ofτ2 will be namedangles. Since

τ3 is a subgraph ofL(τ2), τ3 vertices are the same as the edges ofτ2, therefore they are also

called angles. Finally, we can name the edges ofτ3 wedges.

The purpose of the unoriented Z-System(τ1,τ2,τ3) is to provide an index set for the

coordinates necessary to determine a specific three dimensional shape of the graphG. We

can label each edgeβ of τ1 by a lengthℓβ . This ℓβ > 0 is the distance between the two

associated vertices in three dimensional space. The edgesα of τ2 will have the label of

θα whereθα ∈ (0,180◦) is the measure of the angle between the two line segments of the

bonds. We label each edgeω of τ3 with a pair(d∗
ω ,φω) whered∗

ω is an oriented tetrahedron

(explained below) associated withω, andφω is the wedge angle that satisfies−180◦ <

φω ≤ 180◦. The wedge angle is the signed angle between two half-planessharing the same

boundary line. The interpretation of the sign ofφω is determined by our value ofd∗
ω which

is explained further in the next section.
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1.2. WEDGES

As we saw above, a wedgeω is an unordered pair of angles{α,α ′} which share a

common bondβ . This wedge is labeled by a pair(d∗,φ). Each angle is an unordered pair

{b,b′} of bonds which share a common atom and corresponds to a set of three atoms, the

triangleassociated to that angle. In this section, we will discuss(d∗,φ) in more detail.

The wedgeω determines atetrahedron d, which is a four element set of atoms deter-

mined as follows. The tetrahedron is the union of the two triangles that correspond with

the two angles. Letd = {A0,A1,A2,A3} be the tetrahedron of the wedge[α,α ′] with trian-

gle one{A0,A1,A2} being the vertices correlating to angleα and triangle two{A1,A2,A3}

being the vertices correlating to angleα ′. The common bond is{A1,A2}.

An orientation ofd is an equivalence class of orderings of the four element setd.

Two orderings are deemed equivalent if one can be obtained from the other via an even

permutation. There are two possible orientations of the setd. To find these two orientations,

it must be noted that there are 24 permutations of the setd, which creates two disjoint

subclasses consisting of 12 permutations each. These permutations are:

(A0, A1, A2, A3) −→ւ (A1, A0, A2, A3)

(A1, A0, A3, A2) −→ւ (A0, A1, A3, A2)

(A0, A3, A1, A2) −→ւ (A2, A3, A1, A0)

(A2, A1, A3, A0) −→ւ (A2, A1, A0, A3)

(A1, A2, A0, A3) −→ւ (A1, A2, A3, A0)

(A0, A2, A3, A1) −→ւ (A0, A3, A2, A1)

(A1, A3, A2, A0) −→ւ (A3, A1, A2, A0)

(A3, A1, A0, A2) −→ւ (A3, A0, A1, A2)

(A3, A0, A2, A1) −→ւ (A3, A2, A0, A1)

(A3, A2, A1, A0) −→ւ (A0, A2, A1, A3)

(A2, A0, A1, A3) −→ւ (A2, A0, A3, A1)

(A2, A3, A0, A1) −→ւ (A1, A3, A0, A2)

.

These two columns represent the two distinct orientations;furthermore each arrow repre-

senting a transposition.[A0,A1,A2,A3] will denote the orientation containing the permuta-

tion (A0,A1,A2,A3). Therefore, the two possible orientations ofd are[A0,A1,A2,A3] and

[A1,A0,A2,A3].

Suppose{A1,A2} = β is the common bond of wedgeω. Let us investigate the similar-

ities and differences of these two columns of permutations by taking (A0,A1,A2,A3) and
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(A3,A2,A1,A0) from the first column of permutations and(A3,A1,A2,A0) and(A0,A2,A1,A3)

from the second column. These four permutations are the onlyones that containA1 andA2

in the middle columns. We can see from our figure 3 that the samespatial configuration

can be described in terms of all four permutations, but they require two distinct values ofφ

to do so.

A0

A1

A2

φ > 0

A0

A1

A2

(A0,A1,A2,A3) φ > 0

A0

A1

A2

A0

A1

A2

(A3,A2,A1,A0)

(A3,A1,A2,A0) φ < 0

φ < 0(A0,A2,A1,A3)

A3A3

A3 A3

FIGURE 3. Permutations of Wedges

The sign of the angle between the two half planes is defined by the orientation of the

axis of rotation (using the right hand rule) as well as the definition of which half plane start

and ends the rotation. The first three atoms in a permutation determine which half plane

starts the rotation, and the last three atoms determine which half plane ends the rotation.

We can observe from the example in our figure how the orientation effects the value ofφ .

Permutations from column one correspond to values ofφ that are greater than zero, and

permutations from column two correspond to values ofφ that are less than zero. Within

each orientation there are two permutations which interpret the wedge angleφ , but both

correspond to the same spatial configuration. If we change the orientation, we must also

change the sign ofφ .

There are two different types of wedges:dihedralsandimpropers. Let A be the shared

atom of the two bonds that correspond to angleα, and letA′ be the shared atom of the two
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A A′Dihedral Wedge

Improper Wedge

A′ = A

α α ′

α

α ′

FIGURE 4. A Dihedral Wedge and an Improper Wedge

bonds that corresponds to angleα ′. The wedge determined by the unordered pair of angles

{α,α ′} is calleddihedral if A 6= A′ andimproperif A = A′ (see figure 3). In our hexagon

graph G, all of the unordered pairs of angles which share a common bond are dihedral.

For a dihedral wedge, there is only two possible ways that theatoms can be be ordered

beginning at one end of the chain of bonds and ending at the other. These two orderings

are in the same equivalence class. Therefore, we know that every dihedral wedge can be

assigned a canonical orientation, and we will always use this canonical orientation.

Learning about the structure of our wedge angles has shown usthat we must investigate

φ on(−180◦,180◦]. When we are searching forφ values that create a three-fold symmetric

hexagon, we must study the full range to find all possible solutions.

1.3. SITES AND POSES

Let Γ = (τ1,τ2,τ3) be an unoriented Z-System for a graphG where theN is the set

of all vertices ofG. We can denote asiteby r = (A0,A1,A2) of Γ. This site is an ordered

triple of distinct vertices fromN with {A0,A1} determining a vertex ofτ2 (i.e. a bond),

and {A0,A1,A2} is the triangle corresponding to a vertex ofτ3 (i.e. an angle). In this

arrangement, the angle has a common vertex at eitherA0 or A1.
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Let each vertexA ∈ N be assigned a positionRA ∈ R
3 so that the graphG becomes

embedded in three dimensional space. We can define aposeas a Cartesian coordinate

system that is determined by our siter and by the embedding. This Cartesian coordinate

system will have its origin atRA0. The x-axis will be parallel toRA1 −RA0, and the y-axis

will be in the half-plane that is bounded by the x-axis and containing the pointRA2. In

this Cartesian coordinate system, the direction of the z-axis is then determined by the right-

hand rule. A pose is specified by means of a 3×4 matrix(e0,e1,e2,e3). In this matrix, the

position vectore0 = RA0 is the origin,e1 is a unit vector that determines the x-axis, ande2

is a unit vector that determines the y-axis. The unit vectore3 is the direction of the z-axis.

Therefore,

e0 = RA0

e1 =
RA1 −RA0

‖RA1 −RA0‖

e2 =
(1− e1eT

1 )(RA2 −RA0)

‖(1− e1eT
1 )(RA2 −RA0)‖

e3 = e1× e2

In the third formula,1 denotes the(3×3) identity matrix, andeT
1 is the(1×3) row vector

created from the transpose of column vectore1. The siter then determines from the em-

bedding the Cartesian coordinate system (or thepose) denoted byEr(R) = (e0,e1,e2,e3).

To makeEr(R) well-defined, the singular embeddingsR : N → R must be excluded, i.e.

those where the denominators in the formulas fore1 ande2 are zero.

In our pose(e0,e1,e2,e3) wheree0 ∈ R
3, X = (e1,e2,e3) is a right-handed orthonormal

basis ofR3. This X is contained inSO(3);and its determinant is+1. Also, the inverse

of X is its transpose. Ifx is a point in space, it can be described by the coordinate vector

c =
(

x y z
)T

in the poseE, i.e.

x = e0 + e1x+ e2y+ e3z= (e0,X)





1

c



 .
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If E = (e0,X) andE′ = (e′0,X
′) are any two poses, then there is a unique(4×4) matrix

M =





1 (0,0,0)

b A



, whose first row is(1,0,0,0), such thatE′ = EM. This can be seen as

follows:

(e′0,X
′) = (e0,X)





1 (0,0,0)

b A



 = (e0 +Xb,XA)

whereA = X−1X′ andb = X−1(e′0− e0). The matrixM is a coordinate trans f ormation

matrix. This matrix can transform one coordinate vectorc into another coordinate vector

c′ with the respect to these poses byx = E





1

c



 = E′





1

c′



 = EM





1

c′



. Therefore,





1

c



 =





1 (0,0,0)

b A









1

c′



 i.e. c = b+Ac′.

Let r andr ′ be two sites belonging to the Z-systemΓ, and letR be a three dimensional

embedding of the graphG. Let M be the coordinate transformation matrix whereEr ′(R) =

Er(R)M; thenM can be computed in terms of the numerical labels ofΓ as will now be

described. From Lemma 3.2 of [6], we know that there exists a sequence of distinct sites

r = r0, r1, ..., rm = r ′ that belong toΓ. Every successive pair(r j−1, r j) for 1≤ j ≤ m is one

of the following three types:

a. r j can be obtained fromr j−1 by exchanging the first two atoms.

b. r j can be obtained fromr j−1 by exchanging the last two atoms.

c. r j−1 = (A0,A1,A) andr j = (A0,A1,A′), where there is a wedge ofΓ con-

necting the angles corresponding to{A0,A1,A} and{A0,A1,A′}.

By the Theorem in section 3.3 of [6], for each 1≤ j ≤ m:

1. If we can obtainr j from r j−1 by exchanging the first two vertices named

A0 andA1, then let{A0,A1} be the bond ofΓ with its lengthℓ > 0. Thus

9



Er j (R) = Er j−1(R)T1(ℓ), where:

T1(ℓ) =



















1 0 0 0

ℓ −1 0 0

0 0 1 0

0 0 0 −1



















.

2. If we can obtainr j from r j−1 by exchanging the last two vertices namedA1

andA2, then{A0,A1,A2} corresponds to an angle ofΓ with its labelθ > 0.

Thus,Er j (R) = Er j−1(R)T2(θ), where:

T2(θ) =



















1 0 0 0

0 cosθ sinθ 0

0 sinθ −cosθ 0

0 0 0 −1



















.

3. If r j−1 = (A0,A1,A) andr j = (A0,A1,A′) where there is a wedge ofΓ con-

necting the angles corresponding to{A0,A1,A} and{A0,A1,A′}, and the

wedge is labeled by(±[A,A0,A1,A′],φ). ThenEr j (R) = Er j−1(R)T3(±φ),

where:

T3(φ) =



















1 0 0 0

0 1 0 0

0 0 cosφ −sinφ

0 0 sinφ cosφ



















.

From this information, the coordinate transformation matrix M can be calculated as a

product of the above matrices. WhenEr ′(R) = Er(R)M, we can solve for the value ofM:

Er ′(R) =Erm(R) = Erm−1(R)T(m−1) = Erm−2(R)T(m−2)T(m−1) = ...

=Er0(R)T(0)T(1)...T(m−1) = Er(R)M.

Therefore,M = T(0)T(1)...T(m−1).
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1.4. BRIDGING ALGORITHM

θ1

θ1θ0

θ0 θ1

φ1

ℓ0

ℓ1

φ ′′
1

φ0

A′
0

A′′
0

ℓ1 A′
1

ℓ0

θ0
A′′

1

A0 A1

ℓ1

ℓ0

FIGURE 5. Labeled Hexagon

In this section, we will describe the Bridging Algorithm from[6] that has been trans-

posed into the language needed to describe our hexagon. The problem we must solve is as

follows; if we are given valuesℓ0, ℓ1,θ0, andθ1, then we must findφ0,φ1, andφ ′′
1 such that:

a. ‖RA′
1
−RA′′

0
‖ = ℓ1,

b. (RA′
0
−RA′

1
) · (RA′′

0
−RA′

1
) = ℓ0ℓ1cosθ1,

c. (RA′
1
−RA′′

0
) · (RA′′

1
−RA′′

0
) = ℓ0ℓ1cosθ0.

r r ′ℓ0
ℓ1

ℓ0

θ1θ1

θ0θ0

A′′
0 A′

0 A0A0

A′′
1 A′

1 A1A1 a0

a1

FIGURE 6. Bridging the Atoms

To accomplish this, we can use a more general Bridging Algorithm described in [6]. This

more general bridging problem is as follows. In Appendix B weshow how to define an

11



embeddingR(φ0) of the atomsA′′
1,A0,A1 andA′

0 in three dimensional space. Given sites

r = (A′′
1,A0,A1) andr ′ = (A′

0,A1,A0) together with posesEr(R(φ0)) andEr ′(R(φ0)) where

Er ′(R(φ0)) = Er(R(φ0))M(φ0). We need to find the positionsRA′′
0

andRA′
1

such that con-

ditionsa,b, andc, hold as well as:

d. ‖RA′′
1
−RA′′

0
‖ = ℓ0

e. ‖RA′
0
−RA′

1
‖ = ℓ0

f. (RA′′
0
−RA′′

1
) · (RA0 −RA′′

1
) = ℓ0ℓ1cosθ1

g. (RA′
1
−RA′

0
) · (RA1 −RA′

0
) = ℓ0ℓ1cosθ0.

In [6] the solution of this more general bridging problem was broken down into three steps.

First we find the first end pointRA′′
0

satisfying three conditions, and then we can find the

second end pointRA′
1

that satisfies three other conditions. During the last step,we will

chooseφ0 so that a seventh condition holds. The following are the three steps of the Bridg-

ing Algorithm:

1. Find, as functions ofφ0 andσ ∈ {−1,1}, the positionRA′′
0

of the vertexA′′
0

relative to the configurationR(φ0) such that:

‖RA′′
0
−RA′′

1
(φ0)‖ = ℓ0 (1)

(RA′′
0
−RA′′

1
(φ0)) · (RA0(φ0)−RA′′

1
(φ0)) = ℓ0ℓ1cosθ1, (2)

‖RA′′
0
−RA′

0
(φ0)‖ = a1, (3)

σ det





1 1 1 1

RA′′
1

RA0 RA′
0

RA′′
0



 ≥ 0 (4)

wherea2
1 = ℓ2

1 + ℓ2
0−2ℓ0ℓ1cosθ1.

2. Find, as functions ofφ0 andσ ′ ∈ {−1,1}, the positionRA′
1

of the vertexA′
1

relative to the configurationR(φ0) such that:

12



‖RA′
1
−RA′

0
(φ0)‖ = ℓ0, (5)

(RA′
1
−RA′

0
(φ0)) · (RA1(φ0)−RA′

0
(φ0))) = ℓ0ℓ1cosθ0, (6)

‖RA′
1
−RA′′

1
(φ0)‖ = a0, (7)

σ ′ det





1 1 1 1

RA′
0

RA1 RA′′
1

RA′
1



 ≥ 0 (8)

wherea2
0 = ℓ2

1 + ℓ2
0−2ℓ0ℓ1cosθ0.

3. For each pair(σ ,σ ′) ∈ {−1,1}2, find φ0 such that:

‖RA′′
0
(φ0,σ)−RA′

1
(φ0,σ ′)‖ = ℓ1.

In order to solve step one, we first need some notation. Let theknown position ofA′
0

be:

RA′
0
(φ0) = Er ′(R(φ0))





1

0



 = Er(R(φ0))M(φ0)





1

0



 = Er(R(φ0))





1

x′1(φ0)



 ,

where





1

x′1(φ0)



 = M(φ0)





1

0



 andx′1 = (x′1,y
′
1,z

′
1)

T . Let the unknown position ofA′′
0 be:

RA′′
0
= Er(R(φ0))





1

x0



 wherex0 = (x0,y0,z0)
T . The following lemma solves the system

of equations giving us the values ofx0,y0 andz0.

LEMMA 1.1. If [y′1(φ0)]
2 + [z′1(φ0)]

2 > 0 then(1)− (4) has at least one real solution

〈x0,y0,z0〉 if and only if

∣

∣ℓ2
0sinθ1

2 +[y′1(φ0)]
2 +[z′1(φ0)]

2 +(ℓ0cosθ1−x′1(φ0))
2−a2

1

∣

∣ (9)

≤ 2ℓ0sinθ1

√

[y′1(φ0)]2 +[z′1(φ0)]2.
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If these conditions hold then all the solutions are of the form :

x0 =ℓ0cosθ1 (10)

〈y0,z0〉 =〈y′1(φ0),z
′
1(φ0)〉

ℓ0sinθ1cosα
√

[y′1(φ0)]2 +[z′1(φ0)]2

+σ〈−z′1(φ0),y
′
1(φ0)〉

ℓ0sinθ1sinα
√

[y′1(φ0)]2 +[z′1(φ0)]2
,

(11)

φ ′′
1 =− γ −σα (12)

whereσ ∈ {−1,1} , α ∈ [0,180◦] is such that

cosα =
ℓ2
0sin2θ1 +[y′1(φ0)]

2 +[z′1(φ0)]
2 +(ℓ0cosθ1−x′1(φ0))

2−a2
1

2ℓ0sinθ1
√

[y′1(φ0)]2 +[z′1(φ0)]2
(13)

and

γ = arg(y′1(φ0)+ iz′1(φ0)). (14)

A0

θ1 A′′
1

ℓ0

A′
0

a0

a0

A′′
0

FIGURE 7. The Sphere and Cone of the Solutions ofA′′
0
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PROOF. As seen in figure 6, we can find a sphere of radiusa1 centered atA′
0 of possible

values ofA′′
0. There is a circle of values ofA′′

0 that has to satisfy the given angle and length

from A′′
1. We use the coordinate system given by poseEr(R(φ0)) whose origin is atA′′

1 and

whose x-axis points fromA′′
1 to A0. We can find the x coordinate ofA′′

0, i.e. x0 = ℓ0cosθ1.

Let us consider the plane of all points whose x coordinate isℓ0cosθ1. This plane will

contain two circles of possible values ofA′′
0, as shown in Figures 7 and 8. The first circle

has the radiusℓ0sinθ1 and is centered at the origin. The second circle comes from the

intersection of the planex = ℓ0cosθ1 and the sphere mentioned above. This second circle

has its center at〈y′1(φ0),z′1(φ0)〉 and its radiusρ, wherea2
1 = ρ2+[x′1(φ0)−ℓ0cosθ1]

2. The

intersection of these two circles produces the values ofx0(φ0,1) andx0(φ0,−1). As seen

in figure 8, we can find the unit vector from the projection ofA′′
1 to the projection ofA′

0.

This vector is 〈y′1(φ0),z′1(φ0)〉√
[y′1(φ0)]2+[z′1(φ0)]2

. We can find the perpendicular unit vector in the counter

clockwise direction to be 〈−z′1(φ0),y′1(φ0)〉√
[y′1(φ0)]2+[z′1(φ0)]2

. In figure 8, let 0≤ α ≤ 180◦ denote the angle

between the rays indicated. This angleα is found using the law of cosines. Therefore,

ρ2 = ℓ2
0sin2θ1 +[y′1(φ0)]

2 +[z′1(φ0)]
2−2ℓ0sinθ1cosα

√

[y′1(φ0)]2 +[z′1(φ0)]2. Solving for

cosα leads to(13). The inequality(9) assures us that the two circles actually intersect. We

then denoteσ as the sign of the triple product(RA0 −RA′′
1
)× (RA′

0
−RA′′

1
) · (RA′′

0
−RA′′

1
).

We can also obtain this triple product from the determinant of the three by three matrix,

(

(RA0 −RA′′
1
),(RA′

0
−RA′′

1
),(RA′′

0
−RA′′

1
)

)

.

We notice that the determinant of this matrix would be the same as the determinant of




1 0 0 0

RA′′
1

(RA0 −RA′′
1
) (RA′

0
−RA′′

1
) (RA′′

0
−RA′′

1
)



 .

By simple column operations, we see:

σ = sign det





1 1 1 1

RA′′
1

RA0 RA′
0

RA′′
0



 .
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z

y

Projection ofA′
0

σ ′

α

γ
A′′

0

σ

A′′
0

Projection ofA′′
1 andA0

Projection ofA1

FIGURE 8. Intersection of Circles of Solutions ofA′′
0

We can use the two unit vectors andσ to determine the position ofA′′
0. The cross product

(RA0 −RA′′
1
)× (RA′

0
−RA′′

1
) is parallel to the unit vector 〈−z′1(φ0),y′1(φ0)〉√

[y′1(φ0)]2+[z′1(φ0)]2
, so

〈y0,z0〉 =ℓ0sinθ1
〈y′1(φ0),z′1(φ0)〉

√

[y′1(φ0)]2 +[z′1(φ0)]2
cosα

+σℓ0sinθ1
〈−z′1(φ0),y′1(φ0)〉

√

[y′1(φ0)]2 +[z′1(φ0)]2
sinα

This is clearly the same as(11). Next, we must study how to solve for the value of

φ ′′
1 . To find this wedge angle, we must learn its orientation. Fromfigure 5, it is given that

d∗ = [A′′
0,A

′′
1,A0,A1]. The axis of rotation is oriented fromA′′

1 to A0, i.e. along the positive x

axis. The initial half plane contains as a boundary the x-axis and contains the pointA′′
0. The

final half-plane contains as a boundary x-axis and contains the pointA1. Soφ ′′
1 =−γ −σα

where is the angle indicated on Figure 8, i.e.γ = arg[y′1(φ0)+ iz′1(φ0)], as in(14). ¤
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This lemma defines the functionx0(φ0,σ) and completes the first step of the Bridging

Algorithm. The lemma also defines the functionφ ′′
1 (φ0,σ).

In the next step, we must solve forRA′
1
, which is our second end point. Before we state

this lemma, we must identify some more notations. The known positionA′′
1 is

RA′′
1
(φ0) = Er(R(φ0))





1

0



 = Er ′(R(φ0))M(φ0)
−1





1

0



 = Er ′(R(φ0))





1

x1(φ0)



 ,

then





1

x1(φ0)



 = M(φ0)
−1





1

0



 andx1 = (x1,y1,z1)
T .

We can now characterize ourM(φ0) in block formation where

M(φ0) =





1 0T

x′1(φ0) A





and whereA ∈ SO(3). Therefore, theM(φ0)
−1 =





1 0T

−A(φ0)
Tx′1(φ0) A(φ0)

T



. This

means thatx1(φ0)=−A(φ0)
Tx′1(φ0). The unknown position ofA1 is RA′

1
= Er ′(R(φ0))





1

x′0





wherex′0 = (x′0,y
′
0,z

′
0)

T . The solutions ofx′0(φ0,σ ′) are obtained from a lemma similar to

lemma 1.1.

LEMMA 1.2. If [y1(φ0)]
2 +[z1(φ0)]

2 > 0 then〈x′0,y′0,z′0〉 has at least one real solution

if and only if

∣

∣ℓ2
0sin2θ0 +[y1(φ0)]

2 +[z1(φ0)]
2 +(ℓ0cosθ0−x1(φ0))

2−a2
0

∣

∣ (15)

≤ 2ℓ0sinθ0

√

[y1(φ0)]2 +[z1(φ0)]2.

If these conditions hold then all the solutions are of the form :

x′0 =ℓ0cosθ0 (16)
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〈y′0,z′0〉 =〈y1(φ0),z1(φ0)〉
ℓ0sinθ0cosα ′

√

[y1(φ0)]2 +[z1(φ0)]2

+σ ′〈−z1(φ0),y1(φ0)〉
ℓ0sinθ0sinα ′

√

[y1(φ0)]2 +[z1(φ0)]2
,

(17)

φ1 =− γ ′−σ ′α ′ (18)

whereσ ′ ∈ {−1,1} , α ′ ∈ [0,180◦] is such that

cosα ′ =
ℓ2
0sin2θ0 +[y1(φ0)]

2 +[z1(φ0)]
2 +(ℓ0cosθ0−x1(φ0))

2−a2
0

2ℓ0sinθ0
√

[y1(φ0)]2 +[z1(φ0)]2
(19)

and

γ ′ = arg(y1(φ0)+ iz1(φ0)).

This lemma defines the functionx′0(φ0,σ ′) and completes the second step of the Bridg-

ing Algorithm. Lemma 1.2 also defines the functionφ1(φ0,σ ′). Note that we can obtain

lemma 1.2 from lemma 1.1 by exchanging the primed and unprimed elements and exchang-

ing θ0 for θ1.

In step one, we foundRA′′
0
= Er(R(φ0))





1

x0(φ0,σ)



, and in step two we foundRA′
1
=

Er ′(R(φ0))





1

x′0(φ0,σ ′)



. In the third step, we must impose a distance constraint between

these two points. To do this, we must first convertRA′
1

into the coordinate system at the site

r, i.e. Er(R(φ0)).

RA′
1
(φ0) = Er ′(R(φ0))





1

x′0(φ0,σ ′)



 = Er(R(φ0))M(φ0)





1

x′0(φ0,σ ′)





= Er(R(φ0))





1 0T

x′1(φ0) A









1

x′0(φ0,σ ′)





= Er(R(φ0))





1

x′1(φ0)+A(φ0)x′0(φ0,σ ′)



 .
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We must impose the distance constraintℓ2
1 = ‖RA′′

0
(φ0,σ)−RA′

1
(φ0,σ ′)‖2. Therefore,

for each(σ ,σ ′) ∈ {−1,1}2, the equation to be solved forφ0 becomes

ℓ2
1 =‖RA′′

0
(φ0,σ)−RA′

1
(φ0,σ ′)‖2 = ‖x0(φ0,σ)−x′1(φ0)−A(φ0)x′0(φ0,σ ′)‖2

=(x0−x′1−Ax′0)
T(x0−x′1−Ax′0) = xT

0 x0−xT
0 x′1−xT

0 Ax′0−x′T1 x0

+x′T1 x′1 +x′T1 Ax′0−x′T0 ATx0 +x′T0 ATx′1 +x′T0 ATAx′0

ℓ2
1 =2ℓ2

0 +‖x′1(φ0)‖2−2x0(φ0,σ) ·x′1(φ0)−2x0(φ0,σ) ·A(φ0)x′0(φ0,σ ′)

+2x′1(φ0) ·A(φ0)x′0(φ0,σ ′).
(20)

This completes a schematic discussion of the Bridging Algorithm as applied to the

study of the shapes of three-fold symmetric hexagons. In thenext chapter, we will begin to

make everything completely explicit.
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CHAPTER 2

SOLVING THE BRIDGING ALGORITHM FOR HEXAGONS

The Bridging Algorithm has three distinct steps that allow usto calculate when values

of ℓ0, ℓ1,θ0,θ1,σ ,σ ′ andφ0 creates a three-fold symmetric hexagon. In this chapter, we

will explicitly state the expressions that restrict and solve the first two steps of the Bridging

Algorithm. Lastly, we will complete the third step of the Bridging Algorithm by calculating

the equality(20).

2.1. EXPLICIT EXPRESSIONS FOR THEHEXAGON

When finding the properties of three-fold symmetric hexagons, we have to use the Z-

System that we created in the last chapter.

In the Bridging Algorithm, we useM(φ0), which is the coordinate transformation ma-

trix. Now we must compute it for our hexagon. In section 1.3 ofthis thesis, we showed

thatM(φ0) can be produced by the product of transformation matrices. These matrices are

produced by finding a sequence of sites linkingr = (A′′
1,A0,A1) to r ′ = (A′

0,A1,A0). This

sequence is given below:
r= (A′′

1, A0, A1)

× T1(ℓ1)
(A0, A′′

1, A1)

× T2(θ0)
(A0, A1, A′′

1)

↓ T3(φ0)
(A0, A1, A′

0)

× T1(ℓ0)
(A1, A0, A′

0)

× T2(θ1)
(A1, A′

0, A0)

× T1(ℓ1)
r ′= (A′

0, A1, A0)

The×s found between the two sites indicate a transposition of types a or b in section
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ℓ0

ℓ0

ℓ1

A′
0

θ1θ0

θ1

θ1θ0

θ0

ℓ1 A′
1

A1A0

ℓ1

A′′
1

ℓ0

A′′
0

FIGURE 9. A General Three-Fold Symmetric Hexagon

1.3. The↓ indicates a site transition of typec, again from section 1.3. To the right of each

site transition, we have indicated the corresponding transformation matrix. Therefore, to

transform siter to r ′, we found:

M(φ0) = T1(ℓ1)T2(θ0)T3(φ0)T1(ℓ0)T2(θ1)T1(ℓ1).

From this section forward, we will be using special notationto simplify our equations.

NOTATION 2.1.

c0 = cosθ0 c1 = cosθ1

s0 = sinθ0 s1 = sinθ1

c = cosθ s = sinθ

G = sinθ0sinθ1cosφ0

a2
1 = ℓ2

1 + ℓ2
0−2ℓ1ℓ0c1 a2

0 = ℓ2
1 + ℓ2

0−2ℓ1ℓ0c0
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All the subsequent equations were calculated using Maple asseen in hex.mw starting

from line 7. WhenM(φ0) is found using Maple (see worksheet line hex.mws 7), it is a

matrix with 4 columns and 4 rows where :

M(φ0) =

( 1 0 0 0
ℓ1−ℓ0c0+ℓ1(c0c1−s0s1cosφ0) −c0c1+s0s1cosφ0 c0s1+c1s0cosφ0 −s0sinφ0
ℓ0s0+ℓ1(−c1s0−c0s1cosφ0) c1s0+c0s1cosφ0 −s0s1+c0c1cosφ0 −c0sinφ0

ℓ1s1sinφ0 −s1sinφ0 −c1sinφ0 −cosφ0

)

(21)

In section 1.4, we introduced new quantitiesA, x′1, and x1 which are found from

M(φ0) =





1 0T

x′1(φ0) A



 andx1(φ0) = −A(φ0)
Tx′1(φ0). Now we can explicitly compute

these values to be:

A =











−c0c1 +s0s1cosφ0 c0s1 +c1s0cosφ0 −s0sinφ0

c1s0 +c0s1cosφ0 −s0s1 +c0c1cosφ0 −c0sinφ0

−s1sinφ0 −c1sinφ0 −cosφ0











(22)

x′1 =











x′1

y′1

z′1











=











ℓ1− ℓ0c0 + ℓ1(c0c1−s0s1cosφ0)

ℓ0s0 + ℓ1(−c1s0−c0s1cosφ0)

ℓ1s1sinφ0











(23)

x1 =











x1

y1

z1











= −A(φ0)
Tx′1(φ0) =











ℓ1− ℓ0c1 + ℓ1(c0c1−s0s1cosφ0)

ℓ0s1 + ℓ1(−c0s1−c1s0cosφ0)

ℓ1s0sinφ0











. (24)

In lemma 1.1 and 1.2, we have the assumed constraint that[y′1(φ0)]
2+[z′1(φ0)]

2 > 0 and

[y1(φ0)]
2+[z1(φ0)]

2 > 0. We will denote these positive quantities asK′ andK respectively.

Now that we have explicit forms fory1,y′1,z1 andz′1, we can compute the restraints.

K′ = y′21 +z′21 = a2
1− (c0(ℓ0− ℓ1c1)+ ℓ1G)2 (25)

K = y2
1 +z2

1 = a2
0− (c1(ℓ0− ℓ1c0)+ ℓ1G)2 (26)

Lemma 1.1 and 1.2 give values of the anglesα andα ′ through equations created from

the law of cosines. These equations can now be simplified to give us the explicit forms of
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cosα and cosα ′.

cosα =
a2

1−2(ℓ1− ℓ0c1)(c0(ℓ0− ℓ1c1)+ ℓ1G)

2ℓ0s1
√

K′

cosα ′ =
a2

0−2(ℓ1− ℓ0c0)(c1(ℓ0− ℓ1c0)+ ℓ1G)

2ℓ0s0
√

K

However, the values of the sinα and sinα ′ are needed to solve for the values ofy0,y′0,z0,

andz′0. We can find these values to be sinα =
√

1−cos2α and sinα ′ =
√

1−cos2α ′. This

gives us the equations for sinα and sinα ′ below (see Maple worksheet hex.mws, lines

27-30):

sinα =

√
H ′

2ℓ0s1
√

K′ (27)

sinα ′ =

√
H

2ℓ1s0
√

K
(28)

where

H ′ = 4ℓ2
0(1−c2

1)K
′−{a2

1−2(ℓ1− ℓ0c0)[c0(ℓ0− ℓ1c1)+ ℓ1G]}2

= a2
1

(

−4ℓ2
1G2 +4ℓ1(ℓ1 +2ℓ1c0c1− ℓ0c1−2ℓ0c0)G

− ℓ2
1 +8ℓ0ℓ1c2

0c1 +4ℓ0ℓ1c0c2
1 +4ℓ1ℓ0c0 +2ℓ0ℓ1c1

+3ℓ2
0−4ℓ2

0c2
1−4ℓ2

0c0c1−4ℓ2
1c2

0c2
1−4ℓ2

1c0c1−4ℓ2
0c2

0

)

=−a2
1

(

2ℓ1G− ℓ1(1+2c1c0)+ ℓ0(c1 +2c0−
√

3s1)
)

(

2ℓ1G− ℓ1(1+2c0c1)+ ℓ0(c1 +2c0 +
√

3s1)
)

(29)

H =4ℓ2
0(1−c2

1)K−{a2
0−2(ℓ1− ℓ0c1)[c1(ℓ0− ℓ1c0)+ ℓ1G]}2

=a2
0

(

−4ℓ2
1G2 +4ℓ1(ℓ1 +2ℓ1c0c1− ℓ0c0−2ℓ0c1)G

− ℓ2
1 +8ℓ0ℓ1c2

1c0 +4ℓ0ℓ1c1c2
0 +4ℓ1ℓ0c1 +2ℓ0ℓ1c0

+3ℓ2
0−4ℓ2

0c2
0−4ℓ2

0c0c1−4ℓ2
1c2

0c2
1−4ℓ2

1c0c1−4ℓ2
0c2

1

)

(30)
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=−a2
0

(

2ℓ1G− ℓ1(1+2c0c1)+ ℓ0(c0 +2c1−
√

3s0)
)

(

2ℓ1G− ℓ1(1+2c1c0)+ ℓ0(c0 +2c1 +
√

3s0)
)

Now that we have given specific values for all the restrictions and values of lemma 1.1

and 1.2, we can now solve for the values ofx0 andx′0.

x′0 =











x′0

y′0

z′0











=
1√
K











ℓ0c0
√

K

y1ℓ0s0cosα ′−σ ′z1ℓ0s0sinα ′

z1ℓ0s0cosα ′ +σ ′y1ℓ0s0sinα ′











(31)

x0 =











x0

y0

z0











=
1√
K′











ℓ0c1
√

K′

y′1ℓ0s1cosα −σz′1ℓ0s1sinα

z′1ℓ0s1cosα +σy′1ℓ0s1sinα











(32)

Using these equations, we can learn more about the three foldsymmetric hexagon.

During the rest of this paper, we will investigate how to solve the third step of the Bridging

Algorithm for our three-fold symmetric hexagon.

2.2. RESTRICTIONS ONℓ0, ℓ1,θ0,θ1 AND φ0

Lemma 1.1 solves for the values of the end pointRA′′
0

when the bonds and angles satisfy

K′ > 0 and inequality(9) . Lemma 1.2 obtains the values of the other end pointRA′
1

when

the bonds and angle satisfyK > 0 and inequality(15). We can simplify these restrictions

using our new notations and our explicit values found in the section 2.1.

From the definitions(25) and (26), K ≥ 0 andK′ ≥ 0. K′ = 0 exactly whenA0,A′′
1

andA′
0 are collinear.K = 0 exactly whenA1,A′

0,A
′′
1 are collinear. These situations must

be excluded for the Bridging Algorithm to work. We are given the restrictions ofK > 0

andK′ > 0 to insure that the values ofx0 andx′0 exist. When we solve for there values,

we must divide byK andK′, therefore we prevent dividing by zero of the expressions for

x0 andx′0. The inequalities(9) and(15) insure that the values of cosα and cosα ′ satisfy

−1≤ cosα ≤ 1, and−1≤ cosα ′ ≤ 1.
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We can find the restrictions on cosφ0 by solvingH andH ′ for cosφ0. Let u1 = ℓ1(1+

2c0c1)− ℓ0(c1 +2c0−
√

3s1) andu2 = ℓ1(1+2c0c1)− ℓ0(c0 +2c1−
√

3s0). If

c1−c0 +
√

3(s1−s0) ≥ 0,

then the upper bound of 2ℓ1G is u2 otherwise it will beu1.

We can also find the lower bound of 2ℓ1G. Letψ1 = ℓ1(1+2c0c1)−ℓ0(c1+2c0+
√

3s1)

andψ2 = ℓ1(1+2c0c1)− ℓ0(c0 +2c1 +
√

3s0). If

c1−c0−
√

3(s1−s0) ≥ 0,

then the lower bound of 2ℓ1G is ψ1 otherwise it will beψ2.

From these restrictions, we can tell when a candidate value for φ0 can possibly come

from an actual hexagon.

2.3. QUARTIC

Since we have solved the first two steps of the Bridging Algorithm for x0 andx′0, we

can derive an explicit form of equality(20). In section 2.1, we gave the full expression

of A,x0(φ0,σ) andx′0(φ0,σ ′). By placing these values into equality(20), we derive an

equation with variablesℓ0, ℓ1,θ0,θ1,σ ,σ ′, andφ0 (see Maple worksheet hex.mw). Some

simplifications can be made in this equation. First we noticethat 1
2KK′ can be factored out.

Since one of the restrictions in lemma 1.1 and lemma 1.2 statethatK,K′ > 0, we can cancel

the fraction from our equation without effecting the resulting solutions. This simplifies our

version of(20) to be (see hex.mws line 22):

0 =C1G4 +C2G3 +C3G2 +C4G+C5 +σσ ′√H
√

H ′(C6G2 +C7G+C8) (QUARTIC)

+ ℓ0s0s1sinφ0

(

σ
√

H ′(C9G2 +C10G+C11)+σ ′√H(C12G
2 +C13G+C14)

)

whereCi for i = 1..14 are the coefficients ofG (see Appendix A for explicit values of these

coefficients). These coefficients depend only onℓ0, ℓ1,c0,c1. From the definition of H and
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H’, this means the value of
√

HH ′ can not generally be simplified, and the QUARTIC can

not be factored without further manipulation.

Theφ0 values for our QUARTIC equation can have the range of(−180◦,180◦]. There-

fore, we must study what happens whenφ0 ≤ 0 and whenφ0 ≥ 0. Since cosφ0 = cos(−φ0),

the values ofCi for all i will not change whenφ0 is replaced by−φ0. However sin(−φ0) =

−sinφ0, therefore the only terms of QUARTIC that change whenφ0 is replaced by−φ0

are the terms involving sinφ0. Notice that sinφ0 is multiplied byσ or σ ′. If (φ0,σ ,σ ′) is

replaced by(−φ0,−σ ,−σ ′) then the terms involving sinφ0 are not changed. Notice that

when we do change the signs of bothσ andσ ′, it will not change the term containingσσ ′.

Therefore, we have a strict relationship between the solutions with positiveφ0 and negative

φ0.

THEOREM 2.2. When[ℓ0, ℓ1,θ1,θ0,σ ,σ ′,φ0] is a solution of QUARTIC, then so is

[ℓ0, ℓ1,θ1,θ0,−σ ,−σ ′,−φ0].

Therefore for arbitraryσ andσ ′, we only need to study the caseφ0 ≥ 0.

2.4. SQUARED QUARTIC

We know that QUARTIC has 7 variables(ℓ0, ℓ1,θ1,θ0,φ0,σ ,σ ′). This makes the fac-

toring more difficult because each variable has many different values that it could satisfy.

The first obstacle that will be addressed is making all valuesof φ0 in terms of the cosine

function. Therefore, the only way to eliminate the sine factors is by squaring. We must

subtract the sine term from both sides of QUARTIC to prepare the equation to be squared.

C1G4 +C2G3 +C3G2 +C4G+C5 +σσ ′√H
√

H ′(C6G2 +C7G+C8)

= −ℓ0s0s1sinφ0

(

σ
√

H ′(C9G2 +C10G+C11)+σ ′√H(C12G
2 +C13G+C14)

)

where

A(G) = C1G4 +C2G3 +C3G2 +C4G+C5,
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B(G) = C6G2 +C7G+C8,

E(G) = C9G2 +C10G+C11,and

F(G) = C12G
2 +C13G+C14.

Therefore,

A(G)+σσ ′√H
√

H ′B(G) = −ℓ0s0s1sinφ0(σ
√

H ′E(G)+σ ′√HF(G)).

Once we square both sides, we no longer have our sinφ0 terms, but we could introduce

extraneous solutions into our equation.

SinceG = s1s0cosφ0, all values ofφ0 are in the form of cosφ0 once we square both

sides of the equation above. After squaring, we obtain:

A(G)2 +2A(G)B(G)σσ ′√H
√

H ′ +HH ′B(G)2

= ℓ2
0s2

0s2
1sin2φ [H ′E(G)2 +2σσ ′√H

√
H ′E(G)F(G)+HF(G)2].

This can be rearanged to make the squared QUARTIC be:

A(G)2 +2A(G)B(G)+HH ′B(G)2− ℓ2
0(s

2
0s2

1−G

+σσ ′√H
√

H ′(2A(G)B(G)− ℓ2
0(s

2
0s2

1−G2)2E(G)F(G)).

We can expained this formula to find:

0 = D1G8 +D2G7 +D3G6 +D4G5 +D6G4 +D7G3 +D8G2 +D9G+D10

+σσ ′√H
√

H ′(D11G
6 +D12G

5 +D13G
4 +D14G

3 +D15G
2 +D16G+D17).

where the coefficientsDi for i = 6,7, ..17. (see Maple worksheet hex.mw) Each of theDi

are independent ofσ ,σ ′, and only depend onℓ0, ℓ1,c0, andc1.
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By squaring our QUARTIC, we were able to eliminate our sine function, but we are

still left with a square root in our equation. We can not solveour squared QUARTIC forφ0

until we can simplify this equation further.

The way we can try to simplify our squared QUARTIC is by guessing the factors. We

can study this equation with its square root by settingℓ0 = ℓ1 or θ0 = θ1. Through the use of

Maple programming, we are able to setℓ0 = ℓ1 in our squared QUARTIC equation. Maple

is able to factor this quantity, and we can notice that bothK and K′ appear in Maple’s

factorization. Next, we can setθ0 = θ1 in our Maple program, and ask the computer to

factor that quantity. It also containsK andK′ as factors. Therefore, we can guess thatK

andK′ should factor from our general squared QUARTIC equation. Through long division

using Maple, we are able to see thatKK′ divides evenly into the general squared QUARTIC.

Since we are given the restriction ofK > 0 andK′ > 0, we can cancel out our coefficients

since it will not effect the resulting solutions. This leaves us with the general squared

QUARTIC equation:

0 = (D1G4 + D2G3 + D3G2 + D4G + D5 + τ
√

H
√

H ′(D6G2 + D7G + D8))

(Squared QUARTIC)

whereτ = σσ ′. Let us define

A(G) =D1G4 +D2G3 +D3G2 +D4G+D5,

B(G) =D6G2 +D7G+D8.

Therefore squared QUARTIC becomes

A(G)+ τ
√

H
√

H ′B(G) = 0.

Supposeℓ0, ℓ1,θ0,θ1,φ0,σ , andσ ′ satisfies(K > 0),(K′ > 0),(H ≥ 0), and(H ′ ≥ 0),

and solves QUARTIC. Thenℓ0, ℓ1,θ0,θ1, andτ must solve squared QUARTIC. Conversely,

if ℓ0, ℓ1,θ0,θ1,φ0, and τ satisfies(K > 0),(K′ > 0),(H ≥ 0), and (H ′ ≥ 0), and solve
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squared QUARTIC, then multiplying both side byKK′ and substitutingσσ ′ for τ creates:

σσ ′√H
√

H ′[2A(G)B(G)−2ℓ2
0(s

2
0s2

1−G2)E(G)F(G)]

= ℓ2
0(s

2
0s2

1−G2)[H ′E(G)2 +HF(G)2]−A(G)2−HH ′B(G)2.

By rearrangement, we receive

A(G)2 +2A(G)B(G)σσ ′√H
√

H ′ +HH ′B(G)2

= ℓ2
0s2

0s2
1sin2φ [H ′E(G)2 +2σσ ′√H

√
H ′E(G)F(G)+HF(G)2].

We can factor this equation to be:

(A(G)+σσ ′√H
√

H ′B(G))2 = (ℓ0s0s1sinφ [σ
√

H ′E(G)+σ ′√HF(G)])2.

Note if (σ ,σ ′) is replaced by(−σ ,−σ ′) the quantityτ = σσ ′ remains unchanged. Thus,

there is a unique choice of(σ ,σ ′) such thatτ = σσ ′ and

A(G)+σσ ′√H
√

H ′B(G) = −ℓ0s0s1sinφ0[σ
√

H ′E(G)+σ ′√HF(G)].

(Rearranged QUARTIC)

Thus for thisσ ,σ ′, we obtain a solutionℓ0, ℓ1,θ0,θ1,φ0,σ , andσ ′ of QUARTIC. Using

this correspondence, we gain no extraneous solutions by focusing on squared QUARTIC.

2.5. TWICE SQUARED QUARTIC

Squared QUARTIC can be rearranged to be

A(G) = −τ
√

H
√

H ′B(G).

Squaring both sides we getA(G)2 = τ2HH ′
B(G)2. Through rearrangement, we obtain

twice squared QUARTIC to be:

A(G)2−HH ′
B(G)2 = 0.
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Therefore, if(ℓ0, ℓ1,θ0,θ1,φ0,τ) andH,H ′ > 0, and solves twice squared QUARTIC, then

(ℓ0, ℓ1,θ0,θ1,φ0) will solve squared QUARTIC. Conversely, if(ℓ0, ℓ1,θ0,θ1,φ0) satisfies

H,H ′ > 0 and solve twice squared QUARTIC, then it is always possible to choose exactly

one value ofτ so that(ℓ0, ℓ1,θ0,θ1,φ0,τ) solves squared QUARTIC. This correspondence

shows that we gain no extraneous solution of squared QUARTICby focusing attention on

twice squared QUARTIC.

Twice squared QUARTIC is an eight degree polynomial in G. Maple can factor this

equation as follows:

0 =(E1G6 +E2G5 +E3G4 +E4G3 +E5G2 +E6G+E7) (Twice Squared QUARTIC)

(2ℓ2
1G2 +(−ℓ2

0 +(4c1 +4c0)ℓ1ℓ0 +(−3−4c0c1)ℓ
2
1)G+(−1+3c0c1

+2c2
1 +2c2

0)ℓ
2
0 +(−2c1−2c0−4c1c2

0−4c2
1c0)ℓ1ℓ0 +(1+3c0c1 +2c2

0c2
1)ℓ

2
1).

Let us nameE1G6 + E2G5 + E3G4 + E4G3 + E5G2 + E6G+ E7 Six Degree, and our qua-

dratic equation FACTOR.

In the next chapter, we will discover an interpretation of the quadratic FACTOR.
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CHAPTER 3

HEXAGONS WITH AN AXIS OF THREE-FOLD ROTATIONAL

SYMMETRY

We will use geometry to find a special case of our three-fold symmetric hexagon. In

this chapter, we will study when our hexagon is knotted and unknotted around an axis

of rotational symmetry. We will refer to a hexagon with an axis of three-fold rotational

symmetry as asymmetrichexagon.

3.1. KNOTTED

v5,A′′
0

v4,A′
1

v6,A′′
1

v3,A′
0

v1,A0θ0

ℓ0

ℓ1

ℓ1

θ0
ℓ0

θ1
θ1

v2,A1
y axis

x axis

θ1

θ0

ℓ0 ℓ1

FIGURE 10. A Diagram of a Knotted Symmetric Hexagon

Let us study when a three-fold symmetric hexagon is knotted and symmetric. From

figure 10, which views the hexagon projected along the z-axis, we can notice a relationship
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between the points(v1,v4),(v2,v5) and (v6,v3). To create a knotted shape, their z-axis

values must be of the same value with opposite signs. Their x and y coordinates must vary

by the different variables ofε andδ to generate the different lengths and angles involving

those two points. This gives explicit values for the vertices:

v1 =











a

ε

b











, v4 =











a

−δ

−b











(*)

v5 =











−a
2 −

ε
√

3
2

a
√

3
2 − ε

2

b











, v2 =











−a
2 + δ

√
3

2

a
√

3
2 + δ

2

−b











v3 =











−a
2 + ε

√
3

2

−a
√

3
2 − ε

2

b











, v6 =











−a
2 −

δ
√

3
2

−a
√

3
2 + δ

2

−b











.

Supposev1 = RA0,v2 = RA1,v3 = RA′
0
,v4 = RA′

1
,v5 = RA′′

0
, andv6 = RA′′

1
. This creates a

family of knotted three-fold symmetric hexagons parameterized bya,b,ε, andδ . However,

our general hexagon was described in terms ofℓ0, ℓ1,θ0,θ1,σ ,σ ′ andφ0. Therefore, we

must find the values of those variables in terms ofa,b,ε, andδ . We can find these values

using the distance formula and the law of cosines. We know from the law of cosines that :

(v3−v4) · (v5−v4) =
3a2

2
− δ 2

2
− εδ + ε2 +4b2 = ℓ0ℓ1c1 (33)

(v2−v1) · (v6−v1) =
3a2

2
− ε2

2
− εδ +δ 2 +4b2 = ℓ0ℓ1c0. (34)
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From the distance equations, we can find:

(v2−v1) · (v2−v1) = 3a2−aδ
√

3+δ 2−a
√

3ε −δε + ε2 +4b2 = ℓ2
0 (35)

(v6−v1) · (v6−v1) = 3a2 +aδ
√

3+δ 2 +a
√

3ε −δε + ε2 +4b2 = ℓ2
1. (36)

These calculations came from the Maple worksheet abed.mw from lines 13− 17. From

these vertices, we are also able to compute cosφ0. According to [4], define

E1 =(v6−v1)−
v2−v1

‖v2−v1‖
(

v2−v1

‖v2−v1‖
· (v6−v1)),

E2 =(v3−v2)−
v2−v1

‖v2−v1‖
(

v2−v1

‖v2−v1‖
· (v3−v2)),

andE3 =
v2−v1

‖v2−v1‖
;

then

cosφ0 =
E1

‖E1‖
· E2

‖E2‖
(**)

=
(

−2δε3 +5δ 2ε2 +3ε2a2−8b2δε −12a2δε −2δ 3ε

+8ab2ε
√

3+3a2δ 2 +8a2b2 +9a4 +8ab2δ
√

3
)

·
(

(

(3a2 +δ 2−2εδ )2 +16b2(a2 +δ 2)
)

(

(3a2 + ε2−2εδ )2 +16b2(a2 + ε2)
)

)− 1
2
.

and

sinφ0 =
E1

‖E1‖
× E2

‖E2‖
·E3
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=
(

4
√

3b(−3a2 +
√

3aε +
√

3aδ +3δε)

·
√

3a2−
√

3aδ +δ 2−
√

3aε −δε + ε2 +4b2
)

·
(

(

(3a2 +δ 2−2εδ )2 +16b2(a2 +δ 2)
)

·

(

(3a2 + ε2−2εδ )2 +16b2(a2 + ε2)
)

)− 1
2

Since the value under the square root is always positive in cosφ0, we notice that the value

of cosφ0 can never be imaginary. Also, we notice that the sign ofφ0 is the sign of the sinφ0.

The sign of sinφ0 depends on its numerator:

b(−
√

3a2 +a(ε +δ )+
√

3εδ ). (37)

Therefore, we can find the sign ofφ0 by finding the sign of the above expression.

Now we need to find the value ofσ and σ ′ in our symmetric case. If we take our

vertices from the knotted case, we can plug them into our inequalitiy (4) and(8) to find the

value ofσ andσ ′ to be:

σ = sign det





1 1 1 1

v6 v1 v3 v5



 = sign
(

3
√

3b(a2 + ε2)
)

,

and

σ ′ = sign det





1 1 1 1

v1 v2 v6 v4



 = sign
(

3
√

3b(a2 +δ 2)
)

.

Thus,σ = σ ′ = sign(b). From these formulas, it is clear that theσ andσ ′ are dependent on

theb value. Ifb is positive, thenσ = σ ′ = 1. If b is negative, thenσ = σ ′ =−1. Therefore,

we know all possible values of(σ ,σ ′) for our knotted symmetric case.

Using this information, we can solve fora,b,ε, andδ in terms ofℓ0, ℓ1,θ0 andθ1 in

the Maple worksheet abed.mw. The expressions fora,b,ε, andδ are not obviously easily

simplified. However whena,b,ε, andδ have real solutions, we can plug them into(∗∗)
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(see abed.mw) to find:

cosφ0 =
1

4ℓ2
1s1s0

(

ℓ2
0−4(c1 +c0)ℓ1ℓ0 +(4c0c1 +3)ℓ2

1

+
√

ℓ4
0−8(c0 +c1)ℓ1ℓ

3
0 +2(8c0c1 +7)ℓ2

1ℓ
2
0−8(c0 +c1)ℓ

3
1ℓ0 + ℓ4

1

)

.

(38)

The sinφ0 function was also not easily simplified. Therefore, we can find the sign ofφ0

from the non square root values of equation(37):

(ℓ4
1 +6ℓ0ℓ

3
1c0 +6ℓ0ℓ

3
1c1−14ℓ2

1ℓ
2
0−16ℓ2

0ℓ
2
1c1c0

− ℓ2
1SQ+2ℓ0ℓ1c0SQ+10ℓ3

0ℓ1c0 +2ℓ0ℓ1c1SQ+10ℓ3
0ℓ1c1−3ℓ2

0SQ−3ℓ4
0)

·(−2ℓ0ℓ1c1 +2ℓ2
1−2ℓ0ℓ1c0 +2ℓ2

0 +SQ)(−1)

where

SQ=
√

ℓ4
0−8ℓ3

0ℓ1c0−8ℓ3
0ℓ1c1 +14ℓ2

1ℓ
2
0 +16ℓ2

0ℓ
2
1c1c0−8ℓ0ℓ

3
1c0−8ℓ0ℓ

3
1c1 + ℓ4

1

-2.4

-0.4

1.6

-3.2 -1.2 0.8 2.8

FIGURE 11. A Knotted Hexagon with Three-Fold Symmetry
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From this information, we can use our Maple program hexplot.mw to create a three

dimensional model of the knotted hexagon as specified in Apendix B. However, this model

gives a different embedding than the described in(∗). In Figure 11, there is an exam-

ple of this knotted family whereθ0 = 0.6826197291,θ1 = 0.6826197291,ℓ0 = 1, ℓ1 =

1.303369776,σ = 1,σ ′ = 1 andφ0 = 0.3322960944. We can first check to see if the restric-

tions hold for these values.K = K′ = 0.4442868602 , therefore the restriction thatK,K′ > 0

holds.c1−c0 +
√

3(s1−s0) = 1.732050808 andc1−c0 +
√

3(s1−s0) = −1.732050808,

therefore−.424513652< cosφ0 < 1.682086412. Our cosφ0 = 0.9452958170, therefore

is in the range. We also need to check the values ofa,b,ε and δ . From Maple work-

sheet abed.mw, we find thata = .4036783441,b = .4466801395,ε = 0.2498503168, and

δ = 0.2498503168. Since these values are positive and real, we canfind a knotted hexagon

with our givenℓ0, ℓ1,θ0,θ1,σ ,σ ′ andφ0. From this information, we can find:

φ0 φ1 φ ′′
1 σ σ ′ Figure

0.3322960944−1.330419102 1.330419102 1 1 11
−0.3322960944−1.358031864 1.358031864−1 −1 11

.

See Maple worksheet rot.mw line 11 to rotate this three dimensional figure.

3.2. UNKOTTED

Now let us consider the unknotted hexagon with an axis of rotational symmetry. We

can create this polygon by connecting the verticesv1, ...,v6 in a different manner. This

allows us to use the same vertices as we found in our knotted case, but they will appear in a

different order. In this configuration,v1 = RA0,v2 = RA1,v5 = RA′
0
,v6 = RA′

1
,v3 = RA′′

0
and

v4 = RA′′
1
. We must find the values ofℓ0, ℓ1,θ0 andθ1 in terms ofa,b,ε, andδ . The new

expressions from Maple worksheet abed2.mw are:

(v1−v2) · (v1−v2) = 3a2−aδ
√

3+δ 2 + ε2−aε
√

3−δε +4b2 = ℓ2
0

(v1−v4) · (v1−v4) = δ 2 +2δε + ε2 +4b2 = ℓ2
1
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v1,A0

ℓ0

ℓ0

v2,A1
y axis

x axis

v5,A′
0

v6,A′
1

v3,A′′
0

ℓ1

θ0

ℓ0

ℓ1

ℓ1

v4,A′′
1

θ1

θ0

θ1

θ0

θ1

FIGURE 12. A Diagram of a Unknotted Symmetric Hexagon

(v1−v2) · (v5−v2) = −aδ
√

3
2

− εa
√

3
2

+δ 2 +
δε
2

− ε2

2
+4b2 = ℓ0ℓ1c1

(v2−v1) · (v4−v1) = −δ 2

2
+ ε2− aδ

√
3/2

2
+

δε
2

− aε
√

3
2

+4b2 = ℓ0ℓ1c0.

Again, we can compute a value for cosφ0 where as in [4], we define

E1 =(v4−v1)−
v2−v1

‖v2−v1‖
(

v2−v1

‖v2−v1‖
· (v4−v1)),

E2 =(v5−v2)−
v2−v1

‖v2−v1‖
(

v2−v1

‖v2−v1‖
· (v5−v2)),

andE3 =
v2−v1

‖v2−v1‖
.
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Therefore,

cosφ0 =
E1

‖E1‖
· E2

‖E2‖

=
(

6a2εδ +δ 3ε +2δ 2ε2−3
√

3aε2δ +3
√

3aδ 2ε +3a2δ 2

+3a2ε2−
√

3aδ 3−16a2b2 +16δεb2−δε3 +
√

3aε3)

(

(ε4−2
√

3aε3 +2ε3δ −4
√

3aε2δ +3a2ε2

+ ε2δ 2 +16ε2b2−2
√

3aεδ 2 +6a2εδ +3a2δ 2 +16a2b2)

(δ 4−2
√

3aε3 +2εδ 3−4
√

3aεδ 2 +3a2δ 2 + ε2δ 2

+16δ 2b2−2
√

3aε2δ +6a2εδ +3a2ε2 +16a2b2)

)−( 1
2)

.

(39)

Also,

sinφ0 =
E1

‖E1‖
× E2

‖E2‖
·E3

= 8ab(δ + ε)

√

3a2−
√

3aδ +δ 2−
√

3aε − εδ + ε2 +4b2

(

(ε4−2
√

3aε3 +2ε3δ −4
√

3aε2δ +3a2ε2

+ ε2δ 2 +16ε2b2−2
√

3aεδ 2 +6a2εδ +3a2δ 2 +16a2b2)

(δ 4−2
√

3aε3 +2εδ 3−4
√

3aεδ 2 +3a2δ 2 + ε2δ 2

+16δ 2b2−2
√

3aε2δ +6a2εδ +3a2ε2 +16a2b2)

)−( 1
2)

Again, we notice that the sign ofφ0 is the sign of the sinφ0. The sign of sinφ0 depends on

its numerator:

aδ (δ + ε) (40)
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Therefore, we can find the sign ofφ0 by finding the sign of the above expression.

We can also find the values ofσ andσ ′. If we take our vertices from the unknotted

case, we can plug them into our equations(4) and(8) for theσ andσ ′. As in the knotted

case:

σ = sign det





1 1 1 1

v4 v1 v5 v3



 = sign(3
√

3b(a2 + ε2)),

and

σ ′ = sign det





1 1 1 1

v3 v2 v4 v6



 = sign(3
√

3b(a2 +δ 2)).

Thus,σ = σ ′ = sign(b).

We must solve for the values ofa,b,ε, and δ in terms ofℓ0, ℓ1,θ0,θ1, and φ0 (see

Maple worksheet abed2.mws). As before, the expressions arecomplicated. Whena,b,ε,

andδ has real solutions, we can substituted them equation(38) the formula miraculously

appears:

cosφ0 =
1

4ℓ2
1s1s0

(

ℓ2
0−4(c1 +c0)ℓ1ℓ0 +(4c0c1 +3)ℓ2

1

−
√

ℓ4
0−8(c0 +c1)ℓ1ℓ

3
0 +2(8c0c1 +7)ℓ2

1ℓ
2
0−8(c0 +c1)ℓ

3
1ℓ0 + ℓ4

1

)

.

(41)

Comparing this equation to(37), the only difference is the sign in front of the square

root. From this equation, we have found a symmetric non-knotted hexagon with three-fold

symmetry.

We can find the sign of theφ0 value by finding sign of the non square root values of

(40).

(−ℓ1 + ℓ0c1)(ℓ
2
0−2ℓ0ℓ1c0 + ℓ2

1)

−ℓ3
0c1 +2ℓ2

0ℓ1c0c1 + ℓ3
0c0 +13ℓ0ℓ

2
1c0− ℓ0ell21c1−8ℓ2

0ℓ1c2
0−6ℓ3

1
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FIGURE 13. A Unknotted Symmetric Hexagon

Figure 13 is a good example of this family. In this figure,θ0 = 1, θ1 = 1.303369776,

ℓ0 = .6826197291, andℓ1 = .6826197291. From our equation, we obtainφ0 = 2.368947425.

We can check to see if the restrictions hold for these values.K = K′ = .5316074064 ,

therefore the restriction thatK,K′ > 0 holds. c1− c0 +
√

3(s1− s0) = 1.732050808 and

c1−c0 +
√

3(s1−s0) = −1.732050808, therefore−.424513652< cosφ0 < 1.682086412.

Our cosφ0 = 0.1699147542, therefore is in the range. We can calculate:

φ0 φ1 φ ′′
1 σ σ ′ Figure

1.400053162−1.638255513 1.638255514 1 1 13
−1.400053162−1.672169761 1.672169761−1 −1 13

.

See Maple worksheet rot.mw line 5 to rotate this three dimensional figure.

It will be useful to have a single quadratic equation in G which characterize the rota-

tionally symmetric case. Whena,b,ε, andδ has real solutions, from(37) and (39) we

get

0 =2ℓ2
1G2 +(−ℓ2

0 +(4c1 +4c0)ℓ1ℓ0 +(−3−4c0c1)ℓ
2
1)G (FACTOR)

+(−1+3c0c1 +2c2
1 +2c2

0)ℓ
2
0 +(−2c1−2c0−4c1c2

0−4c2
1c0)ℓ1ℓ0

+(1+3c0c1 +2c2
0c2

1)ℓ
2
1.
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This quadratic will be referred to as FACTOR. Notice that FACTORis our quadratic equa-

tion that we found that factored out of our twice squared QUARTIC in section 2.5.

3.3. HEXAGONS WITH AN AXIS OF ROTATIONAL SYMMETRY WHERE

θ0 = θ1

Looking at the formulas forθ0 andθ1 in terms ofa,b,ε, andδ we see that ifε = δ then

θ0 = θ1. Conversely, using the Maple expressions fora,b,ε, andδ in terms ofℓ0, ℓ1,θ0 and

θ1, we see that ifθ0 = θ1 thenε = δ . Thus in the family of symmetric hexagonsθ0 = θ1 if

and only ifε = δ .

The solutions ofa,b,ε = δ are easily reduced in the knotted hexagon to be:

a =
1
12

(

√

12a2 +6
√

3(ℓ2
0− ℓ2

1)+

√

12a2−6
√

3(ℓ2
0− ℓ2

1)

)

b =
1
12

(

−
√

12a2 +6
√

3(ℓ2
0− ℓ2

1)+

√

12a2−6
√

3(ℓ2
0− ℓ2

1)

)

ε = δ =
1
12

(

−6(ℓ2
0 + ℓ2

1)+48ℓ0ℓ1c−
√

12a2 +6
√

3(ℓ2
0− ℓ2

1) ·
√

12a2−6
√

3(ℓ2
0− ℓ2

1)

)( 1
2)

Therefore, we can produce a knotted hexagon whena,b,ε = δ are real. There are a

couple of restrictions that insure thata,b,ε = δ exist:

2a2 +
√

3(ℓ2
0− ℓ2

1) > 0 and 2a2−
√

3(ℓ2
0− ℓ2

1) > 0.

Forb to exist, we must insure that

−6(ℓ2
0 + ℓ2

1)+48ℓ0ℓ1c >

√

12a2 +6
√

3(ℓ2
0− ℓ2

1) ·
√

12a2−6
√

3(ℓ2
0− ℓ2

1).

We can simplify this inequality to:

(6ℓ0ℓ1c−a2)2− (12a2 +6
√

3(ℓ2
0− ℓ2

1)) · (12a2−6
√

3(ℓ2
0− ℓ2

1)) > 0.
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This equation has many cancellations leaving us with the restriciton that

12ℓ2
0ℓ

2
1(4c2−1) > 0.

Since cosθ > 0, we have found that knotted hexagons around an axis of symmetry must

have 0< θ ≤ π
3 .

This informations allows us to find the simplified formula forcosφ0 for this case. We

can solve for these values easily by settingθ0 = θ1 = θ . When the given values satisfy

2a2 +
√

3(ℓ2
0− ℓ2

1) > 0, 2a2−
√

3(ℓ2
0− ℓ2

1) > 0, and 0< θ ≤ π
3 , the wedge angle of the

knotted hexagon will be:

cosφ0 =
1

4ℓ2
1s2

(

ℓ2
0−8ℓ1ℓ0c+(3+4c2)ℓ2

1

+
√

ℓ4
0−16ℓ1ℓ

3
0c+(14+16c2)ℓ2

1ℓ
2
0−16ℓ3

1ℓ0c+ ℓ4
1

)

.

(42)

The solutions fora,b,ε = δ in the unknotted hexagon produce different values which

are found to be:

a =

√
3

72(ℓ0c− ℓ1)ℓ1
·
(

−a2−
√

12a2 +6
√

3(ℓ2
0− ℓ2

1)

)

·
√

12a2−6
√

3(ℓ2
0− ℓ2

1))·

√

42ℓ2
1−48ℓ0ℓ1c+6ℓ2

0−6
√

12a2 +6
√

3(ℓ2
0− ℓ2

1) ·
√

12a2−6
√

3(ℓ2
0− ℓ2

1)

b =
1
12

√

−6ℓ2
1 +48ℓ0ℓ1c−6ℓ2

0 +6
√

12a2 +6
√

3(ℓ2
0− ℓ2

1) ·
√

12a2−6
√

3(ℓ2
0− ℓ2

1)

ε = δ =
1
12

√

42ℓ2
1−48ℓ0ℓ1c+6ℓ2

0−6
√

12a2 +6
√

3(ℓ2
0− ℓ2

1) ·
√

12a2−6
√

3(ℓ2
0− ℓ2

1)

To insure, that the values ofa,b,ε = δ are real for the unknotted hexagon:

(2a2 +
√

3(ℓ2
0− ℓ2

1)) · (2a2−
√

3(ℓ2
0− ℓ2

1)) > 0.
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Also, we must check that the other values under the square roots of a, andε = δ are real

by:

(42ℓ2
1−48ℓ0ℓ1c+6ℓ2

0)
2 > 36(12a2 +6

√
3(ℓ2

0− ℓ2
1)) · (12a2−6

√
3(ℓ2

0− ℓ2
1)).

After expanding this value, and moving the whole quantity onone side, we recieve that

1728ℓ2
1(ℓ0c− ℓ1)

2 > 0.

This statement is always true, therefore,a andε = δ do not need any more restrictions to

make their quantities real. Now, we must check thatb is real by:

(−6ℓ2
1 +48ℓ0ℓ1c−6ℓ2

0)
2 > −36(12a2 +6

√
3(ℓ2

0− ℓ2
1)) · (12a2−6

√
3(ℓ2

0− ℓ2
1)).

When we simplify this quantity, we recieve the restriction that

72a4 +432ℓ0ℓ1(−2ℓ2
0c+ ℓ0ℓ1 +6ℓ0ℓ1c2−2ℓ2

1c) > 0.

This gives us our two restrictions that allow us to find if an unknotted symmetric hexagon

can be produced when the size angles are all the same.

We can plug in these values ofa,b,ε = δ into equation(41) . When our restrictions are

satisfied, we can find the wedge angle of the unknotted hexagonto be:

cosφ0 =
1

4ℓ2
1s2

(

ℓ2
0−8ℓ1ℓ0c+(3+4c2)ℓ2

1

−
√

ℓ4
0−16ℓ1ℓ

3
0c+(14+16c2)ℓ2

1ℓ
2
0−16ℓ3

1ℓ0c+ ℓ4
1

)

.

(43)

We can find the quadratic FACTOR ofθ that satifies these two equations to be:

2ℓ2
1G2 +(−ℓ2

0 +8ℓ1ℓ0c+(−4c2−3)ℓ2
1)G+(−1+7c2)ℓ2

0 (FACTOR ofθ )

+(−4c−8c3)ℓ1ℓ0 +(1+2c4 +3c2)ℓ2
1
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We can use this factor when we look at the special case of hexagons whereθ0 = θ1 to help

us solve for new families of solutions.
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CHAPTER 4

θ CASE

The special case of a three-fold symmetric hexagon whereθ1 = θ0 = θ is referred to

as theθ case. By setting our angles equal to each other where cosθ = c and sinθ = s, we

note thatH = H ′ = H andE(G) = F(G) = E, and QUARTIC becomes:

A(G)+σσ ′
HB(G) = −ℓ0s2sinφ0

√
H(σ ′ +σ)E.

wherea2 = ℓ2
0 + ℓ2

1−2ℓ0ℓ1c and

H = H ′ = H =−a2
(

2ℓ1G− ℓ1(1+2c2)+ ℓ0(3c−
√

3s)
)

(

2ℓ1G− ℓ1(1+2c2)+ ℓ0(3c+
√

3s)
)

=−a2[(2ℓ1G− ℓ1(1+2c2)+3ℓ0c)2−3ℓ2
0(1−c2)].

This simplified version of our QUARTIC shows that the values of σ andσ ′ play a ma-

jor role in finding the solutions to this equation. Therefore, we must study four sepa-

rate situations ofσ andσ ′ to obtain all solutions of theφ0. The four situations are when

(σ = 1,σ ′ = 1),(σ =−1,σ ′ =−1),(σ =−1,σ ′ = 1), and(σ = 1,σ ′ =−1). In this chap-

ter, we will study these four separate cases of our sigma values and find what families are

produced in each situation.

4.1. τ = σσ ′ IS LESS THAN ZERO

When theσ andσ ′ have different signs in our special QUARTIC, our term(σ ′+σ) in

the coefficient of sinφ0 equals zero. Also, we notice that the only other coefficient with the
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values ofσ andσ ′ in the QUARTIC appear asτ = σσ ′. Thus whenτ = −1, we get

A(G)−HB(G) = 0 (Special QUARTIC)

Therefore both cases when(σ = −1,σ ′ = 1) and(σ = 1,σ ′ = −1) both have the same

solutionφ0 to the QUARTIC. When we use Maple to factor Special QUARTIC, we receive

0 = −(ℓ1− ℓ0)(ℓ1 + ℓ0)
(

2ℓ2
1G2 +(−4c2ℓ2

1 +3ℓ2
0 + ℓ2

1)G− ℓ2
1−3ℓ2

0 +2ℓ2
1c4 +3ℓ2

0c2

−c2ℓ2
1

)(

ℓ2
1G2 +(2ℓ1ℓ0c−2c2ℓ2

1)G+2ℓ1ℓ0c+ ℓ2
0c2− ℓ2

0 + ℓ2
1c4−2c3ℓ1ℓ0− ℓ2

1

)

= −(ℓ1− ℓ0)(ℓ1 + ℓ0)BOATK

(44)

whereK = K = K′ = a2− (c(ℓ0− ℓ1c)+ ℓ1G)2 and

BOAT=
(

2ℓ2
1G2 +(−4c2ℓ2

1 +3ℓ2
0 + ℓ2

1)G− ℓ2
1−3ℓ2

0 +2ℓ2
1c4 +3ℓ2

0c2−c2ℓ2
1

)

.

0.0
0.5

1.0
1.5

2.00.950.45-0.05

0.0

0.5

1.0

1.5

FIGURE 14. A Boat-Shaped Hexagon whereθ1 = θ0
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Since we are given the restriction thatK > 0, we can find values ofφ0 by setting

BOAT= 0. The two solutions forφ0 from BOAT are

cosφ0 =
1

4ℓ2
1s2

(4c2ℓ2
1−3ℓ2

0− ℓ2
1 +

√

−48ℓ2
1ℓ

2
0c2 +9ℓ4

0 +30ℓ2
0ℓ

2
1 +9ℓ4

1) (45)

cosφ0 =
1

4ℓ2
1s2

(4c2ℓ2
1−3ℓ2

0− ℓ2
1−

√

−48ℓ2
1ℓ

2
0c2 +9ℓ4

0 +30ℓ2
0ℓ

2
1 +9ℓ4

1) (46)

Using these results, we can study what families of solutionscan be produced by equa-

tions(45) and(46). In our Maple program, we can observe that equation(45) and(46) cre-

ate the same family of solutions where equation(45)’s value ofφ0 is equations(46)’s value

of φ ′
0. These solutions forφ0 creates a boat-shaped hexagon. This family is also unknotted,

and does not have an axis of three-fold rotational symmetry.In Figure 14,θ0 = π
2 , θ1 = π

2 ,

ℓ0 = 1, andℓ1 = 2. From equation(45), we obtainφ = 0.9333197962. This solution exist

since the restrictions hold whereK = K′ = 4.220620882> 0 and−.6160254040< G <

1.116025404. This solution from equation(46) fails to satisfy the restrictions.

In QUARTIC, we have found that when(ℓ0 = ℓ1) our equation(44) will always be

solved. This shows that we have a “f lexible” family of solutions.

THEOREM 4.1. Whenℓ0 = ℓ1,θ0 = θ1, andσ =−σ ′, there exists a three-fold symmet-

ric hexagon for all theφ0 values satisfing our restrictions as discussed in[6].

This family was discussed in [6], but now we have now shown those solutions are not

extraneous.

4.2. τ = σσ ′ IS GREATER THAN ZERO

We have studied what happened when the signs ofσ andσ ′ were different. Now we

must investigate what happens when the signs are the same. However, this process becomes

more difficult because the coefficients of sinφ0 are still present. This leaves us with
√

H,

which cannot be factored. Therefore, we must use the squaredQUARTIC equation to find

the solutions for ourθ case.
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In the theta case, we will find our squared QUARTIC equation from section 2.4 to be:

A(G)+ τHB(G) = 0.

To simplify our squared QUARTIC, we can plug theτ = 1 into our equation. We obtain

that squared QUARTIC factors as follows:

0 =
(

2ℓ2
1G2 +(−ℓ2

0 +8ℓ1ℓ0c+(−4c2−3)ℓ2
1)G+(−1+7c2)ℓ2

0

+(−4c−8c3)ℓ1ℓ0 +(1+2c4 +3c2)ℓ2
1

)

(

2ℓ2
1(−8ℓ1ℓ0c+3ℓ2

0−2ℓ0ℓ1 +3ℓ2
1)(−8ℓ1ℓ0c+3ℓ2

0 +2ℓ0ℓ1 +3ℓ2
1)G

2

+(−9ℓ6
0 +72ℓ5

0cℓ1 +(−9−324c2)ℓ2
1ℓ

4
0 +(144c+576c3)ℓ3

1ℓ
3
0

+(−19−472c2−256c4)ℓ4
1ℓ

2
0 +(168c+192c3)ℓ5

1ℓ0 +(−27−36c2)ℓ6
1)G

+(6c2−9)ℓ6
0 +(−360c3 +36c)ℓ1ℓ

5
0 +(690c4−21+141c2)ℓ2

1ℓ
4
0

+(−480c5−624c3 +24c)ℓ3
1ℓ

3
0 +(128c6 +444c4 +249c2−11)ℓ4

1ℓ
2
0

+(−60c−168c3−96c5)ℓ5
1ℓ0 +(27c2 +18c4 +9)ℓ6

1

)

=FACTOR·CHAIR.

Notice that the first quadratic factor is FACTOR ofθ . Therefore, we can verify that our

equations for the knotted and unknotted hexagons with rotational three-fold symmetry are

correct. Using this information, we can focus our attentionon the other quadratic factor

that is called CHAIR. CHAIR’s roots are:
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FIGURE 15. A Chair-Shaped Hexagon whereθ1 = θ0

cosφ0 =
1

4ℓ2
1(3ℓ2

0 +(−8c−2)ℓ1ℓ0 +3ℓ2
1)(3ℓ2

0 +(−8c+2)ℓ1ℓ0 +3ℓ2
1)s

2
·

(

9ℓ6
0−72cℓ5

0ℓ1 +(9+324c2)ℓ2
1ℓ

4
0 +(−144c−576c3)ℓ3

1ℓ
3
0

+(19+472c2 +256c4)ℓ4
1ℓ

2
0 +(−168c−192c3)ℓ5

1ℓ0 +(27+36c2)ℓ6
1

+(3ℓ4
0−24ℓ1ℓ

3
0c+(10+32c2)ℓ2

1ℓ
2
0−24ℓ3

1ℓ0c+3ℓ4
1)·

√

3(3ℓ4
0 +(−16c2 +10)ℓ2

1ℓ
2
0 +3ℓ4

1)

)

(47)
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cosφ0 =
1

4ℓ2
1(3ℓ2

0 +(−8c−2)ℓ1ℓ0 +3ℓ2
1)(3ℓ2

0 +(−8c+2)ℓ1ℓ0 +3ℓ2
1)s

2
·

(

9ℓ6
0−72cℓ5

0ℓ1 +(9+324c2)ℓ2
1ℓ

4
0 +(−144c−576c3)ℓ3

1ℓ
3
0

+(19+472c2 +256c4)ℓ4
1ℓ

2
0 +(−168c−192c3)ℓ5

1ℓ0 +(27+36c2)ℓ6
1

− (3ℓ4
0−24ℓ1ℓ

3
0c+(10+32c2)ℓ2

1ℓ
2
0−24ℓ3

1ℓ0c+3ℓ4
1)·

√

3(3ℓ4
0 +(−16c2 +10)ℓ2

1ℓ
2
0 +3ℓ4

1)

)

(48)

We know that aφ0 exists for a given values of bonds and angles for equations 45and

46 when

3ℓ4
0 +(−16c2 +10)ℓ2

1ℓ
2
0 +3ℓ4

1 > 0.

Chair’s factors produceφ0 that create a non-knotted polygons without any rotational

symmetry along an axis. However, they do create a chair shaped polygon. In Figure 15,

we can see an example of a hexagon in this family whoseφ0 was calculated by equation

(46). When ℓ0 = 1, ℓ1 = 2, θ0 = π
4 , and θ1 = π

4 , we obtainφ = 1.288564606 in our

Figure 15. This solution exist since the restrictions hold whereK = K′ = 3.377241071> 0

and−0.04809079475< G < 1.7755483092. Equation 45 and 46 are related because they

both form the same polygon. However, they take a different perspective on the hexagon.

Equation 46 produces aφ0, and equation 4 creates anotherφ0 that is equal to equation 45

φ ′
0.

Now that we have found all the families of hexagons that are created whenθ1 = θ0, we

can see that we have specific restrictions on knotted hexagons. In our examples, we only

saw one family of solutions that create a knotted hexagon. This leads ut to the following.

CONJECTURE4.2. Every knotted three-fold symmetric hexagon withθ1 = θ0 contains

an axis of rotational symmetry.

50



We have learned that there are 4 different families of hexagons whereθ1 = θ0. All of

our families exist and produce beautiful graphs as shown in our Figures. We will use this

information to learn more about our general hexagon with three-fold symmetry.

4.3. LEARNING FROM θ CASE

We have already seen that our QUARTIC can be simplified in ourθ case to become:

A(G)+σσ ′
HB(G) = −ℓ0s2sinφ0

√
H(σ ′ +σ)E.

We can square this equation to produce squared QUARTIC from section 2.4.

0 = A(G)+ τHB(G).

We know that our squared QUARTIC in theθ case simplifies whenτ = 1 to

0 = FACTOR·CHAIR.

Whenτ = −1, QUARTIC factored into

A(G)−HB(G) = (ℓ0− ℓ1)(ℓ0 + ℓ1)BOATK

, and then squared QUARTIC is

0 = (ℓ0− ℓ1)
2(ℓ0 + ℓ1)

2BOAT2.

We can study theθ case in our twice squared QUARTIC equation. This equation is

very similar to our general twice squared QUARTIC which was found in section 2.5. In

this situation, twice squared QUARTIC reduces to

A(G)2 = H
2
B(G)2.

This simplifies into

0 = (A(G)−HB(G)) · (A(G)+HB(G)).
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In our θ case, our equations for the twice square QUARTIC becomes

0 = (ℓ0− ℓ1)
4(ℓ0 + ℓ1)

4FACTOR·CHAIR·BOAT2.

Therefore, in theθ case ourSIXDEGREE= (ℓ0− ℓ1)
4(ℓ0 + ℓ1)

4CHAIR·BOAT2.

In the future, we can use this information to help us generalize our general hexagon

with three-fold symmetry.
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CONCLUSION

For any given values ofℓ0, ℓ1,c0,c1,σ ,σ ′ andφ0, we can find all roots of G of the twice

squared QUARTIC. Two of these roots are solutions of the quadratic equationFACTOR=

0. If the restrictions hold, they yield symmetric hexagons.However, we can also find

numerically all six roots of SIXDEGREE, and systematically check each one to see if the

restrictions hold. In this way, we find all shapes of the three-fold symmetric hexagon except

those where either{RA0,RA′′
1
,RA′

0
} or {RA1,RA′

0
,RA′′

1
} are collinear (i.e.K = 0 orK′ = 0).

-1.2

-0.2

0.8

-1.3
-0.3-0.44

0.7

-0.04

0.36

FIGURE 16. A General Unknotted Symmetric Hexagon

For example, we can takeℓ0 = 1, ℓ1 = 2,θ0 = π
2 ,θ1 = π

4 . First we must find what

restriction occur on ourG. Sincec1−c0+
√

3(s1−s0) =−1.214412 andc1−c0−
√

3(s1−

s0) = −.19980084, we find that our G must satisfy

−.2865660925≤ G≤ 0.6294095228.

ForK′ > 0, G 6= 0.7368128792. ForK > 0, G 6= 0.7644805979.
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1.0 0.5 0.0-1.1-0.6-0.10.40.9

-0.4

-0.9

-1.4

FIGURE 17. A Boat-Shaped Hexagon withG = .50872361

1.5
1.0

0.50.0
-1.1 -0.6

0.5

-0.1 0.4

1.0

0.9
0.0

FIGURE 18. A Negative Boat-Shaped Hexagon withG = .50872361

Our twice squared QUARTIC has the factor of FACTOR that yields:

(G− .71229494)(G− .2055982705).

We can notice whenG= .71229494 the restrictions do not hold, therefore we only have one

solution from FACTOR, whenG = .2055982705. We first must check ifa,b,ε, andδ are

real for this value of G. Therefore, we plug in this G into Maple worksheet abed.mw in lines

10-14 to finda= .5678098193,b= .4430212407,ε = .6336005322, andδ = 1.159421699.

Since these values are real and positive, this solution produces an unknotted hexagon ro-

tated around an axis of symmetry as seen in our figure 16. We know from the construction

of symmetric hexagons that the values ofσ andσ ′ must be the same. Therefore, we only
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2.0

1.5

1.0

0.5

0.6 0.1

0.2

-0.4
0.0

-0.3

-0.8

-1.3

-1.8

FIGURE 19. A Chair-Shaped Hexagon withG = .27213284

need to plug our given values into the QUARTIC to find the values of σ andσ ′. When we

plug in those values, we find that ourσ = σ ′ = 1 for our unknotted symmetric hexagons.

2.0

1.5

1.0

0.5

0.0

0.60.1-0.5
-0.4

0.0

0.5

1.0

1.5

FIGURE 20. A Negative Chair-Shaped Hexagon withG = .27213284

If we let ℓ0, ℓ1,θ0,θ1 be the same values as before in SIXDEGREE from twice squared

QUARTIC, we recieve the other solutions, which are:

0 = −.000011(G+6.6644690)(G+ .72381880)(G− .27213284)

(G− .50872361)(G− .55106963)(G− .77428261).

SinceG = −6.6644690,−.72381880, .77428261 do not satisfy our restrictions, we must

only study our other three values to find out which families they produce. WhenG =
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1.5
1.0

0.5
0.0-1.1

-0.6
-0.1

0.4
0.9

0.15

-0.35

-0.85

-1.35

FIGURE 21. A Boat-Shaped Hexagon withG = 0.5510696

0.5510696,0.50872361, squared QUARTIC is solved whenτ = −1. By plugging in these

values into QUARTIC, we find that whenG = 0.50872361, .5510696358,σ = 1 andσ ′ =

−1. WhenG = .27213284, squared QUARTIC is solved whenτ = 1. When we plug this

value into QUARTIC, we find that whenG = .27213284,σ = −1 andσ ′ = −1. These

solutions are summerized in the following table and figures :

G σ σ ′ φ0 φ1 φ ′′
1 Figure

.2055982705 1 1 1.275775411 2.851722140 .2907598626 16

.2055982705−1 −1 −1.275775411−2.851722140 −.2907598626 16
.27213284 −1 −1 1.175746744 .305802540 −2.647968569 19
.27213284 1 1−1.175746744 −.305802540 2.647968569 20
0.50872361 1−1 0.7677951047−.330852634 0.089803675 17
0.50872361−1 1 −0.7677951047 .330852634−0.08980367520 18
0.5510696 1−1 0.6772002174−.581026714 0.207126169 21
0.5510696 −1 1 −0.6772002174 .581026714 −0.207126169 22

.

Therefore, we have found all the solutions.

-1.1 1.5
-0.6

-0.1
1.0

0.4
0.5

0.9 0.0

FIGURE 22. A Negative Boat-Shaped Hexagon withG = 0.5510696
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We hope in the future we can get an explicit factorization of the six degree polynomial

SIXDEGREE from the twice squared QUARTIC equation to get a more general under-

standing of our general three-fold symmetric hexagon. Perhaps we can use the property

that wheneverφ0 solves twice squared QUARTIC so doesφ ′
0 andφ ′′

0 . Therefore, this thesis

is concluded with a question. Can our six degree polynomial besolved, and what kinds of

families of three-fold symmetric hexagons can those solutions produce?

θ1

θ1θ0

θ0 θ1

φ1

ℓ0

ℓ1

φ ′′
1

φ0

A′
0

A′′
0

ℓ1 A′
1

ℓ0

θ0
A′′

1

A0 A1

ℓ1

ℓ0
φ ′′

0 φ ′
0

φ ′
1

FIGURE 23. Labeled Hexagon withφ ′
0, φ ′

1,andφ ′′
0
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APPENDIX A

QUARTIC

0 =C1G4 +C2G3 +C3G2 +C4G+C5 +σσ ′√H
√

H ′(C6G2 +C7G+C8)

+sinφs1s0ℓ0(σ
√

H ′(C9G2 +C10G+C11)+σ ′√H(C12G
2 +C13G+C14))

C1 = −2ℓ4
1(3ℓ2

0−2ℓ1ℓ0c1−2ℓ1ℓ0c0 + ℓ2
1)

C2 = ℓ2
1(ℓ

4
0 +(−16c1−16c0)ℓ1ℓ

3
0 +(10+40c1c0 +12c2

1 +12c2
0)ℓ

2
1ℓ

2
0

+(−12c0−16c1c2
0−12c1−16c2

1c0)ℓ
3
1ℓ0 +(5+8c1c0)ℓ

4
1)

C3 = −ℓ1((−3c1−3c0)ℓ
5
0 +(16c2

1−4+16c2
0 +35c1c0)ℓ1ℓ

4
0

+(−10c1−12c3
0−12c3

1−68c2
1c0−68c1c2

0−10c0)ℓ
2
1ℓ

3
0

+(36c3
1c0 +16c2

0 +36c3
0c1 +34c1c0 +84c2

0c2
1 +16c2

1)ℓ
3
1ℓ

2
0

+(−3c0−24c3
1c2

0−24c2
1c3

0−3c1−36c2
1c0−36c1c2

0)ℓ
4
1ℓ0 +(12c2

0c2
1 +15c1c0)ℓ

5
1)

C4 = (2c2
0 +2c2

1 +5c0c1)ℓ
6
0 +(−6c3

1 +3c0−6c3
0−24c2

1c0 +3c1−24c1c2
0)ℓ1ℓ

5
0

+(−1−2c0c1−4c2
0 +4c4

1 +36c1c3
0 +75c2

1c2
0 +4c4

0−4c2
1 +36c3

1c0)ℓ
2
1ℓ

4
0

+(−88c2
1c3

0−2c3
1 +8c1 +8c0−2c3

0−24c4
0c1−2c2

1c0−88c3
1c2

0−2c1c2
0

−24c4
1c0)ℓ

3
1ℓ

3
0 +(−6c2

1−6c2
0 +38c2

1c2
0 +32c1c3

0−6+36c2
1c4

0 +32c3
1c0
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−39c0c1 +72c3
0c3

1 +36c2
0c4

1)ℓ
4
1ℓ

2
0 +(−16c4

1c3
0 +13c1−6c2

1c0−36c2
1c3

0

−16c3
1c4

0−6c1c2
0−36c3

1c2
0 +13c0)ℓ

5
1ℓ0 +(−5+8c3

0c3
1 +15c2

1c2
0)ℓ

6
1

C5 = (−3−3c2
1c2

0 +3c2
0 +3c2

1)ℓ
6
0 +(13c2

1c3
0 +13c3

1c2
0 +6c0−8c3

0−13c2
1c0

−13c1c2
0 +2c4

1c0 +2c4
0c1 +6c1−8c3

1)ℓ1ℓ
5
0 +(−4−4c5

1c0−20c2
0c4

1

+6c2
0 +4c4

1 +26c1c3
0−3c0c1−20c2

1c4
0 +4c4

0 +24c2
1c2

0 +6c2
1−41c3

0c3
1

−4c1c5
0 +26c3

1c0)ℓ
2
1ℓ

4
0 +(−8c3

1c2
0 +36c4

1c3
0 +2c4

0c1−34c1c2
0

+2c4
1c0−8c2

1c3
0 +12c5

1c2
0−8c3

1 +12c2
1c5

0−8c3
0−34c2

1c0 +36c3
1c4

0)ℓ
3
1ℓ

3
0

+(7c2
0 +6c1c3

0−22c4
1c4

0−12c5
1c3

0−16c2
1c4

0 +7c2
1 +26c0c1 +1−12c3

1c5
0

+39c2
1c2

0 +6c3
1c0−16c2

0c4
1−14c3

0c3
1)ℓ

4
1ℓ

2
0 +(12c3

1c4
0−13c2

1c0

+12c4
1c3

0−6c1−6c0−13c1c2
0 +3c3

1c2
0 +3c2

1c3
0 +4c4

1c5
0 +4c5

1c4
0)ℓ

5
1ℓ0

+(2−5c3
0c3

1 +5c0c1−2c4
1c4

0)ℓ
6
1

C6 = ℓ2
1

C7 = −ℓ2
0 +(c0 +c1)ℓ1ℓ0−2c0ℓ

2
1c1

C8 = ℓ1(−1+c0c1)((−c1−c0)ℓ0 +(c0c1 +1)ℓ1)

C9 = 2ℓ3
1

C10 = ℓ1(−ℓ2
0 +(4c1 +4c0)ℓ1ℓ0 +(−3−4c0c1)ℓ

2
1)
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C11 = (−2c0−c1)ℓ
3
0 +(2c2

1 +1+4c2
0 +5c0c1)ℓ1ℓ

2
0

+(−4c2
1c0−4c1c2

0−3c1−4c0)ℓ
2
1ℓ0 +(1+3c0c1 +2c2

0c2
1)ℓ

3
1

C12 = 2ℓ3
1

C13 = ℓ1(−ℓ2
0 +(4c0 +4c1)ℓ1ℓ0 +(−3−4c1c0)ℓ

2
1)

C14 = (−2c1−c0)ℓ
3
0 +(2c2

0 +1+4c2
1 +5c1c0)ℓ1ℓ

2
0

+(−4c2
0c1−4c0c2

1−3c0−4c1)ℓ
2
1ℓ0 +(1+3c1c0 +2c2

1c2
0)ℓ

3
1
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APPENDIX B

To investigate our three-fold symmetric hexagon, we can create polygons within Maple

to view the family of three fold symmetric hexagons. Using the Z-System formation of

our hexagon, we can define each of the six vertices of our figurein space. In this program,

you must give a specific value of the length of the bondsℓ0 andℓ1, anglesθ0 andθ1, as

well as the signs of theσ andσ ′ values. This program will create the hexagon in a three

dimensional graph with the values ofφ0. We calculated the values ofφ ′′
1 andφ1 to be

φ ′′
1 = −arg(s0ℓ0 + ℓ1(−s0c1−c0cosφ0s1− i sinφ0s1))−σα

φ1 = −arg(s1ℓ0 + ℓ1(−s1c0−c1cosφ0s0− i sinφ0s0))−σ ′α ′

In this program, we defined the six atoms from their poses by starting with RA0 =

Er0 ·
(

1 0 0 0
)T

=
(

0 0 0
)T

whereEr0 =











0 1 0 0

0 0 1 0

0 0 0 1











, and we can use transfor-

mation matricies to find the other five poses. We can obtain these poses from the permuta-

tion:
r0= (A0, A1, A′

0)

× T1(ℓ0)
r1= (A1, A0, A′

0)

× T2(θ1)
(A1, A′

0, A0)

× T1(ℓ1)
r ′0= (A′

0, A1, A0)

↓ T3(−φ1)
(A′

0, A1, A′
1)

× T2(θ0)
(A′

0, A′
1, A1)

× T1(ℓ0)
r ′1= (A′

1, A′
0, A1)
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To the right of each site transition, we have indicated the corresponding transformation

matrices. Therefore, to transform vertexr0 to r1,r ′0,r ′1, we found to be:

RA1 =Er0 ·T1(ℓ0) ·
(

1 0 0 0
)T

RA′
0
=Er0 ·T1(ℓ0) ·T2(θ1) ·T1(ℓ1) ·

(

1 0 0 0
)T

RA′
1
=Er0 ·T1(ℓ0) ·T2(θ1) ·T1(ℓ1) ·T3(−φ1) ·T2(θ0) ·T1(ℓ0) ·

(

1 0 0 0
)T

We must find the other two poses by the transition:

r0= (A0, A1, A′
0)

↓ T3(−φ0)
(A0, A1, A′′

1)

× T2(θ0)
(A0, A′′

1, A1)

↓ T3(φ ′′
1 )

(A0, A′′
1, A′′

0)

× T1(ℓ1)
r ′′1= (A′′

1, A0, A′′
0)

× T2(θ1)
(A′′

1, A′′
0, A0)

× T1(ℓ0)
r ′′0= (A′′

0, A′′
1, A0)

Therefore, to transform vertexr0 to r ′′1 andr ′′0, we found to be:

RA′′
1
=Er0 ·T3(−φ0) ·T2(θ0) ·T3(φ ′′

1 ) ·T1(ℓ1)
(

1 0 0 0
)T

RA′′
0
=Er0 ·T3(−φ0) ·T2(θ0) ·T3(φ ′′

1 ) ·T1(ℓ1) ·T2(θ1) ·T1(ℓ0)
(

1 0 0 0
)T

Using these transformation matrices explained in section 1.3, we are able to find the

coordinates of all six atoms, and we can create a three dimensional polygon by ploting

those atoms using the Maple command polygonplot3d.
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