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INTRODUCTION

An octahedronis a polyhedron with six vertices, twelve edges, and eighhgular
faces. Since a hexagon has six vertices and six edges, issshp®to embed a hexagon
within an octahedron in many different ways. Suppose werdete the lengths of all
six edges of the hexagon and the measure of the angle betwebnoéthe two edges
incident on each vertex. In the octahedron, the length attting side of the triangular face
containing two edges of the hexagon will then be determihtshce all the lengths of all
twelve edges of the octahedron will be determined. Bric@td{udied octahedra where
all twelve edges had specified lengths. In general one mighegat any such octahedron
to be rigid, but Bricard found that when the lengths of the Ww@eddges had certain types
of symmetry the octahedron could be flexible. This meansithspossible for hexagons
to be flexible. This has long been known to be the case for aite¢gpal hexagon where
all the angles are ccé(—%), since the molecule cyclohexane has that structure; imarga
chemistry the flexible family of shapes of cyclohexane isvkinas the twist/boat family

[6]. Dr. Dix [6] continued Bricard’s research by finding explicit solutidios flexible

FIGURE 1. An Octahedron

and rigid hexagons when the six lengths and six angles hawe-fotd symmetry as one



cycles around the hexagon. An interesting feature of thelyaoh two fold symmetric
hexagons was that none of them were knotted. Hexagons gpelifteedra with the fewest
number of sides which could possibly be knottéd JWe do not know if an explicit formula
for knotted hexagons has ever been published. In Bjxif was conjectured that such
formulas could be obtained for hexagons whose six lengtisarangles have three-fold
symmetry as one cycles around the hexagon. We will hentefefér to such hexagons as
three— fold symmetric

Using the same methodology as used on the two fold symmedse m p], we will
study in this thesis how to classify three-fold symmetrigdgons. We will gain a full
understanding of a three-fold symmetric hexagon undergbleraptions that all six angles
are equal. When all six angles are equal, we give a sufficiemditon on the lengths and
angles for the existence of a knotted hexagon and conjeittatd is also necessary. Even
when all the angles are not equal, if the two independentttesngnd the two indepen-
dent angles are specified, we can enumerate all possiblesitiagp hexagon can assume

(excluding certain cases where certain triples of vertazescollinear).



CHAPTER1

PREVIOUS RESEARCH

Our tool for studying the shape of a three-fold symmetricagen in three dimensional
space is the Z-System. The Z-System was created to speeitytbe dimensional shape
of a molecule. In this thesis, we are studying the specia odkexagons. This gives us a
general idea of how Z-Systems can be used in a simpler case.

In the next four sections, we will develop this general tlyaairZ-Systems which will
be demonstrated by the study of our hexagons. From the letsdisewe will learn how to

build hexagons with three-fold symmetry from its bonds,lasgand wedges.

1.1. Z-SYSTEM

The concept of a Z-Systerg|[starts with an arbitrary grapB. For example, we could
take G to be the graph associated to a molecule: the atoms wouldebeettices and the
covalent bonds would be the edges. In this paper, we areifiylagt G as a hexagonal
cycle, or a closed path with six vertices.

An unoriented Z-System builds @b by specifying three tree graphs namgdr,, and
73. Recall that a tree is a connected acyclic graph. This meatstly two vertices are
connected in the graph by some path and the graph containgl®o(as a subgraph). The
tree 1y is chosen to be a spanning treeGn This tells us that; is a tree subgraph of G
containing all the vertices db. The line graph_(1;) of 11 is a graph where each edge of
11 is an vertex ofL(11). Also, any two distinct edges af constitute an edge df(1;) if
and only if the corresponding edgesmfshare a common vertex i [3]. Next we choose

T, to be a spanning tree in the line grapfry) of 11. Finally, we can choose; to be a



spanning tree (1) of . The vertices of our spanning tregwill be calledatoms In

11 Is the blue tree graph.
17 is the red tree graph.
T3 IS the green tree graph.

FIGURE 2. An unoriented Z-System built d&

our three-fold symmetric hexagds, there exists only six atoms. The edges connecting
those atoms iy will be referred to abonds Sincet, has vertices that are edgesref we
will also refer to the vertices af, as bonds. The edges of will be namedangles Since
T3 is a subgraph df (1), 13 vertices are the same as the edgesptherefore they are also
called angles. Finally, we can name the edgesavedges

The purpose of the unoriented Z-Systém, 1o, T3) is to provide an index set for the
coordinates necessary to determine a specific three dioredighape of the graph. We
can label each edgé of 1; by a length/g. This /g > O is the distance between the two
associated vertices in three dimensional space. The edgég, will have the label of
84 Whereb, € (0,180) is the measure of the angle between the two line segments of th
bonds. We label each edgeof 13 with a pair(d;,, g.,) whered;, is an oriented tetrahedron
(explained below) associated with, and ¢, is the wedge angle that satisfied80° <
@, < 180°. The wedge angle is the signed angle between two half-pkiregng the same
boundary line. The interpretation of the signgf is determined by our value of;, which

is explained further in the next section.



1.2. WEDGES

As we saw above, a wedge is an unordered pair of angldsr,a’} which share a
common bong3. This wedge is labeled by a pdu*, ¢). Each angle is an unordered pair
{b,b’} of bonds which share a common atom and corresponds to a $eeefatoms, the
triangle associated to that angle. In this section, we will disqa8se) in more detail.

The wedgew determines aetrahedron ¢ which is a four element set of atoms deter-
mined as follows. The tetrahedron is the union of the twangias that correspond with
the two angles. Led = {Ag, A1,A2, A3} be the tetrahedron of the wedfge a’] with trian-
gle one{Ag,A1,A2} being the vertices correlating to angteand triangle two{ A1, Az, Az}
being the vertices correlating to angté The common bond i§A;, Az}

An orientation ofd is an equivalence class of orderings of the four elementdset
Two orderings are deemed equivalent if one can be obtairoed fhe other via an even
permutation. There are two possible orientations of thd.s&éb find these two orientations,
it must be noted that there are 24 permutations of thalsethich creates two disjoint

subclasses consisting of 12 permutations each. These {aiomg are:

(Ao, A1, A2, Az) — (A1, Ao, Az, Ag)
(A1, Ao, A3, A2) — (Ao, AL, As, Ag)
(Po, A3, A1, A2) — (A2, As, A, Ao)
(A2, At Ag, Ao) — (A2, Ag, Ao, Ag)
(A1, A2, Ao, Ag) — - (A1, Ag, Ag, Ao)
(Po, A2, As, A1) — (Ao, As, Az, Ar)
(A1, Ag, Ao, Ao) — (Ag, Ag, Ag, Ag)°
(A3, A1, Po, A2) — (As, Ao, Ar, Ag)
(A3, Ao, A2, A1) — (As, Az, Ao, Ar)
(A3, A2, A1, Ao) — (Ao, Ag, A, Ag)
(A2, Po, A1, A3) — (A2, Ao, As, Ar)
(A2, A3, Ao, A1) — (A1, As, Ao, A)

These two columns represent the two distinct orientatiturshermore each arrow repre-
senting a transpositioniAg, A1, Az, As] will denote the orientation containing the permuta-
tion (Ag,A1,A2,A3). Therefore, the two possible orientationsdoéire [Ag, A1, Az, Ag] and
[A1,A0, A2, Az].

Supposg A1, Az} = B is the common bond of wedge. Let us investigate the similar-

ities and differences of these two columns of permutatigngaking (Ao, A1, Az, Az) and



(Ag,A2,A1,Ap) from the first column of permutations afkl, A1, Az, Ag) and(Ag, Az, A1, As)
from the second column. These four permutations are theardyg that contaiA; andAy
in the middle columns. We can see from our figure 3 that the sgra#al configuration

can be described in terms of all four permutations, but tleeguire two distinct values ap

to do so.
(Ao, A1,A2,Az) >0 (Az,A1,A2,Ag) <0
Az Az
Ap \ O Ao \ O
5 o A 5 o Ay
Aq Aq
(Az,A2,A1,A0) >0 (Ao, A2,A1,A3) <0
Ag Az
Ap \ O Ay N O
5 o A 5 o Ay
Aq Aq

FIGURE 3. Permutations of Wedges

The sign of the angle between the two half planes is definethéptientation of the
axis of rotation (using the right hand rule) as well as therggdin of which half plane start
and ends the rotation. The first three atoms in a permutagterhine which half plane
starts the rotation, and the last three atoms determinetwiatf plane ends the rotation.
We can observe from the example in our figure how the oriemtadffects the value ap.
Permutations from column one correspond to value® tiat are greater than zero, and
permutations from column two correspond to valuegpdhat are less than zero. Within
each orientation there are two permutations which intérne wedge angle, but both
correspond to the same spatial configuration. If we changetientation, we must also
change the sign ap.

There are two different types of wedgeshedralsandimpropers Let A be the shared

atom of the two bonds that correspond to anglend letA’ be the shared atom of the two



A Dihedral Wedge A

a
Improper Wedge

FIGURE 4. A Dihedral Wedge and an Improper Wedge

bonds that corresponds to angle The wedge determined by the unordered pair of angles
{a,a’} is calleddihedralif A # A’ andimproperif A= A’ (see figure 3). In our hexagon
graph G, all of the unordered pairs of angles which share arcmmbond are dihedral.

For a dihedral wedge, there is only two possible ways thaatbms can be be ordered
beginning at one end of the chain of bonds and ending at thex.ofthese two orderings
are in the same equivalence class. Therefore, we know teay eihedral wedge can be
assigned a canonical orientation, and we will always usediinonical orientation.

Learning about the structure of our wedge angles has shotiatiae must investigate
@on(—180,180°]. When we are searching fgrvalues that create a three-fold symmetric

hexagon, we must study the full range to find all possibletgwmis.

1.3. STES AND POSES

Let ' = (11, T2, T3) be an unoriented Z-System for a gra@hwhere the 4" is the set
of all vertices ofG. We can denote siteby r = (Ag,A1,Az) of I'. Thissiteis an ordered
triple of distinct vertices from/#” with {Ag, A1} determining a vertex of; (i.e. a bond),
and {Ao,A1,Ay} is the triangle corresponding to a vertex mf(i.e. an angle). In this

arrangement, the angle has a common vertex at efher A;.



Let each verteXA € .4 be assigned a positidRa € R3 so that the grapis becomes
embedded in three dimensional space. We can defipesaas a Cartesian coordinate
system that is determined by our sitand by the embedding. This Cartesian coordinate
system will have its origin aRp,. The x-axis will be parallel t&Ra, — Ra,, and the y-axis
will be in the half-plane that is bounded by the x-axis andtaming the pointRpa,. In
this Cartesian coordinate system, the direction of the g4axhen determined by the right-
hand rule. A pose is specified by means ofsa8matrix (ep, €1, €2, €3). In this matrix, the
position vectory = Ra, is the origin,e; is a unit vector that determines the x-axis, @&d
is a unit vector that determines the y-axis. The unit veetas the direction of the z-axis.

Therefore,

e = Ra,
o = R Rag
IRa; = Ray|
& — (1—ere] )(Ra, — Ray)
1(1—ere])(Ra, — Ray) |
E3=6X&

In the third formula,1 denotes thé3 x 3) identity matrix, ance] is the(1 x 3) row vector
created from the transpose of column veagr The siter then determines from the em-
bedding the Cartesian coordinate system (orgbsg denoted byg, (R) = (ep, €1, €2, €3).
To makeE, (R) well-defined, the singular embeddinBs .#” — R must be excluded, i.e.
those where the denominators in the formulasefoande, are zero.

In our pose ey, €1, €2, €3) Whereey € R3, X = (&1, &, &) is a right-handed orthonormal
basis ofR3. This X is contained inSQ(3);and its determinant ig-1. Also, the inverse
of X is its transpose. Ik is a point in space, it can be described by the coordinatewect

C= <x y z>T in the poseE, i.e.

1
X = €p+ e1X+ ey + e3z = (ep, X)
C



If E = (eg,X) andE’ = (¢, X’) are any two poses, then there is a unigde 4) matrix

b A
follows:

1 (0,0,0 _ _ .
M= ( ( >) , whose first row i1,0,0,0), such thaE’ = EM. This can be seen as

1 (0,0,0)
b A

(€, X") = (0, X) ( ) — (ep+Xb,XA)

whereA = X~ 1X" andb = X~1(€, — ep). The matrixM is acoordinate transformation

matrix. This matrix can transform one coordinate veatanto another coordinate vector

1 1 1
¢’ with the respect to these poses)oy E =F =EM . Therefore,

c c c

(1) (1 (0,0,0)) (1) _ ,
— i.,e.c=b-+AcC.
C b A c

Letr andr’ be two sites belonging to the Z-systémand letR be a three dimensional
embedding of the grapB. LetM be the coordinate transformation matrix whegR) =
E/(R)M; thenM can be computed in terms of the numerical label§ @fs will now be
described. From Lemma3of [6], we know that there exists a sequence of distinct sites
r=ro,r,....rm=r’ that belong td". Every successive pa(rj_1,rj) for 1 < j <mis one

of the following three types:

a. rj can be obtained from;_1 by exchanging the first two atoms.

b. rj can be obtained from;_1 by exchanging the last two atoms.

C. ri—1 = (Ao,A1,A) andrj = (Ag,A1,A’), where there is a wedge of con-
necting the angles corresponding{#y, A1, A} and{Ag, A1, A’}.

By the Theorem in section 3 of [6], for each 1< | <m:

1. If we can obtainrj from rj_; by exchanging the first two vertices named

Ag andAg, then let{Ag, A1} be the bond of with its length/ > 0. Thus



Er (R) =Er,_,(R)Ta(¢), where:

J

1 0 0 O

¢ -1 0 O
Ti(l) =

0O 0 1 O

0O 0 0 -1

2. If we can obtairr; fromr;j_; by exchanging the last two vertices nanfed
andAy, then{Ap,A1,A2} corresponds to an angle bfwith its label6 > 0.
Thus,E; (R) = E,_,(R)T2(6), where:

1 O 0 0
0 cosf sin6 O
0 sinB —cos6 O
0O O o -1

3. If rj_1 = (Ao,A1,A) andrj = (Ag,A1,A’) where there is a wedge 6fcon-
necting the angles corresponding {8y, A1, A} and {Ag,A1,A’'}, and the
wedge is labeled by£[A,Ag, A1, Al,9). ThenE,(R) = E;,_,(R)T3(+9),

where:
10 O 0
01 O 0
Ta(g) = _
0 0O coxp —sing

0 O sing cosp
From this information, the coordinate transformation ixall can be calculated as a

product of the above matrices. WhEp(R) = E;(R)M, we can solve for the value ®4:

ThereforeM = TOT®)  T(M-1),

10



1.4. BRIDGING ALGORITHM

FIGURES. Labeled Hexagon

In this section, we will describe the Bridging Algorithm frgi@] that has been trans-

posed into the language needed to describe our hexagon.rdleqm we must solve is as

follows; if we are given value&, /1, 8y, and6;, then we must fingw, @1, andg] such that:

a [|[Ra — Ragll =41,
b. (RA6 — RA/l) . (RAg — RA/l) = lol1 COSG]_,
C. (RA/l — RAg) . (RA/l/ — RAS) = EoEJ_COSGo.

Ay Al N A,
............................ Ve
AN RN
r \\\ZO //21
\\90//
Ao A &

FIGURE 6. Bridging the Atoms

To accomplish this, we can use a more general Bridging Algaritlescribed ing]. This

more general bridging problem is as follows. In Appendix B st®w how to define an

11



embeddingR(¢) of the atomsA7, Ag, A1 and Ay in three dimensional space. Given sites
r = (A],Aq,A1) andr’ = (A}, A1, Ag) together with poseB; (R(g)) andE. (R(@)) where
Ev(R(®)) = E(R(®))M(g). We need to find the positiorigy andR, such that con-

ditionsa, b, andc, hold as well as:

d. [[Ray —Rasll = 4o
e |[Ray —Rall = to
f. (Ray —Ray) - (Ra, — Ray) = lol1c086,
9. (Ra; —Rpy) - (Ra, — Ray) = lol1c0Sbo.

In [6] the solution of this more general bridging problem was erodown into three steps.
First we find the first end poirFRAg satisfying three conditions, and then we can find the
second end poin‘RA/l that satisfies three other conditions. During the last stepwill
choosep so that a seventh condition holds. The following are theetlsteps of the Bridg-
ing Algorithm:

1. Find, as functions ofy ando € {—1,1}, the positionR »r of the vertexAg

relative to the configuratioR(¢@) such that:

IRay = Ray (@) = Lo (1)
(Rag —Raz(®)) - (Rag(@0) — Ray (@) = Lol1€0SB, (2)
IRay — Ry (@) = aa, 3)
1 1 1 1
o det >0 4)
Ray Ra, Ry Ry

whereaZ = (2 4 (2 — 2o, COSB;.

2. Find, as functions ofy ando’ € {-1,1}, the positiorR x, of the vertexA

relative to the configuratioR(¢) such that:

12



IRx, —Rp (@) ]| = 4o, (5)

(Ry, —Rp (@) - (Ra, (@) — Ray (@))) = £ola.cosbh, (6)
IRa, —Raz ()] = 2o, (7)

1 1 1 1
o’ det( ) >0 (8)

RA6 RAl RA/J{ RA?L

wheread = (2 + (3 — 2(4(1 cosbh.
3. For each paifo,0’) € {—1,1}?, find g such that:
IR (@0, 0) =R, (@, 07)[| = 1.

In order to solve step one, we first need some notation. Lekrbe/n position ofA,

be:

1 1 1
Ra () = Ev(R(@)) ( ) = E (R(@))M(w) ( ) =E(R(w)) ( ) ,
0 0 x1(®)

1 1
Where( =M(m) andx} = (X,Y;,7)". Letthe unknown position o&j be:
x1 (%) 0

Ry = E(R(®)) (1

X0
of equations giving us the valuesxy, yp andz.

) wherexo = (Xo,Y0,20)". The following lemma solves the system

LEMMA 1.1. If [y;(@)]2 + [Z,(@)]? > O then(1) — (4) has at least one real solution
(X0, Yo, 20) if and only if

|£35in61® + [y (@)]* + [ ()]* + (Locosty — Xy ())* — & | (9)

< 26gsindyy /[y, (@) 2+ [4(9))2

13



If these conditions hold then all the solutions are of therfor

Xo ={nC0SH,

{oSinB; cosa

V(@) + [z (@)

losinB; sina
o(-A(@) V(@) vfcm)]zi Zar

(Yo, 20) =(Y1(®), 2 (@)

¢ =—y-oa

whereo € {—1,1}, a € [0,180] is such that

- _LgSin’ 81+ [y (@)]* + [21(@)]* + (bocosty — X () — &

2(psinB1\/[y; ()12 + [ (@)]?

and

y = arg(yy (@) + iz (w))-

Q@ Ao

91( A

FIGURE 7. The Sphere and Cone of the Solutiong\pf

14
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(11)

(12)

(13)

(14)



PROOF. As seen in figure 6, we can find a sphere of radiusentered afy, of possible
values ofAj. There is a circle of values @ that has to satisfy the given angle and length
from A{. We use the coordinate system given by pBséR(¢)) whose origin is af\] and
whose x-axis points from] to Ag. We can find the x coordinate 8§, i.e. Xo = ¢oc0sb:.

Let us consider the plane of all points whose x coordinaté @s6,. This plane will
contain two circles of possible values &, as shown in Figures 7 and 8. The first circle
has the radiugpsinB; and is centered at the origin. The second circle comes fran th
intersection of the plane= /ycos6;, and the sphere mentioned above. This second circle
has its center a/; (@), 7 (@)) and its radiup, wherea? = p2+ X} (@) — focosby]. The
intersection of these two circles produces the valuesQfy, 1) andxp(¢,—1). As seen

in figure 8, we can find the unit vector from the projectionAdfto the projection of;,.
V{;ﬁgﬁﬁ@(ﬁ))]z. We can find the perpendicular unit vector in the counter
clockwise direction to be-—2(®)¥(®)

V(@) +Z(w)]
between the rays indicated. This anglas found using the law of cosines. Therefore,

p? = 3sir? 01+ [y, (@)1 + [Z(@)]2 — 20 sinr cosa /Ty, ()] + [Z,(@)]2. Solving for

cosua leads to(13). The inequality(9) assures us that the two circles actually intersect. We

This vector is

>. Infigure 8, let 0< a < 180 denote the angle

then denotes as the sign of the triple produ¢Ra, — Ray) x (Ray — Ray) - (Ray — Ray)-

We can also obtain this triple product from the determindiihe three by three matrix,

((RAO —Ray), (R —Ray), (Ryy — RA’{)) :

We notice that the determinant of this matrix would be theesamthe determinant of

(1 0 0 0 )
Ry (Rag—Ray) (Ryy—Rar) (Rayy—Rpy)

By simple column operations, we see:
. 1 1 1 1
o = sign det .
Rar Ra, Rag Ry

15



Z  Projection ofA,

Projection ofA.
Ag TToIee !

N
%

Projection|ofA] andAg y

FIGURE 8. Intersection of Circles of Solutions 8§

We can use the two unit vectors aodo determine the position @]. The cross product

; (-Z (@) Yi(®))
VIV )P+ (w))?’

(Rag — Ray) x (R% —Ryy) is parallel to the unit vecto SO

(Yo, Z0) =oSin6y

+ ag/lpsinB;

VIi(@)]*+[Z (@)

This is clearly the same g41). Next, we must study how to solve for the value of
@/'. To find this wedge angle, we must learn its orientation. Ffignre 5, it is given that
d* = [A§,A],Ao,A1]. The axis of rotation is oriented frold] to A, i.e. along the positive x
axis. The initial half plane contains as a boundary the s-arid contains the poif. The
final half-plane contains as a boundary x-axis and contampointA;. So¢ = —y—oa

where is the angle indicated on Figure 8, ie= argy; (@) +iz}(@)], as in(14). O

16



This lemma defines the functio® (@, o) and completes the first step of the Bridging
Algorithm. The lemma also defines the functigf\ g, 0).
In the next step, we must solve fBrA/l, which is our second end point. Before we state

this lemma, we must identify some more notations. The knowsitipn A is

1 1 1
Rar (@) = E(R(g)) ( ) = Er’(R(%>)M(%)1( ) = Er’(R(qb))( )
0 0 X1()

1 1
then =M(@)t andx; = (x1,y1,21)".
o) ()

We can now characterize olt(g) in block formation where

1 o'
and whereA € SQO3). Therefore, theM(g) * = . This
—A@) X (@) Alg)"

X0
wherexg = (X5, Y6,2) - The solutions oky (g, 0’) are obtained from a lemma similar to

1
means thats (@) = —A(@) "X} (@). The unknown position o, is Ry, =Er(R()) ( )

lemma 11.

LEMMA 1.2. If [y1(@)]2 + [ze(@)]? > O then (x}, Yo, Z) has at least one real solution

if and only if

|€§SIn? 6o + [y1(@)]? + [z1(@)] + (LocoSBy — X1 () )* — a5 (15)

< 26gsinoy /s (@)]2 + [z1(q)]2

If these conditions hold then all the solutions are of therfor

X6 =L C0SBp (16)
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loSinBpcosa’
VIVa(@)]? + [z (@))?

Y0, 20) =(y1(®), z1())

+0'(—z(@),y1(@)) Wf?:;‘]?f[';ﬁ;@]z, 0
p=—y-od a8)

whereo’ € {-1,1}, a’ € [0,180] is such that
cosa’ — 05 Bot Yu(@) + [ (@)]° + (focosty —xu(@)* 8 g

200sinBo/[y1(@)]? + [z2(@)]?

and

y = arg(y1(@) +iz1(@)).

This lemma defines the functiog( @, o) and completes the second step of the Bridg-
ing Algorithm. Lemma 12 also defines the functiog (@, 0’). Note that we can obtain
lemma 12 from lemma 11 by exchanging the primed and unprimed elements and exehang
ing 6y for 6.

1

In step one, we founBus = E: (R(g)) ( (@.0)
Xo(¢o, 0

) , and in step two we founEtA/l =

Ev(R(@w)) ) . In the third step, we must impose a distance constraintdssw

(XB((RL a’)

these two points. To do this, we must first con\l%,q into the coordinate system at the site

r,i.e. B (R(@)).




We must impose the distance constrafit= Ry (@, 0) —Ra; (¢, 0”)||?. Therefore,

for each(o, 0’) € {—1,1}?, the equation to be solved fgy becomes

/

03 =|IRay (0, 0) = R, (90, 0") || = [[X0( 0. 0) — X1 (90) — A(g0)Xo( 0, 0")]|?

/ INT / / T T/ T / /T
=(Xo— X1 —AXp) " (Xo— X3 — AXg) = XgXo — Xg X1 — XgAXy — X7 Xo

+ X4 + X4 Axg — xGT ATxg + xg ATX] + x5 AT A

/

(5 =205+ X4 (@)[I” — 2x0(@, 0) - X1 (@) — 2Xo(@, 0) - A(@)Xo( @, 0”) 0)

+2x1 () - Al@)Xo( g, 07).
This completes a schematic discussion of the Bridging Atgorias applied to the
study of the shapes of three-fold symmetric hexagons. Inéxéchapter, we will begin to

make everything completely explicit.
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CHAPTER 2

SOLVING THE BRIDGING ALGORITHM FOR HEXAGONS

The Bridging Algorithm has three distinct steps that allowasalculate when values
of /g, 01, 6p,61,0,0" and @ creates a three-fold symmetric hexagon. In this chapter, we
will explicitly state the expressions that restrict and/edhe first two steps of the Bridging
Algorithm. Lastly, we will complete the third step of the Bgitcig Algorithm by calculating
the equality(20).

2.1. EXPLICIT EXPRESSIONS FOR THEHEXAGON

When finding the properties of three-fold symmetric hexagareshave to use the Z-
System that we created in the last chapter.

In the Bridging Algorithm, we us&! (@), which is the coordinate transformation ma-
trix. Now we must compute it for our hexagon. In section 1.3hé$ thesis, we showed
thatM(¢n) can be produced by the product of transformation matrickes& matrices are
produced by finding a sequence of sites linking (A7,Aq, A1) to r’ = (Aj,A1,A). This

sequence is given below:
r= (A, Ag, A)

X Ta(f1)

(Ao, A}, Ap)
X T2(60)

(Ao, A, A
I Ta(@)

(A07 A17 Aé))
X T1(4o)

(A17 A07 Aé))
X T2(61)

(A17 A67 AO)
X T1(61)

r'= (A, A1, Ao)
The xs found between the two sites indicate a transposition césggpor b in section
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Ui
Al

Ao to Ay

FIGURE 9. A General Three-Fold Symmetric Hexagon

1.3. The] indicates a site transition of tyfe again from section.B. To the right of each
site transition, we have indicated the corresponding toamsation matrix. Therefore, to

transform site to r’, we found:

M(@) = T1(£1) T2(60) Ta(@) T (£o) T2(61) Ta (£1).

From this section forward, we will be using special notatiosimplify our equations.

NOTATION 2.1.

Co = C0SBy C1 = c0sb;
So = Sin6y S = SinB;
c=cosfO S =sin@

G = sinBysinB; cos@

a2 = (2 4 (2 — 2010001 a3 = (2 + 1% — 20140co
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All the subsequent equations were calculated using Mapseeas in hex.mw starting
from line 7. WhenM (@) is found using Maple (see worksheet line hex.mws 7), it is a

matrix with 4 columns and 4 rows where :

1 0 0 0
M (@) = £1—LoCo+£1(CoCL—S0S1 COSP) —CoC1+S0S1COSE CoS1+C1S0COSP  —SoSiNgy (21)
®) = | toso+la(—Crso—Cos1COSR)  C150-+CoSLCOSEH —SpSi+CoC1 COSE —CoSingy
{181 Sin@y —s1Sing —c1Singy —COS¢

In section 1.4, we introduced new quantitids x;, and x; which are found from

1 0
M(@) = andxy (@) = —A(@) "X} (@). Now we can explicitly compute
x1(@) A

these values to be:

—CoC1+S0S1COS@  CoS1+C1SHCOSP  —SoSingy

A= | c1S9+CpS1COSE@ —SpSt -+ CoC1COSE —CopSingy (22)
—s1Singy —c1Singy — COS(h

Xy {1 — £oCo+ £1(CoC1 — SoS1 COSE)

x1=|vi| = | oS0+ l1(—c1s0— cosicosp) (23)
Z (18 Sing
X1 {1 —LoCy + £1(CoC1L — SoS1COSE)

1=l = —Al@) X1 (@) = | tos1 +01(—CpS1 — C1S0COSE) | - (24)
y4} l1S0Sing@

Inlemma 1.1 and 1.2, we have the assumed constrainfyfias)] + [Z, ()] > 0 and
V1 (@))% + [z1(@)]? > 0. We will denote these positive quantitieskdsandK respectively.

Now that we have explicit forms fon,y;,z: andz;, we can compute the restraints.

K' =y2+7Z2 = a2 — (co(lo— (1C1) 4+ (1G)? (25)

K=y;+7 =a5— (c1(lo— f1Co) + (1G)° (26)

Lemma 1.1 and 1.2 give values of the angleanda’ through equations created from

the law of cosines. These equations can now be simplifiedvog the explicit forms of
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cosa and cosr’.

cosq — a{ — 2(61 — KoCl) (Co(fo - elCl) + glG)
25051\/W

cosq’ — a — 2({1— {oco)(c1(fo — (1C0) + (1G)
200soVK

However, the values of the sinand sim’ are needed to solve for the valueygfy, 2o,
andz,. We can find these values to be gir= vV1— cog a and sim’ = v/1—cog a’. This

gives us the equations for sinand sima’ below (see Maple worksheet hex.mws, lines
27-30):

o

sing =——— 27
2001V K/ @7

sina’ :ﬂ (28)
2015VK

where
H' = 463(1— c2)K’ — {&2 — 2(¢1 — LoCo)[co(lo — ¢1C1) + £1G] }2
= af( — 42G? + 401 (L1 + 201CoC1 — LoC1 — 2£0Co) G

— (2 4 8lol1C5Cy + Alol1CoCs 4 Al10oCo + 20ol1C1

(29)
+ 3¢5 — 403C2 — Aldcocy — MECHCE — Al2cocy — AL5CE)
= — a2 (201G — £1(1+ 2c1Cp) + Lo(C1 +2co — V'3s1) )
(201G — £1(1+ 2cqc1) +Lo(C1 +2C0 + V/3s1))
H :46(2)(1 — C%)K — {a% —2(01— Loc1)[c1(lo — £1Co) + £1G] }2
=a§( — 403G? + 41 (01 + 201C0C1 — LoCo — 2(oC1)G
(30)

— 12+ 8lol1C3co + A4lol1C1CE + 4l10oC1 + 20ol1Co

+ 308 — 435 — A3CoCs — AI5CECE — Alfcocy — A65C3)
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— — 8§(201G — £1(1+ 200C1) + fo(Co+ 201 — V/350))

(202G — £1(1+2c1c0) + o(Co+ 201 + V/350) )

Now that we have given specific values for all the restrictiand values of lemmal

and 12, we can now solve for the valuesxyf andxg,.

X0 loCovVK
! l / / H /
Xo= 1Yo | = N y1/oSocosa’ — a'z1losoSina (31)
2’0 z10ps9cosa’ + a’'y oS sina’
X0 £oc1\/W
1 .
Xo= 1Yo | = K y1los1cosa — 0z lps; sina (32)
2 zLps1 cosa + oYy lost sind

Using these equations, we can learn more about the threesyohinetric hexagon.
During the rest of this paper, we will investigate how to gdle third step of the Bridging

Algorithm for our three-fold symmetric hexagon.

2.2. RESTRICTIONS ON/g, /1,6y, 61 AND @

Lemma 1.1 solves for the values of the end pﬁiy@ when the bonds and angles satisfy
K’ > 0 and inequality(9) . Lemma 1.2 obtains the values of the other end pRjptwhen
the bonds and angle satisfy> 0 and inequality(15). We can simplify these restrictions
using our new notations and our explicit values found in @ien 21.

From the definitiong25) and (26), K > 0 andK’ > 0. K’ = 0 exactly whenAq, A
andA; are collinear.K = 0 exactly whermA;, A, A are collinear. These situations must
be excluded for the Bridging Algorithm to work. We are givee ttestrictions oK > 0
andK’ > 0 to insure that the values a&f andx; exist. When we solve for there values,
we must divide byK andK’, therefore we prevent dividing by zero of the expressions fo
Xo andxg. The inequalitieg9) and(15) insure that the values of casand cosr’ satisfy

—1<cosa <1,and—1<cosa’ < 1.
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We can find the restrictions on c@sby solvingH andH’ for cosg. Letu; = ¢1(1+
2coC1) — £o(C1+ 2¢o — v/3s1) anduy = £1(1+ 2¢oCy) — Lo(Co + 2¢1 — /3%9). If

c1—Co+V3(s1— ) >0,

then the upper bound o¥2G is u, otherwise it will beu;.
We can also find the lower bound ofi®. Let g = ¢1(1+ 2coc1) — o(C1+2Co+v/351)
andyp, = (1(1+ 2coC1) — Lo(Co+ 2€1 + V/3%0). If

c1—Co— V3(s1— %) >0,

then the lower bound of 2G is Y, otherwise it will beys,.
From these restrictions, we can tell when a candidate valueyfcan possibly come

from an actual hexagon.

2.3. QUARTIC

Since we have solved the first two steps of the Bridging Algomifor xo andxg, we
can derive an explicit form of equalit§20). In section 2.1, we gave the full expression
of A, Xo(@,0) andxy(¢n,0’). By placing these values into equali20), we derive an
equation with variableg, /1, 6o, 61,0, 0’, and@ (see Maple worksheet hex.mw). Some
simplifications can be made in this equation. First we ndﬂmﬁ can be factored out.
Since one of the restrictions in lemma 1.1 and lemma 1.2 stat& , K’ > 0, we can cancel
the fraction from our equation without effecting the remgtsolutions. This simplifies our

version of(20) to be (see hex.mws line 22):

0=C1G*+C,G> +C3G2 +C4G+Cs+ 00’ VHVH/(CsG2 +C;G+Cg)  (QUARTIC)

+ LoSos1 Singy <0V H(CgG? +C10G+C11) + 0’ VH(C12G* + C13G +C14)>

whereC; fori = 1..14 are the coefficients @ (see Appendix A for explicit values of these

coefficients). These coefficients depend only/grf1, Co, c1. From the definition of H and
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H’, this means the value of HH’ can not generally be simplified, and the QUARTIC can
not be factored without further manipulation.

The @ values for our QUARTIC equation can have the rangé-af80°, 18C°]. There-
fore, we must study what happens whgn< 0 and wheng > 0. Since cogh = coS — @),
the values o€; for all i will not change whem, is replaced by-@. However siti—@) =
—sing, therefore the only terms of QUARTIC that change wiggns replaced by
are the terms involving sigy. Notice that sim is multiplied byo or o’. If (@, 0,0) is
replaced by(—@,—0,—a’) then the terms involving sig are not changed. Notice that
when we do change the signs of battando’, it will not change the term containingo’.

Therefore, we have a strict relationship between the swiativith positivegy and negative

0.

THEOREM 2.2. When({o,¢1,61,60,0,0", @] is a solution of QUARTIC, then so is
MO’EL 617 GOa —0, _0-/7 _(R)]

Therefore for arbitrary anda’, we only need to study the cagg> 0.

2.4. QUARED QUARTIC

We know that QUARTIC has 7 variabléé, (1, 61, 6y, @, 0,0”). This makes the fac-
toring more difficult because each variable has many difitevalues that it could satisfy.

The first obstacle that will be addressed is making all vatides in terms of the cosine
function. Therefore, the only way to eliminate the sine dastis by squaring. We must

subtract the sine term from both sides of QUARTIC to preplaessiguation to be squared.

C1G* + CoG® + C3G? 4 C4G + Cs + 00’ vVHVH! (CsG? + C;G +Cs)

= —{pSoSt Singy (0\/ H(CoG? +C10G +C11) + 0’ vH(C12G? + C13G + C14)>
where

A(G) = C1G* + C,G3 4+ C3G? + C4G +Cs,
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B(G) = CsG? + C;G +Cg,
E(G) = CoG? +C10G +Cy1,and

F(G) = C12G?+C13G+Cya.
Therefore,
A(G) + 00’ VHVHB(G) = —(yss1 Singy(0VH'E(G) + o' VHF (G)).

Once we square both sides, we no longer have oumdi@arms, but we could introduce
extraneous solutions into our equation.
SinceG = s;59c0s@, all values ofg, are in the form of cogy once we square both

sides of the equation above. After squaring, we obtain:

A(G)?+2A(G)B(G)od’ vVHVH' + HH'B(G)?

= (55 sir? [H'E(G)? + 200" VHVH'E(G)F (G) + HF (G)?.
This can be rearanged to make the squared QUARTIC be:

A(G)?+ 2A(G)B(G) + HH'B(G)? — (3(s2 — C

+00’VHVH! (2A(G)B(G) — £3(s5s2 — G?)2E(G)F (G)).

We can expained this formula to find:

0= D1G8+ DG’ + D3G® + D4G° + DgG* + D7G® + DgG? + DG + D1

+ 00 VHVH/(D11G® + D1G° + D13G”* + D14G® + D15G? + D16G + D17).

where the coefficient®; fori = 6,7,..17. (see Maple worksheet hex.mw) Each of ihe

are independent af, o’, and only depend ofy, /1, Cy, andc;.
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By squaring our QUARTIC, we were able to eliminate our sine fiom; but we are
still left with a square root in our equation. We can not saue squared QUARTIC foq
until we can simplify this equation further.

The way we can try to simplify our squared QUARTIC is by guegghe factors. We
can study this equation with its square root by settig ¢, or 6o = 61. Through the use of
Maple programming, we are able to ggt= /1 in our squared QUARTIC equation. Maple
is able to factor this quantity, and we can notice that bothnd K’ appear in Maple’s
factorization. Next, we can séh = 0 in our Maple program, and ask the computer to
factor that quantity. It also containé andK’ as factors. Therefore, we can guess tat
andK’ should factor from our general squared QUARTIC equatiorroligh long division
using Maple, we are able to see tKa¢’ divides evenly into the general squared QUARTIC.
Since we are given the restriction léf> 0 andK’ > 0, we can cancel out our coefficients
since it will not effect the resulting solutions. This leaves with the general squared

QUARTIC equation:

0 = (D1G* 4+ DG® + D3G? + D4G + Ds + TVHVH/(DeG? + DG + Dg))
(Squared QUARTIC)

wheretr = go’. Let us define

A(G) =D1G* + DoG3 4 D3G? + Dy G + D,

B(G) =DG? + D7G + Dg.
Therefore squared QUARTIC becomes
A(G) + TVHVH'B(G) = 0.

Suppos€y, {1, 6o, 61, @, 0, and o’ satisfiegK > 0), (K’ > 0),(H > 0), and(H’ > 0),
and solves QUARTIC. Thefy, /1, 6y, 61, andt must solve squared QUARTIC. Conversely,
if 40,41, 60,01, @, and 1 satisfies(K > 0),(K’ > 0),(H > 0), and (H" > 0), and solve
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squared QUARTIC, then multiplying both side K’ and substitutingrg’ for T creates:

00’ VHVH'[2A(G)B(G) — 203($ — G?)E(G)F (G)]

= (3(s3s% — G?)[H'E(G)?> + HF (G)2] — A(G)? —HH'B(G)?.
By rearrangement, we receive

A(G)?+2A(G)B(G)od’ vVHVH' + HH'B(G)?

— (35352 sir? p|H'E(G)? + 200’ VHVH/E(G)F (G) + HF (G)?.
We can factor this equation to be:
(A(G) + 00’ VHVH'B(G))? = ({gso51Sin@[oVH'E(G) + 0’ VHF (G)])?.

Note if (0,0) is replaced by—o,—a’) the quantitytr = oo’ remains unchanged. Thus,

there is a unique choice ¢&, 0’) such thatr = oo’ and

A(G) 4+ 00’ VHVH'B(G) = —(gsos1 Sing[0VH'E(G) + o' VHF (G)].
(Rearranged QUARTIC)

Thus for thisa, g/, we obtain a solutiorfg, /1, 6, 61, @, 0, and o’ of QUARTIC. Using

this correspondence, we gain no extraneous solutions lgifog on squared QUARTIC.

2.5. TwWICE SQUARED QUARTIC

Squared QUARTIC can be rearranged to be
A(G) = —TVHVH'B(G).

Squaring both sides we gét(G)? = T?HH'B(G)%. Through rearrangement, we obtain
twice squared QUARTIC to be:

A(G)2—HH'B(G)?=0.
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Therefore, if(¢o, (1, 60, 61, @, T) andH,H’ > 0, and solves twice squared QUARTIC, then
(Lo,¢1, 60, 01, ) Will solve squared QUARTIC. Conversely, (fo,¢1, 6o, 61, @) satisfies
H,H’ > 0 and solve twice squared QUARTIC, then it is always possiblehbose exactly
one value off so that(¢g, /1, 6o, 61, (0, T) solves squared QUARTIC. This correspondence
shows that we gain no extraneous solution of squared QUARYVIfocusing attention on
twice squared QUARTIC.

Twice squared QUARTIC is an eight degree polynomial in G. Magan factor this

equation as follows:

0=(E1G®+ E2G® + EsG* + E4G3 + EsG? + EsG+E7)  (Twice Squared QUARTIC)
(202G? + (— &+ (4cy +4co) f1lo + (—3— 4coC1 )£2) G+ (— 1+ 3coCy
+ 263 + 2¢8) 03 + (—2¢1 — 2C — 415 — 4C3cy) 1o + (1+ 3CoCy + 265C2)(3).
Let us nameE;G® + E»G° + E3G* + E4G® + EsG? + EgG + E7 Six Degree, and our qua-

dratic equation FACTOR.

In the next chapter, we will discover an interpretation & tjuadratic FACTOR.
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CHAPTER 3

HEXAGONS WITH AN AXIS OF THREE-FOLD ROTATIONAL
SYMMETRY

We will use geometry to find a special case of our three-foldrsgtric hexagon. In
this chapter, we will study when our hexagon is knotted ankhatted around an axis
of rotational symmetry. We will refer to a hexagon with ansagf three-fold rotational

symmetry as aymmetrichexagon.

3.1. KNOTTED

VS’AS

o

U
\/67 Al

V37A6

FIGURE 10. A Diagram of a Knotted Symmetric Hexagon

Let us study when a three-fold symmetric hexagon is knottetlsymmetric. From

figure 10, which views the hexagon projected along the z-aescan notice a relationship
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between the point$vi,vs), (V2,v5) and (ve,v3). To create a knotted shape, their z-axis
values must be of the same value with opposite signs. Theidyaoordinates must vary
by the different variables of andd to generate the different lengths and angles involving

those two points. This gives explicit values for the vedice

a a
vi=|egl, Vo= | -5 *)
b —b
b —b
eof goop
e =i we| g
b —b

Suppose; = Rp,, V2 = Ra,,V3 = R%,v4 = RA’17V5 = RAg, andvg = RA&" This creates a
family of knotted three-fold symmetric hexagons paramegerbya, b, €, andd. However,
our general hexagon was described in terméyof, 6p, 61,0, 0" and @. Therefore, we
must find the values of those variables in terma,df, €, andd. We can find these values

using the distance formula and the law of cosines. We knom fite law of cosines that :

3a® &%

(Va—Va) (Vs —Va) = =~ — — — €8+ €2 +4b% = (ol1c1 (33)
3% ¢? > o
(Vg—Vl)-(Vg—V1)=7—7—£5+5 +4b“ = lpl1Co. (34)
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From the distance equations, we can find:

(V2—V1)- (V2 — V1) = 3% —adV/3+ 6% —av/3e — e + 2 4+ 4b? = /3 (35)

(Vo—V1)- (Vg —V1) = 3a%+adVv3+ 6% +av3e — o +e2+4b” = (2. (36)
These calculations came from the Maple worksheet abed.ionv fines 13- 17. From
these vertices, we are also able to computeggosccording to fi], define

Vo —Vq Vo —V1

E1=(V6e—Vv1)— (Ve —V1)),
1=V s g e
Vo — V1 Vo — V1
Ex=(vz—Vvo) — (V3 —V2)),
R A N
andE3:u;
V2 —va]
then
E1 B
COSh = — 7= (**)
[Eall IE2]
= ( — 2063+ 55%€? + 3e%a? — 80°0¢s — 12a%0¢ — 25%¢
+8abe/3+3a%5% + 8a%h? + 9al' + 8aPSV/3)
: (((3a2+ 5% — 2£5)2 + 1602(a2 + 52))
1
((3a2+82—255)2+16b2(a2+£2))> ’
and
. E; E,
SiN@ =——— X —-E3
IEall  [IE2]l
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—(4/3b(~3a2 + v/3a + v/3a5 + 35¢)

-\/3a2—\/§a6+52—\/§ae_5£+£2+4b2>-

<((3a2 + 82— 265)2 + 1602(a% + 52))-

NI

((3a% + €2 — 2e8)% + 160%(a® + 52))>

Since the value under the square root is always positivesggave notice that the value
of cosgy can never be imaginary. Also, we notice that the sigma$ the sign of the sigy.

The sign of siy depends on its numerator:
b(—v/3a +a(e + 8) +/3¢9). (37)

Therefore, we can find the sign @ by finding the sign of the above expression.
Now we need to find the value af and ¢’ in our symmetric case. If we take our
vertices from the knotted case, we can plug them into ourniakiy (4) and(8) to find the

value ofog ando’ to be:

1 1 1 1
o = sign det = sign(3v/3b(a® + £7)),
Ve V1 V3 Vg

and

1 1 1 1

o’ = sign det( ) = sign(3v/3b(a? + 52)).

Vi Vo Vg V4
Thus,o = 0’ = signb). From these formulas, it is clear that tieand o’ are dependent on
thebvalue. Ifbis positive, thero = ¢’ = 1. If bis negative, thew = ¢’ = —1. Therefore,
we know all possible values ¢tr, ¢’) for our knotted symmetric case.

Using this information, we can solve farb, €, and d in terms of/lg, /1,69 and 67 in
the Maple worksheet abed.mw. The expressionafbre, andd are not obviously easily

simplified. However whem, b, e, andd have real solutions, we can plug them irfte:)
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(see abed.mw) to find:

1
cosgp = —— [ 2 —4(c (10g+ (4cocy + 3)¢2
St 46%5150<o (€1 +Co)l1lo+ (4cocy + 3) 45

+ \/ ¢ —8(Co+ C1)163 + 2(8coCy + 7) 0203 — 8(Co + C1 ) £340 + E‘{) .
(38)
The singy function was also not easily simplified. Therefore, we cad fime sign ofg
from the non square root values of equat{8i):
(03 + 6000300+ Blol3cy — 140202 — 16(3(3c1co
— (2SQ+ 20001CoSQ+ 1063¢1co + 20001c1SQ+ 106301 ¢1 — 3C3SQ— 303)

(—20pl1C1 + 26% — 2lpl1Co + 26% + SQ)(_l)

where

SQ= \/£4 80301co — 80301Cy + 140203 + 16¢3¢2c1Co — BLol3Co — Blol3Cs + 1F

(

=
(o)

i
|

A i
N
-—
N
o
<]
N
[o¢]

FIGURE 11. A Knotted Hexagon with Three-Fold Symmetry
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From this information, we can use our Maple program hexpiatto create a three
dimensional model of the knotted hexagon as specified in A However, this model
gives a different embedding than the described+ip In Figure 11, there is an exam-
ple of this knotted family wheréy = 0.68261972916; = 0.6826197291/p =1, (1 =
1.3033697767 = 1,0’ = 1 and@ = 0.3322960944. We can first check to see if the restric-
tions hold for these valudé = K’ = 0.4442868602 , therefore the restriction tkak’ > 0
holds. c; — ¢+ v/3(s1 — o) = 1.732050808 and; — ¢+ v/3(s1 — S) = —1.732050808,
therefore—.424513652< cosg < 1.682086412. Our cag = 0.9452958170, therefore
is in the range. We also need to check the valuea,bfe andd. From Maple work-
sheet abed.mw, we find that= .4036783441b = .4466801395¢ = 0.2498503168, and
0 = 0.2498503168. Since these values are positive and real, wiencea knotted hexagon
with our given/g, /1, 6y, 61, 0,0’ and@. From this information, we can find:

U

10y o o o' Figure
0.3322960944-1.330419102 1330419102 1 1 11.
—0.3322960944-1.358031864 13580318641 —1 11

See Maple worksheet rot.mw line 11 to rotate this three dsiogral figure.

3.2. UNKOTTED

Now let us consider the unknotted hexagon with an axis otimal symmetry. We
can create this polygon by connecting the vertiegs..,vg in a different manner. This
allows us to use the same vertices as we found in our knotts] bat they will appear in a
different order. In this configurationy = Ra,,V2 = Ra,, Vs = R%,ve = RA’17V3 = RAg and
Vg4 = RA’{' We must find the values db, /1, 8o and 6, in terms ofa, b, &, andd. The new

expressions from Maple worksheet abed2.mw are:

(Vi—V2) - (V1 — Vo) = 3a% — ad+/3+ 62 + €2 — ag /3 — b + 4b? = [}

(Vi —Va) - (V1 —Va) = 67+ 28 + €%+ 4b° = (5
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FIGURE 12. A Diagram of a Unknotted Symmetric Hexagon

adv/3 ea/3 _, o €
— _ 4 =
> 5 0°+ > > +4b lol1C1

(Vi—V2) - (V5 —V2) = —

5_2+£2_a5\/§/2+§_a£\/§

2
> > 5 > +4b“ = lpl1Co.

(Vo—v1)-(Va—V1) = —

Again, we can compute a value for a@swhere as in4], we define

Vo —V1 Vo —V1

Ei=(vs—Vv1)— (Vg —V
1 =0 V) = e v v
Vo —V1 Vo —V1

Eo =(v5— Vo) — (V5 —V

SR e R
Vo —V

andESZ#.

V2 — 1|
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Therefore,

E E

IEall [IE2|l
= (6a’ed + 5% + 26%€2 — 3v/3ae?5 + 3v/3a0%¢ + 3a%5°

+3a%e? — V/3ad® — 16a%h® + 165eb? — 5¢3 + v/3ag®)

((34 —2V/3ag> + 2635 — 4v/3ag%5 + 3a’€? (39)

+ £25% 4 166%b? — 2/3ag6” + 6a’ed + 33252 + 16a’b?)
(8% —2v/3ag3 + 2¢5° — 4v/3ae6% + 38262 + €252
)

NI

—(
+ 1602b? — 2v/3ag25 + 6a%ed + 3a’e? + 16a2b2)>

Also,

E1 E,

singy =—— x —— - E3
TR

= 8ab(6+£)\/3a2— V3ad + 62 — /3ag — £6 4 £2 + 4h2
((84 — 2v/3ag® 4 2635 — 4/3ag?5 + 3a%¢?
+ €252 + 166%b? — 2v/3as 5% + 6a’ed + 38252 + 16a°b?)
(6% — 2v/3ag® + 265° — 4v/3as 5% 4 38202 + £25°
1
3
2

~(
+166°b% — 21/3a£25 + 685 4 3822 + 16a2b2))

Again, we notice that the sign @4 is the sign of the sigy. The sign of sig depends on

its numerator:

ad(8+¢) (40)
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Therefore, we can find the sign @f by finding the sign of the above expression.
We can also find the values of ando’. If we take our vertices from the unknotted

case, we can plug them into our equatid¢dsand(8) for the g anda’. As in the knotted

case:
1 1 1 1
o =sign det — sign(3v/3b(a® + £2)),
Vg V1 Vg5 V3
and

1 1 1 1
o’ = sign det( ) — sign(3v/3b(a? 4 52)).

V3 Vo V4 Vg

Thus,o = g’ = sign(b).
We must solve for the values @b, e, and d in terms of/g, 41,6y, 6:, and @ (see
Maple worksheet abed2.mws). As before, the expressionscanglicated. Whem, b, ¢,

andd has real solutions, we can substituted them equadB8nthe formula miraculously

appears:

1
cosh = —— | 23— 4(c 010y + (4coCy + 3)/2
St 4@5150<o (C1+Co)lalo+ (4coCy + 3)¢1

— \/64 (Co+Ca)l1l3+2(8coCy + 7) 0305 — 8(co+ C1) (300 + 6‘1‘> .
(41)

Comparing this equation tG37), the only difference is the sign in front of the square
root. From this equation, we have found a symmetric nontkddtexagon with three-fold

symmetry.

We can find the sign of they value by finding sign of the non square root values of
(40).

(—f1+ foc1) (45 — 2ol1C0 + £53)
— 03¢y + 20301CoC1 + £3C0 + 130pl3co — Loell2ey — 82¢1c5 — 663
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FIGURE 13. A Unknotted Symmetric Hexagon

Figure 13 is a good example of this family. In this figuég,= 1, 6; = 1.303369776,
lp=.6826197291, anéh = .6826197291. From our equation, we obt@jr=2.368947425.
We can check to see if the restrictions hold for these values: K’ = .5316074064 ,
therefore the restriction tha¢, K’ > 0 holds. ¢; — cg + \/1_3(51 —5) = 1.732050808 and
1 — Co+v/3(s1 — S) = —1.732050808, therefore .424513652< cosg < 1.682086412.
Our cogp = 0.1699147542, therefore is in the range. We can calculate:

U

10 o o ¢ Figure
1.400053162—-1.638255513 38255514 1 1 13.
—1.400053162-1.672169761 $72169761-1 —1 13

See Maple worksheet rot.mw line 5 to rotate this three dinosas figure.

It will be useful to have a single quadratic equation in G vahobaracterize the rota-
tionally symmetric case. Whea b, &, and 8 has real solutions, froni37) and (39) we
get

0 =202G? 4 (— 5+ (4cy + 4co)l1lo + (—3— 4cocy ) £2)G (FACTOR)
+ (=14 3coCy 4265 + 2¢3) 5+ (—2¢q — 20 — 4cyC§ — 4c3co) 1o

+ (1+ 3coCy + 2¢5¢5) 4.
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This quadratic will be referred to as FACTOR. Notice that FACT®Rur quadratic equa-

tion that we found that factored out of our twice squared QUARIn section 25.

3.3. HEXAGONS WITH AN AXIS OF ROTATIONAL SYMMETRY WHERE
6o =61

Looking at the formulas fofy and6; in terms ofa, b, €, andd we see that it = 6 then
6o = 61. Conversely, using the Maple expressionsddr, €, andd in terms oftg, /1, 6o and
61, we see that iy = 6; thene = &. Thus in the family of symmetric hexagofis= 60, if
and only ife = 9.

The solutions of, b, e = & are easily reduced in the knotted hexagon to be:

1
a=2 \/ 1282+ 6V/3(13— 12) + /1282 — 61/3(12 e§)>
1
b= - \/12a2+6\@(£g—£§) - \/12a2 —6v/3(42 —£§)>
. 3
£=5=5( —6(3+13) +48lot1c— V1222 +6V/3(13—2) /1222 — 6/3 (12 - eg))

Therefore, we can produce a knotted hexagon wdéne = o are real. There are a

couple of restrictions that insure that, € = J exist:
2a° +/3(63— (%) > 0 and 2% — v/3((3— (%) > 0.

For b to exist, we must insure that

—6(l5+ 12) + 480pl1C > \/ 1232+ 6v/3((3 — £2) - \/ 1232 — 6v/3(43 — £3).
We can simplify this inequality to:
(60gl1c—a2)% — (1222 + 6v/3(£3 — 13)) - (12a% — 6/3((3— £2)) > 0.
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This equation has many cancellations leaving us with thieicgen that
120302(4c® — 1) > 0.

Since co® > 0, we have found that knotted hexagons around an axis of sympmmelst
have 0< 6 < .

This informations allows us to find the simplified formula fasg, for this case. We
can solve for these values easily by settihg= 6, = 6. When the given values satisfy
232 +/3(t3— (3) > 0, 28 — \/3(¢3— (%) > 0, and 0< 6 < %, the wedge angle of the

knotted hexagon will be:

1
COS(h = m <€% — 8€1£0C+ (3+4CZ)£%
' (42)

+ \/ 0§ — 160163c+ (14+ 16¢2) (203 — 160300+ z‘{) :

The solutions fol, b, ¢ = ¢ in the unknotted hexagon produce different values which

are found to be:

a:ﬁ ( a—\/12a2+6\/_£2 £2> \/12a2 6v/3(¢3— (2))-

\/ 4242 — 48(o01C+ 612 — 6\/ 1282 4+ 6v/3(12— 2) - \/ 1222 — 6v/3(£2 — 12)

1
b=\ ~6(2 +48lot1c 62+ 61/1222 + 6v/3(Z — £2) - \/ 1222 — 6v/3(1Z — 12)
1 2 2 2 2 2 2 2
£ =& = [4213 — 48lol1c+ 603 —61/1222 +6V/3(13— (2) /122 — 6\/3(12— 12)

To insure, that the values afb, ¢ = o are real for the unknotted hexagon:

(282 4+/3(£3— 12)) - (282 —/3(63— 13)) > 0.
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Also, we must check that the other values under the squats oba, ande = d are real

by:
(4202 — 48(gl1c+ 6(3) > 36(12a2 4 6+/3(£5 — 12)) - (1282 — 6V/3(£5— (3)).
After expanding this value, and moving the whole quantityoae side, we recieve that
17282 (Loc— 1) > 0.

This statement is always true, therefaaegnde = & do not need any more restrictions to

make their quantities real. Now, we must check thatreal by:
(—6(% 4 48(ol1C— 65)* > —36(12a% +6v/3(¢5— 12)) - (12a° — 6v/3(¢5— £3)).
When we simplify this quantity, we recieve the restrictioatth
722% + 432001 (—203¢+ Loly + 6Lol1C% — 202C) > 0.

This gives us our two restrictions that allow us to find if akkiootted symmetric hexagon
can be produced when the size angles are all the same.
We can plug in these values afb, e =  into equation41) . When our restrictions are

satisfied, we can find the wedge angle of the unknotted hexagose:

cosgy = (63 — 8(10oc+ (3+4c%) 43

40252
(43)

- \/ 0§ — 160163c+ (14+ 16¢2)¢20% — 16(300c+ £‘1‘> :
We can find the quadratic FACTOR #6fthat satifies these two equations to be:

203G? + (— 5+ 8(1LoC+ (—4c? — 3)(3)G + (—1+ 7c%)(3 (FACTOR of )

+ (—4c—8c%) 010+ (1+ 2¢* +3c?)¢2
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We can use this factor when we look at the special case of basagherefy = 6, to help

us solve for new families of solutions.
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CHAPTER4

0 CASE

The special case of a three-fold symmetric hexagon wBetre 6y = 0 is referred to
as thef case. By setting our angles equal to each other wher@ eosand sinf = s, we

note thaH = H' = H andE(G) = F(G) = E, and QUARTIC becomes:
A(G) + 00'HB(G) = — (oS singVH(0’ + 0)E.
wherea? = (3 + (2 — 2(o¢;c and

H=H =H=—2a? (261(3 — 01(1+2¢%) +£o(3c— \/§s)>
<2€1G — 01(1+26%) + lo(3c+ \/§s)>
— —a?[(201G — 1(1+2¢?) +3(gc)? — 3(3(1— c2)].
This simplified version of our QUARTIC shows that the valuésooand ¢’ play a ma-
jor role in finding the solutions to this equation. Therefonee must study four sepa-
rate situations otr and ¢’ to obtain all solutions of they. The four situations are when
(c=10=1),(c=-10 =-1),(c=-1,0"=1),and(c = 1,0’ = —1). Inthis chap-
ter, we will study these four separate cases of our sigmasaud find what families are

produced in each situation.

4.1. 1= 00" 1S LESS THAN ZERO

When theo anda’ have different signs in our special QUARTIC, our tefal + o) in

the coefficient of sigy equals zero. Also, we notice that the only other coefficiatit the
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values ofog anda’ in the QUARTIC appear as= og’. Thus whemr = —1, we get
A(G)—-HB(G) =0 (Special QUARTIC)

Therefore both cases whéo = —1,0’ = 1) and (0 = 1,0’ = —1) both have the same

solutiongy to the QUARTIC. When we use Maple to factor Special QUARTIC, weeiee
0= — (01— £o)(f1+ o) (215%@2 4 (—AC%02 1+ 302+ (2)G — (2 — 303+ 202c* + 3032
- czei) (eic;2 1 (201000 — 2CP02) G+ 20160C + (3C% — 2+ 12t — 2¢30140 — zi)

= — (01— lo)(¢1+ (o)BOATK
(44)

whereK = K = K’ = a? — (¢({p — ¢1¢) + ¢1G)? and

BOAT = (203G2 + (~4c2(3 + 363 + )G — 3 - 303 + 263¢* + 3632 - %)

FIGURE 14. A Boat-Shaped Hexagon whee= 6y

46



Since we are given the restriction thEt> 0, we can find values ofy by setting

BOAT = 0. The two solutions fog, from BOAT are

1
cosqy = 203 (4c0% — 305 — 3 + \/ —48(3(5C? + 90 + 3057 + 9(7) (45)

1
COS@y = 55 (4c°1 ~3lg— (1 \/ 48332 + 904 130533 +-9¢%)  (46)
1

Using these results, we can study what families of solutaamsbe produced by equa-
tions(45) and(46). In our Maple program, we can observe that equatéi) and(46) cre-
ate the same family of solutions where equatiéb)'s value ofg, is equationg46)’s value
of ¢f. These solutions fog, creates a boat-shaped hexagon. This family is also unkhotte
and does not have an axis of three-fold rotational symmetrlyigure 14,600 = 7, 61 = 7,
lp =1, and/1 = 2. From equatiori45), we obtaing = 0.9333197962. This solution exist
since the restrictions hold wheke= K’ = 4.220620882> 0 and—.6160254040< G <
1.116025404. This solution from equati¢46) fails to satisfy the restrictions.

In QUARTIC, we have found that wheffp = ¢1) our equation(44) will always be

solved. This shows that we have #éxibl€’ family of solutions.

THEOREM4.1. Whenlg = /1,60 = 61, ando = —0d’, there exists a three-fold symmet-

ric hexagon for all thep) values satisfing our restrictions as discussefbn

This family was discussed ir6], but now we have now shown those solutions are not

extraneous.

4.2. T= 00" 1S GREATER THAN ZERO

We have studied what happened when the signs ahd o’ were different. Now we
must investigate what happens when the signs are the sam&vElg this process becomes
more difficult because the coefficients of ginare still present. This leaves us WithH,
which cannot be factored. Therefore, we must use the sq@uaRTIC equation to find

the solutions for ouf case.
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In the theta case, we will find our squared QUARTIC equatiomfisection 2.4 to be:
A(G)+ THB(G) = 0.

To simplify our squared QUARTIC, we can plug tlhie= 1 into our equation. We obtain

that squared QUARTIC factors as follows:
0= (2@@2 4 (024 80100C+ (—4C% — 3)(2)G + (—1+ T2 (3
4 (—4c— 8301l + (1+2c* + 3c2>e§)
(%f(—smow 302 — 20001 + 302) (—80100C + 302 + 200t, + 302)G?
+ (=908 + 7203cl + (=9 — 324c%) 1203 + (144c+ 576c%) (303
+ (—19— 4722 — 256c) (503 4 (168c+ 1923 (300 + (—27— 36¢2)(8)G
+ (662 — 9)/5 + (—360c3 + 36¢) /103 + (690c* — 21+ 141c?) (203
+ (—480c° — 6243 4 24c) (303 + (1285 + 444c* 4 249> — 11)(3(3
4 (—60c— 1683 — 96¢%) (500 + (27¢% + 18c* + 9)5‘;‘)
=FACTORCHAIR
Notice that the first quadratic factor is FACTOR @&f Therefore, we can verify that our
equations for the knotted and unknotted hexagons withiootaltthree-fold symmetry are

correct. Using this information, we can focus our attentonthe other quadratic factor

that is called CHAIR. CHAIR’s roots are:
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FIGURE 15. A Chair-Shaped Hexagon whele= 6y

1

Cco = .
S 42321 (“8c— 2)(1l0+ 32) (33 + (8 + 2)l1lo + 33)S

+ (194 4722 + 256c*) 0303 + (— 168 — 1923) (300 + (27+ 36¢2) (5

+ (363 — 2401 03¢+ (10+ 32¢%) 202 — 240300 + 307)-

\/3(3e4+ (—16c2 + 10)e§£g+3e‘1‘)>
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1
402(302+ (—8c — 2)(1£0 + 3(2) (32 + (—8c+ 2) (14 + 312

COS¢h =
(958 — 7200301 4 (9+ 324c%) 1208 + (—144c — 576c3) (363

+ (1944722 + 2566 (403 + (—16& — 19X3)500 + (274 36c2)8  (48)

— (303 — 2401.63c+ (104 32c%) 0203 — 240300 + 3(7)-

\/3(304 -+ (~16¢2 + 10)2(3 + 3@1‘))

We know that agy exists for a given values of bonds and angles for equatiorend5
46 when
30§+ (—16c2 4 10)02¢3+3¢% > 0.

Chair’s factors producey that create a non-knotted polygons without any rotational
symmetry along an axis. However, they do create a chair shppggon. In Figure 15,
we can see an example of a hexagon in this family whgseas calculated by equation
(46). Whentg=1, /(1 =2, 6= 7, and 6, = 7, we obtaing = 1.288564606 in our
Figure 15. This solution exist since the restrictions holeveK = K’ = 3.377241071> 0
and—0.04809079475< G < 1.7755483092. Equation 45 and 46 are related because they
both form the same polygon. However, they take a differenspextive on the hexagon.
Equation 46 produces @, and equation 4 creates anotlggrthat is equal to equation 45
@.

Now that we have found all the families of hexagons that a@ated wher®, = 6y, we
can see that we have specific restrictions on knotted hesadorour examples, we only

saw one family of solutions that create a knotted hexagors [Eads ut to the following.

CONJECTURE4.2. Every knotted three-fold symmetric hexagon wiith= 6y contains

an axis of rotational symmetry.
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We have learned that there are 4 different families of hemageheref, = 6y. All of
our families exist and produce beautiful graphs as shownr=ggures. We will use this

information to learn more about our general hexagon witeekpld symmetry.

4.3. LEARNING FROM B CASE

We have already seen that our QUARTIC can be simplified inBocase to become:
A(G) + 00’'HB(G) = —(¢S*singyVH(0’ + 0)E.
We can square this equation to produce squared QUARTIC femtios 2.4.
0=A(G) + THB(G).
We know that our squared QUARTIC in titecase simplifies when= 1 to
0=FACTORCHAIR
Whent = —1, QUARTIC factored into
A(G) — HB(G) = (fo— 1)l + £1)BOATK
, and then squared QUARTIC is
0= (lo—01)(lo+¢1)*BOAT?.

We can study thé@ case in our twice squared QUARTIC equation. This equation is
very similar to our general twice squared QUARTIC which wasrfd in section 2.5. In

this situation, twice squared QUARTIC reduces to
A(G)?2 =H?B(G)2.

This simplifies into

0= (A(G)—HB(G)) - (A(G) + HB(G)).
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In our 8 case, our equations for the twice square QUARTIC becomes
0= (o—1)*(lo+¢1)*FACT OR CHAIR- BOAT?.

Therefore, in thed case ouSIXDEGREE= (¢o — ¢1)*(¢o + ¢1)*CHAIR- BOAT?.
In the future, we can use this information to help us gensgabiur general hexagon

with three-fold symmetry.
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CONCLUSION

For any given values d), /1, co, 1, 0, 0’ andg, we can find all roots of G of the twice
squared QUARTIC. Two of these roots are solutions of the catedequatioFACT OR=
0. If the restrictions hold, they yield symmetric hexagom$owever, we can also find
numerically all six roots of SIXDEGREE, and systematicaleck each one to see if the
restrictions hold. In this way, we find all shapes of the tHicdd symmetric hexagon except

those where eithefRa,, Raz, Ray } Or {Ra;;Rp,Rar} are collinear (i.eK =0 orK’ =0).

FIGURE 16. A General Unknotted Symmetric Hexagon

For example, we can take = 1,/;1 = 2,60 = 5,61 = 7. First we must find what
restriction occur on ous. Sincec; —Co+ \/5(51 —5) =-—1.214412 anat; —cp— \/§(sl—
S) = —.19980084, we find that our G must satisfy

—.2865660925< G < 0.6294095228
ForK’ > 0,G # 0.7368128792. FoK > 0, G £ 0.7644805979.
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FIGURE 17. A Boat-Shaped Hexagon with= .50872361

FIGURE 18. A Negative Boat-Shaped Hexagon with= .50872361

Our twice squared QUARTIC has the factor of FACTOR that yields
(G—.71229494(G — .205598270%

We can notice whe® = .71229494 the restrictions do not hold, therefore we onlelne
solution from FACTOR, wheit = .2055982705. We first must checkafb, e, andd are
real for this value of G. Therefore, we plug in this G into Maplorksheet abed.mw in lines
10-14 to finda= .5678098193 = .4430212407¢ = .6336005322, and = 1.159421699.
Since these values are real and positive, this solutionyzexian unknotted hexagon ro-
tated around an axis of symmetry as seen in our figure 16. We kioon the construction

of symmetric hexagons that the valuesooind o’ must be the same. Therefore, we only
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FIGURE 19. A Chair-Shaped Hexagon with= .27213284

need to plug our given values into the QUARTIC to find the valako anda’. When we

plug in those values, we find that oor= ¢’ = 1 for our unknotted symmetric hexagons.

FIGURE 20. A Negative Chair-Shaped Hexagon with=.27213284

If we let ¢g, /1, By, 61 be the same values as before in SIXDEGREE from twice squared

QUARTIC, we recieve the other solutions, which are:

0= —.000011G+ 6.6644690(G -+ .72381880(G — .27213284

(G— .5087236(G — .55106963(G — .77428261.

SinceG = —6.6644690—.72381880.77428261 do not satisfy our restrictions, we must

only study our other three values to find out which familiesytiproduce. Wheis =
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FIGURE 21. A Boat-Shaped Hexagon with= 0.5510696

0.55106960.50872361, squared QUARTIC is solved whes —1. By plugging in these
values into QUARTIC, we find that whe@ = 0.50872361.5510696358¢ = 1 ando’ =
—1. WhenG = .27213284, squared QUARTIC is solved whes- 1. When we plug this
value into QUARTIC, we find that whe@® = .27213284,0 — —1 ando’ = —1. These
solutions are summerized in the following table and figures :

G o d 10y o o/ Figure
.2055982705 1 1 275775411 B51722140 .2907598626 16
.2055982705-1 —1 —1.275775411—-2.851722140 —.2907598626 16

27213284 —1 -1 1175746744 .305802540 —2.647968569 19
.27213284 1 1-1.175746744 —.305802540 547968569 20 .
0.50872361 1-1 0.7677951047—.330852634 M89803675 17
0.50872361 -1 1 —-0.7677951047 .330852634 —0.08980367520 18
0.5510696 1-1 06772002174—.581026714 207126169 21
0.5510696 —1 1 —-0.6772002174 .581026714 —0.207126169 22

Therefore, we have found all the solutions.

FIGURE 22. A Negative Boat-Shaped Hexagon wizh= 0.5510696
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We hope in the future we can get an explicit factorizatiorhef $ix degree polynomial
SIXDEGREE from the twice squared QUARTIC equation to get aergeneral under-
standing of our general three-fold symmetric hexagon. &®lwe can use the property
that wheneveg, solves twice squared QUARTIC so dogsand¢. Therefore, this thesis
is concluded with a question. Can our six degree polynomiaidbeed, and what kinds of

families of three-fold symmetric hexagons can those sahstproduce?

FIGURE 23. Labeled Hexagon witl), ¢,and¢
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APPENDIXA

QUARTIC

0 =C1G*+ CoG® + C3G? 4 C4G+Cs + 00’ vVHVH! (CeG? + C;G +Cg)

+ sin@s;Sofo(0VH! (CoG? +C10G + Cr1) 4+ 0’ VH(C12G? + C13G +C14))

Cy = —203(303 — 20100C1 — 20160Co + £2)

Cp = (3(£3 4 (—16c1 — 1600) (143 + (10+40cs Co + 12¢5 + 12c3) (545

+ (—12co — 16c163 — 121 — 16¢5¢0) (300 + (5+ 8c1C0)¢7)

Cs = —{1((—3c1 — 3c0) (3 + (16¢2 — 4+ 165 + 35¢1Co) (14]
+ (—10c; — 12c5 — 123 — 68c3co — 68c165 — 10co) (343
+ (363co + 16¢5 + 36¢3C1 + 34¢1Co + 84C5CE + 16¢2) (543

+ (—3co — 24c3c3 — 24c3c3 — 3¢y — 36c3co — 36¢1C3) (0 + (1265¢3 + 15¢1C0)43)

C4 = (265 + 2¢3 4 5c0C1 )05 + (—6C5 + 3c — 6C — 24c3Co + 3¢1 — 24¢1C3) (143
+ (=1 2cqc; — 4c3+ Act + 3601C3 + 75c3C] + 4cd — AcZ + 36C5c0) 208
+ (—88c2c3 — 2¢3 + 8¢y + 8¢y — 2¢3 — 24cic; — 2c2cy — 88c5¢5 — 2¢1¢3

— 24cico) (343 4 (—6C2 — 663 4 38c2¢3 + 32¢1C3 — 64 36¢2C3 + 32¢5¢o
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— 39cqC1 + 726365 4 36¢3¢7)¢305 + (—16c3cE + 13¢; — 6c3co — 36c3C5

— 16c3c8 — 6c1c3 — 36¢3¢3 + 13c) (300 + (—54 8c3¢3 + 15c5¢3) (5

Cs = (—3— 3c2c3+ 3¢5+ 3¢2) (5 + (13363 + 13¢5¢3 + 6o — 8cg — 13c2cp
— 130165 + 2¢fco + 2cdct 4 6¢1 — 8C3) 143 + (—4 — 4c3co — 20c3c]
+ 6C3 + 4cT + 2601C5 — 3cocy — 2062¢] + 4c] + 24c363 + 662 — 41ccs
— 4c165 + 2663¢0) 208 + (—8c3¢3 + 36cTc3 4 2chcy — 34c, G
+ 2cfcy — 8c2c3 + 12c3¢3 — 8¢5 + 12c3¢3 — 8¢ — 34c2cy + 36¢363) 303
+ (763 + 6c163 — 22ctcd — 1265¢3 — 16c2cd + 7¢2 + 26c0c; + 1 — 126363
+39c2¢3 + 6C3co — 1663cT — 14c3¢3) 0503 + (12c3¢h — 13c3co
+12cfcd — 61 — 6co — 13165+ 3¢5¢5 + 3¢ + 4cfcy + 4c3cd) o

+ (2—563¢3 + 5cocy — 2¢7c3) 68

Co = (5

C7 = —l3+ (Co+C1)l1lo — 2col3cy

Cg = £1(—1+coC1)((—C1— Co)fo+ (CoC1 +1)¢1)

Co =203

Cio = £1(—L§+ (4cy + 4co)l1£0 + (—3 — 4coC1) £5)
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Cp1 = (—200 — C1)€3 + (262 + 14 4¢3 + 5coC ) 0143

+ (—4c3co — 4c1C3 — 3c1 — 4C) 3o+ (1+ 3coCy + 265¢3) 03

Cio= 2@

Ciz= fl(—gé + (400 + 401)6150 + (—3— 40100)65)

Cia=(—2c1— Co)gg + (20% + 1—|—4C% + 50100)£1£%

+ (—4che1 — 4coC] — 3co — 4¢1) 50 + (1+ 3¢1Co + 267C5) (3
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APPENDIX B

To investigate our three-fold symmetric hexagon, we caaterpolygons within Maple
to view the family of three fold symmetric hexagons. Using #+System formation of
our hexagon, we can define each of the six vertices of our figuspace. In this program,
you must give a specific value of the length of the boigland /1, anglesGy and 6y, as
well as the signs of the and o’ values. This program will create the hexagon in a three

dimensional graph with the values @f. We calculated the values ¢f and¢ to be

@ = —arg(solo + {1(—SoC1 — CoCOSSL — i Singys)) — oo

@ = —arg(slo+ {1(—S1Co — €1 COS@So — i Singvso)) — o'’

In this program, we defined the six atoms from their poses astisg with Ry, =

0100
T T
Ero‘(l 00 o) =<o 0 o> whereE,, =10 0 1 0], andwe can use transfor-
0 001
mation matricies to find the other five poses. We can obtaisetpeses from the permuta-
tion:
ro= (Ao, A1, Ay
X Ti(fo)
ri= (A, As, Ay
X T2(61)
(A, Ay Ao)
X Ti(1)
r./O: (A6 Al: AO)
I Ts(-@)
(A67 A17 Aé]_)
X T2(60)
(A6 A3_7 Al)
X Ti(fo)
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To the right of each site transition, we have indicated thessponding transformation

matrices. Therefore, to transform vertgxo rq,rq,r;, we found to be:
T
Ra, =Er0-T1(€o)~(1 00 o)
T
Ray =Ero'T1(50)'T2(91)'T1(€1)-(1 00 O)
T
Ray =Erg- Ta(f0) - T2(61) - Ta(f1) - Ta(—1) - T2(60) Ta(f0)- (1 0 0 0)

We must find the other two poses by the transition:

ro= (Ao, A1, Ay

I Ta(—m)

(Ao, A A)
X T2(60)

(Ao, A, A
I Ts(e)

(o, Al A
X Ta(f1)

ri=(A{, Ao, Ag)
X T2(61)

(A,  Ag. Ao)
X Ta(4o)

o= (Ag, Al Ad)
Therefore, to transform vertey to r{ andrg, we found to be:
, T
Ray =Ero - Ta(— @) - Ta(6o) - Ta(@f) Ta(ta) (1 0 0 0)

Rpy =Erg - Ta(— @) - T2(60) - Ta(r) - Ta(£1) - T2(61) - Ta(bo) (1 00 0>T

Using these transformation matrices explained in secti@nwe are able to find the
coordinates of all six atoms, and we can create a three dioregolygon by ploting

those atoms using the Maple command polygonplot3d.
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