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Abstract. A general theory of molecular internal coordinates of valence type
is presented based on the concept of a Z-system. The Z-system can be con-
sidered as a discrete mathematical generalization of the Z-matrix (a molecular
geometry file format familiar to chemists) which avoids the principal disadvan-
tage of Z-matrices. Z-matrices are usually only employed for small molecules
because there is no easy way to glue two Z-matrices together to get the Z-
matrix of a larger molecule. It is shown that Z-matrices are simply Z-systems
together with additional extraneous structures and that the Z-systems for any
two molecules can be naturally glued together to obtain a Z-system for the
combined molecule. A general mathematical framework suitable for the de-
tailed study of molecular geometry is introduced and applied to five and six-
membered molecular rings. A classification of shapes of hexagons with op-
posite sides and angles congruent is given with explicit parameterizations of
the flexible and rigid solutions. The entire mathematical formalism general-
izes to a theory of polyspherical coordinate systems on orbit spaces of the
group of n-dimensional rigid motions acting on finite collections of points in
n-dimensional Euclidean space. The n-dimensional Z-system is a new discrete
structure related to abstract simplicial complexes, graded posets, and iterated
line graphs. Complete proofs of all the n-dimensional results are given, and
connections to other areas of mathematics are noted.

Contents

1. Introduction 2
2. Z-systems 10
2.1. Rigid motions, Coordinate Transformations 10
2.2. Orbit Spaces 11
2.3. Simplices 11
2.4. Graph Theory 12
2.5. Z-systems 13
2.6. Iterated Line Graph Construction 13
2.7. Fences and Paths in Z-systems 15
3. Polyspherical Coordinates 17
3.1. Internal Coordinates Defined 17
3.2. Sites and Conforming Poses 21
3.3. Coordinate Transformations 23
3.4. Labeling the Site Network 26

Date: February 28, 2006.
Key words and phrases. molecular shape, conformational analysis, Z-matrix, Z-system, ab-

stract simplex, spanning tree, line graph, iterated line graph, graded poset, polyspherical coordi-
nates, internal coordinates, valence coordinates, orbit spaces, diagonal action, principal bundle,
kinematics, pentagon, hexagon, flexible, rigid.

1



2 DANIEL B. DIX

3.5. Polyspherical Coordinate Mapping 27
4. The Main Theorems 27
4.1. The Coordinatization Theorem 27
4.2. Scope of Z-system Coordinates 33
5. Z-Matrices 35
5.1. Unlabeled Z-matrices Defined 35
5.2. Relating Z-matrices and Z-systems 36
5.3. Labeled Z-matrices 39
6. Biomolecular Shape 40
6.1. Terminology for Molecular Z-systems 40
6.2. Dihedrals and Impropers 41
6.3. Tethering 43
6.4. Gluing 45
6.5. Five-Membered Rings 48
6.6. Bridging Algorithm, Ring Closure Equations 50
6.7. Hexagons with two-fold symmetry 53
References 58

1. Introduction

Rapid progress in molecular biology has resulted in the exposure of most sci-
entifically literate people to pictures of large biological molecules, such as DNA
or proteins. The shapes of these molecules are essential to their functions within
living cells [59], [64], [14], [80], [11]. The standard data structure for storage and
retrieval of molecular shapes is a “pdb file” [74], which consists primarily of a (very
long) list of the Cartesian coordinates of each of the atoms in the molecule. Such
data files obviously contain extraneous information, such as that related to the
overall position and orientation of the molecule. Moreover, direct visual inspec-
tion of the data in this file yields no useful information; one must use computer
programs to inspect or interact with the molecule in any meaningful way. This
approach to biomolecular structure would lead the mathematician to think of a
biomolecule in terms of its configuration, i.e. a mapping R : N → R

3 defined on
the set N of atom names which assigns a position Ri to each i ∈ N . The group
Ga = R

3 × SO (3) of rigid motions of R
3 acts on such configurations by the geo-

metrically obvious rule: [(b, A)R]i = b + ARi for all i ∈ N and all (b, A) ∈ Ga.
An orbit GaR = {(b, A)R | (b, A) ∈ Ga} is here called a shape. Chemists some-
times use the word conformation for a collection of freely interconvertible shapes;
in less precise usage “conformation” and “shape” are often synonymous. Focusing
on the shape obviously eliminates (in a mathematically trivial way) the extraneous
information concerning the overall position and orientation (see [38], [58], [52]), but
it does nothing else to add mathematical insight into the nature of biomolecular
structure.

Any bijective mapping which assigns a list of coordinates to each shape from a
certain set is called an internal coordinate system. If |N | = N then there should
be 3N − 6 independent internal coordinates assigned to each non-collinear shape.
Internal coordinate systems have been studied by chemists and molecular physicists
for a long time because of their importance for simplifying the study of molecular
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vibrations, scattering processes, and geometry optimization [6], [7], [16], [20], [28],
[31], [32], [67], [70], [76], [77], [90]. It is possible to devise internal coordinate
systems which use only distances as coordinates; this approach is related to distance
geometry [18] and rigidity theory [36], [85]. For attempts in two dimensions to utilize
both distances and angles as internal coordinates, see [88], [89]. Internal coordinate
systems which are based on collections of bond lengths, bond angles, and torsion
angles [70], [82], are loosely called valence coordinates by chemists, but until recently
[31] there has been little effort to understand exactly which combinations of these
valence coordinates form “good” internal coordinate systems. In fact, the recent
appearance of [31] illustrates the fact that the term “valence coordinate system”
has never been rigorously defined. This problem is becoming more urgent now that
some molecular dynamics simulations are being done in internal coordinates [67],
[41], [56]. Mazur and Abagyan have proposed a mathematical structure which they
call a “BKS tree”, originally proposed by Eyring [28], which reflects the inherent
structure of biomolecules more closely than a pdb file does. This structure however
involves a linear ordering of N , which from our point of view (see below) is a
liability. There is no chemical or biological basis for choosing a particular linear
ordering of N .

An important contribution was made in the late 1960s by the quantum chemist
John Pople (who later won the Nobel Prize). In the early computational studies
of the electronic structure of small molecules, and in particular in the Ph.D disser-
tation of his student M. A. Gordon [37], a file format was devised for entering the
molecular shape into the computer program. Gordon’s program employed many
matrices, each named by a letter of the alphabet, and the 26th matrix contained
the molecular geometry data read from the file. This file format gained the name
“Z-matrix” [42], [70]. Z-matrices found increasing use during subsequent develop-
ments in computational quantum chemistry, and at least two main variants of this
file format have emerged: the Gaussian version [29] and the Mopac version [17].
But these both have the same basic structure, which also involves a linear ordering
of N . Because the Z-matrix is not widely known among mathematicians, we will
give a (Gaussian style) Z-matrix for the molecule methanol CH3OH (see Figures
2 and 3):

j = 0 j = 1 L j = 2 θ j = 3 ϕ
i = 1 C
i = 2 O C 1.5
i = 3 H1 C 1.0 O 109.5
i = 4 H2 C 1.0 O 109.5 H1 120
i = 5 H3 C 1.0 O 109.5 H1 −120
i = 6 H O 1.0 C 109.5 H1 60

The column and row labels are not part of the Z-matrix, but have been inserted for
ease of referencing. Let Aij denote the atom name in row i and column j. There
are six atoms in methanol with the names N = {C,O,H1,H2,H3,H}, and these
are specified in the six rows of the Z-matrix in column j = 0. Row i = 1 simply
defines the new atom {C}. Row i = 2 indicates that the new atom {O} should
be placed at a distance of L = 1.5 angstroms from the (previously defined) atom
{C}. This also defines the new atom pair, or bond, {O,C}. Row i = 3 indicates
that the new atom {H1} should be located at a distance of L = 1.0 angstroms from
the (previously defined) atom {C} along a ray (base point at {C}) which makes
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Figure 1. Geometric interpretation of Z-matrix coordinates

an angle θ = 109.5◦ with the ray from {C} to {O} ({C,O} being a previously
defined bond). This also defines the new bond {H1, C} and the new atom triple,
or triangle, {H1, C,O}. Rows i = 4, 5, 6 all follow the same pattern: the new atom

new tetrahedron {Ai0, Ai1, Ai2, Ai3} ϕ
new triangle {Ai0, Ai1, Ai2} θ
new bond {Ai0, Ai1} L
new atom {Ai0} ↑

coordinates
row i Ai0 Ai1 Ai2 Ai3

old atom {Ai1}
old bond {Ai1, Ai2}

old triangle {Ai1, Ai2, Ai3}

{Ai0} is located at a distance L along a ray based at the position of a previously
defined atom {Ai1} which forms an angle of θ (vertex at {Ai1}) with a ray deter-
mined from the previously defined bond {Ai1, Ai2} such that if the ray (Ai1, Ai2)
is an axis of right-handed rotation then the half-plane bounded by this axis and
containing the triangle {Ai0, Ai1, Ai2} is rotated through an angle ϕ to coincide
with the half-plane bounded by the axis of rotation and containing the previously
defined triangle {Ai1, Ai2, Ai3} (see Figure 1). As a result of row i, the atom {Ai0},
the bond {Ai0, Ai1}, and the triangle {Ai0, Ai1, Ai2} are newly defined. This com-
plex algorithm takes some practice to get used to, but is easy to use thereafter. L is
usually the length of a covalent bond, θ an angle between two covalent bonds, and
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ϕ is a wedge angle. Thus Z-matrices define particular internal coordinate systems
of valence-type.

Z-matrices are now commonly used to specify the geometry of small molecules,
but the process becomes too laborious for larger molecules. Typically one would like
to form larger molecules by joining smaller ones, as one does with plastic models,
but there is no simple algorithm by which a Z-matrix for the larger molecule can be
obtained from the Z-matrices for the smaller molecules. Partly this results from the
linear ordering of the atoms in the Z-matrix. If one could easily reorder a Z-matrix
in a convenient manner then perhaps such a joining algorithm could be devised. We
would only wish to consider reordering the atoms in such a way as to not require that
the valence coordinates L, θ, ϕ be recalculated (see section 5.2 for a description of
all such reorderings). The computer program Molden [81] advertises a user-defined
Z-matrix reordering facility, but it is not clear that it has ever been implemented.
Besides, specifying a new ordering is laborious. It would be much better if the
underlying mathematical structure, which cannot depend on a linear ordering of
N , and which is over-specified by the Z-matrix, could be directly manipulated.
This underlying mathematical structure, and its n-dimensional generalization, is
the subject and principal contribution of this paper. Because of its close connection
to the Z-matrix, this structure will be called a Z-system.

The definition of 3-dimensional Z-systems can now be given. An unoriented
Z-system on N is a collection Γ of subsets of N satisfying the following conditions.

(1) If e ∈ Γ then |e| ≤ 4. Define Γk = {e ∈ Γ | |e| = k + 1} for −1 ≤ k ≤ 3.
(2) ∅ ∈ Γ−1 and if i ∈ N then {i} ∈ Γ0.
(3) If 1 ≤ k ≤ 3 and e ∈ Γk then |{v ∈ Γk−1 | v ⊂ e}| = 2.
(4) If 1 ≤ k ≤ 3 and v1, v2 ∈ Γk−1 such that v1 ∪ v2 ∈ Γk then v1 ∩ v2 ∈ Γk−2.
(5) If 1 ≤ k ≤ 3 then the pair (Γk−1,Γk) is a tree graph, where Γk−1 is the set

of vertices, Γk is the set of edges, and a vertex v is incident on the edge e
if and only if v ⊂ e.

These conditions are not all independent; we state them in this way to emphasize the
uniformity of the concept. Condition (3) for k = 1 and condition (4) with k = 2 are
both consequences of condition (2). For k = 2 the fact that |{v ∈ Γ1 | v ⊂ e}| ≤ 2
for all e ∈ Γ2 follows from condition (5), k = 1. In view of condition (5), condition
(3) insures that an edge is incident on exactly two vertices, a necessary property of
graphs. Conditions (4) and (5) together imply that

• (Γ1,Γ2) is a spanning tree in the line graph of (Γ0,Γ1), and
• (Γ2,Γ3) is a spanning tree in the line graph of (Γ1,Γ2).

These properties make it easy to define, visualize, and manipulate unoriented Z-
systems graphically, and a computer program exists for this [22].

The unoriented Z-system is easy to extract from a Z-matrix. Γ0 is obtained from
column j = 0, rows i ≥ 1 of the Z-matrix. Γ1 is obtained from columns j = 0 and
j = 1, rows i ≥ 2. Γ2 is obtained from columns j = 0, j = 1, and j = 2, rows
i ≥ 3. Γ3 is obtained from columns j = 0, j = 1, j = 2, and j = 3, rows i ≥ 4.
An unoriented Z-system for the molecule methanol corresponding to the Z-matrix
listed above is shown in Figure 2. The bond lengths L can be thought of as being
associated with elements of Γ1. Bond angles are associated to elements of Γ2, and
wedge angles are associated to elements of Γ3 (see the next paragraph). In this way
the unoriented Z-system indexes the internal coordinates.
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{C}
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{O}

{H}
Γ0

Γ1

Γ2

{O,H}

{C,H2}

{C,H3}

{C,H1}

{H,O,C}
{O,C,H1}

{O,C,H2}

{O,C}

{O,C,H3}

Γ3
∗

[H,O,C,H1]

[H2, C,O,H1]

[H3, C,O,H1]

Figure 2. A 3-dimensional Z-system Γ∗ for Methanol. The set
N = {C,H1,H2,H3, O,H} contains the atom names. The tree for
(Γk−1,Γk), k = 1, 2, 3, is indicated on the part labeled Γk−1, where
the edges are indicated by heavier lines of various styles. Above
each such line is the element of Γk which is the edge, and it is
connected to its two vertices by lighter lines of the same style.

The assertion that wedge angles are associated with elements of Γ3 needs a slight
correction, because an unoriented Z-system does not include certain information
which is present in the Z-matrix and is actually necessary to unambiguously describe
the molecular shape. For example, row i = 4 of the Z-matrix for methanol listed
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earlier contains the atom names (H2, C,O,H1), and the order in which these atoms
is listed is important for the precise interpretation of the coordinate ϕ = 120◦. The
axis of rotation is through the atoms C and O, and oriented from C toward O.
The initial half-plane is determined by this axis and the atom H2, whereas the final
half-plane is determined by this axis and the atom H1. The unoriented Z-system
only gives us the four sets:

{H2, C,O,H1} ⊃ {C,O,H1}
∪ ∪

{H2, C,O} ⊃ {C,O}
and there are four orderings (i0, i1, i2, i3) of {H2, C,O,H1} which yield the same
subsets by the rule {i0, i1, i2}, {i1, i2, i3} and {i1, i2}, namely

(H2, C,O,H1) (H2, O,C,H1)
(H1, O,C,H2) (H1, C,O,H2).

Let us assume that the connectivity of the atoms, the bond lengths and the bond
angles are fixed as in the above Z-matrix. This data alone does not fix the shape of
the molecule. The two 4-tuples in the first column actually determine from the angle
ϕ = 120◦ the same shape O of the four atoms. This is because in (H1, O,C,H2) the
orientation of the axis of rotation is reversed and the initial and final half-planes
are also reversed in comparison to (H2, C,O,H1) (c.f. Figure 1). The two 4-tuples
in the second column determine from the same angle ϕ = 120◦ a shape O′ of the
four atoms which is the mirror image of the shape O. Chemists say O and O′

have opposite chirality, although that word is most often used for the arrangement
of four substituents to a central atom. The concept of chirality has elicited many
mathematical treatments [24], [23], [91], [18]. If RH2 ,RC ,RO,RH1 ∈ R

3 denote
the position vectors of these four atoms then the chirality of the shape depends on
the sign of the following 4 × 4 determinant

det
(

1 1 1 1
RH2 RC RO RH1

)
= det

(
1 1 1 1

RC RH2 RH1 RO

)

= det
(

1 0 0 0
RC RH2 − RC RH1 − RC RO − RC

)
= (RH2 − RC) × (RH1 − RC) · (RO − RC),

which obviously depends on the order in which the atoms are listed.
So in addition to an unoriented Z-system we need some extra information so that

a specification of ϕ ∈ (−π, π] will fix a definite chirality of the four atoms involved.
Of the two 4-tuples in the first column we find that (H1, O,C,H2) is an even
permutation of (H2, C,O,H1), whereas both of the 4-tuples in the second column
are odd permutations of (H2, C,O,H1) and even permutations of each other. Thus
the extra information we need beyond that contained in the unoriented Z-system
is a choice, for each e ∈ Γ3, of an equivalence class e∗ of orderings of e, where two
orderings are deemed equivalent if one is an even permutation of the other. There
are two such equivalence classes for each e; if e∗ is one of them then let −e∗ denote
the other one. Each row of a Z-matrix determines a particular ordering, and hence
an equivalence class of orderings. Each ordering of e within e∗ will lead to the
same sign of the determinant exemplified above. If the configuration R is given it
is natural to choose e∗ so that the corresponding determinant is nonnegative and
ϕ ∈ [0, π]. Mostly however we do not wish to let the choice of e∗ be determined by
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the configuration, since it can easily change abruptly as the molecule moves; thus
we note that (e∗, ϕ) and (−e∗,−ϕ) correspond to exactly the same configuration.
With the choice of e∗ fixed in time the quantity eiϕ varies smoothly on the circle
as the molecule moves. Once these choices have been made and included in the set
Γ3
∗ then we say Γ∗ = (Γ \ Γ3) ∪ Γ3

∗ determines an oriented Z-system, a terminology
which we usually shorten to Z-system. Thus wedge angles should be assigned to
members of the set Γ3

∗.
This particular mathematical formalism for indexing valence coordinates has all

the desirable properties that one could reasonably hope to obtain, and the proofs
will be given in this paper. We prove that a Z-system Γ∗ determines a well-defined
system of internal coordinates and we characterize the set DC(Γ) (the coordinate
domain) of shapes non-singularly described as well as the set DP (Γ∗) (the parameter
domain) of parameter specifications which correspond to actual shapes in DC(Γ).
This is the first general result of this kind to be proved. We also show that Z-
systems enjoy very natural joining operations, which we call tethering and gluing.
We also precisely capture the relationship between Z-systems and Z-matrices by
showing what extra structure we must add to an unoriented Z-system to determine
a Z-matrix. We also show how a Z-system comes equipped with a family of sites
which together with a specific configuration of the molecule are associated with
special Cartesian coordinate systems, or poses, which are well-conformed to the
shape of the molecule at each site. Coordinate transformation matrices relating
these poses can be related to tree structures inherent in the Z-system, and to
the internal coordinates of the molecule. This allows one to systematically study
detailed questions about molecular shapes, such as deriving systems of algebraic
equations for molecular rings or helical structures, etc. Earlier work related to
this aspect is: [33], [19], [26], [40], [61], [78], [79]. We show that any non-collinear
configuration of three or more atoms can be non-singularly described by some Z-
system internal coordinate system.

Thus Z-systems provide the first mathematically rigorous and chemically ade-
quate general theory of valence internal coordinates, and they are consistent with
the guidelines stated in [31]. Despite assertions in that paper, there do exist va-
lence internal coordinate systems (combinations of bond lengths, bond angles, and
wedge angles) which are not Z-system coordinate systems and which fail to satisfy
the guideline “bond angle coordinates must all subtend two of the bond length
coordinates present in a valid set”. For example if the lengths (positive) of bonds
{1, 2} and {2, 3} and the measure (not 0 or π radians) of the angle {{1, 2}, {2, 3}}
is given then the length of the “bond” {1, 3} is thereby determined and is positive,
and hence it can be used as part of another angle, such as {{1, 3}, {3, 4}}. Thus
the question of exactly which valence coordinate systems give rise to a one-to-one
correspondence between coordinate and parameter domains as defined in this paper
remains open. However since Z-systems are adequate for any non-collinear config-
uration the practical benefit of considering systems more general than Z-systems
and yet with the same coordinate and parameter domains is not likely to be real.

Not every molecular internal coordinate is of valence type. For example the
improper Wilson angle (see page 247 of [82]), used in some molecular force fields,
is not a Z-system coordinate. This coordinate does not facilitate the description
of a wider variety of molecular geometries than addressed by Z-systems. We do
not claim that the kinetic energy or the potential energy of a molecule assumes a
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simplified form in Z-system coordinates. In particular there is no easy way to tell
from the Z-system coordinates of a molecule whether two atoms, which are more
than 4 bonds away from one another in the tree (Γ0,Γ1), are too close to one another
in space. It also may not be possible to choose a Z-system for a molecule which
completely preserves the symmetry of the molecule in a particular configuration.

In combinatorial topology a subset e ⊂ N with |e| = k + 1 is called an abstract
k-simplex, and an equivalence class of orderings of e with respect to the even permu-
tation equivalence relation discussed above is called an oriented abstract k-simplex
[71]. However an unoriented Z-system Γ is not an abstract simplicial complex since
Γ will never contain every face of every abstract simplex in Γ. However Γ will
be a special type of skeleton complex [4]. Also an unoriented Z-system is a very
pleasant new type of graded poset, [84]. However the Z-system concept is not men-
tioned in any of these guises in [35]. Despite its novelty there is the question of the
significance of the Z-system formalism. There are other mathematical formalisms
which allow one to achieve some of the above theorems in regard to 3-dimensional
molecular shapes (for example one based on iterated line graphs), and the Z-system
idea loses its attractiveness if it is just one formalism among many of nearly equal
power. From a mathematical point of view the correct formalism should be able to
be generalized to the n-dimensional case so as to define polyspherical coordinates
for orbits of mappings R : N → R

n under the action of Ga = R
n × SO (n). This

is not true for the iterated line graph formalism (see section 2.6). Z-systems and
Z-matrices generalize immediately to the n-dimensional setting. We will prove that
essentially all of the 3-dimensional properties we have discussed above generalize
nicely to the n-dimensional case. However, gluing of two n-dimensional Z-systems is
a little more involved than in the 3-dimensional case and we will leave that for later
work. The characterization of which n-dimensional shapes can be non-singularly
described by some n-dimensional Z-system is proved by a method quite unlike that
which might be at first devised for the 3-dimensional result. Generally we found
that the n-dimensional proofs, while slightly less concrete, yielded greater insight
than the overly simplified proofs which are available only in low dimensional cases.
We know of no formalism other than that of Z-systems which has such nice general
properties.

Thus the Z-system presents itself as a new construction with interesting possi-
bilities for connections to various fields of pure mathematics, such as combinatorics
and graph theory, rigidity theory, combinatorial topology, graded poset theory, real
algebraic geometry, geometrical mechanics, kinematics, and the theory of manifolds
and principal bundles. Z-system theory is a new development in chemical graph
theory [8], [86], [69], [9], [27]. Our definitions of wedge angles agree completely
with standard chemical definitions [82], [54], [72], allowing us to describe molecu-
lar shapes in widely understood terms. We think that standardized Z-systems can
profitably be chosen for each of the monomers of biopolymers, according to the
guidelines in [43], [44], [45] and [62], and the Z-systems for the biopolymers will
then be determined by our standard gluing operations (see section 6.4). A modi-
fication of the Z-matrix incorporating a hierarchical system of atom names might
then become an alternate (and immediately informative) storage and retrieval data
structure to pdb files for biological macromolecules (gluing would still require soft-
ware support). Z-systems are especially suitable for biomolecules because these
molecules operate at relatively low energies where covalent bonds are difficult to
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break and bond length and bond angle vibrations are of small amplitude. Thus the
important modes of flexibility are directly accessible and the invariant geometrical
aspects are easily held constant. In this way Z-systems can model important math-
ematical aspects of biomolecular structure. For a detailed application of Z-systems
to a large biomolecular system see [49].

The plan of the rest of this paper is as follows. Section 2 establishes general no-
tation and in particular explains the definition and construction of n-dimensional
Z-systems. The next section shows how to define internal coordinates given an n-
dimensional Z-system. Also the network of sites, conforming poses, and coordinate
transformation matrices are discussed and the relation to internal coordinates is
explained. Then the next section proves the two main theorems. The first main
theorem asserts that Z-system style coordinates determine a one-to-one correspon-
dence between shapes in the coordinate domain and parameter specifications in the
parameter domain. The second main theorem shows exactly which shapes are in
the union of the coordinate domains of all the Z-systems on N , establishing the
general scope of utility of these systems of internal coordinates. In the next sec-
tion we give the definition of n-dimensional Z-matrices, and show that there is a
one-to-one correspondence between the collection of Z-matrices on N and the set
of triples (Γ, r, λ), where Γ is an unoriented Z-system on N , r is a site from Γ, and
λ is a leaf-picking order in the highest level tree in Γ. Finally in the last section
we further discuss the applications of Z-systems to molecules. We establish ter-
minology specific to that dimension, define the operations of tethering and gluing
of Z-systems, give a result on five-membered rings which suggests ways that our
results might be generalized, and present a “bridging” algorithm able to concisely
explain the set of shapes of a six-membered ring.

2. Z-systems

2.1. Rigid motions, Coordinate Transformations. We begin with some gen-
eral notation used throughout the paper. Suppose R

n is equipped with the standard
Euclidean inner product, and with the usual orientation. (An orientation of an inner
product space is an equivalence class of ordered orthonormal bases, where two or-
dered orthonormal bases are equivalent if the matrix relating them has unit determi-
nant.) The standard basis I = (ê1, . . . , ên) is positively oriented and orthonormal.
SO(n) denotes the group of all n×n real matrices A such that AT A = AAT = I and
det(A) = 1. (AT denotes the transpose of the matrix A.) Define Ga = R

n × SO(n)
to be the group with the binary operation (b1, A1)(b2, A2) = (b1 + A1b2, A1A2),
identity (θ, I), and inverse operation (b, A)−1 = (−AT b, AT ). The group Ga has
a left action on R

n by the rule (b, A) · x = b + Ax. Ga is called the group of
n-dimensional rigid motions; the subscript a stands for active. Ga can be identi-
fied with the group of all orientation preserving and distance preserving mappings
from R

n to itself [10]. Define an n × (n + 1) matrix (e0, e1, . . . , en) to be a pose
[61] if e0 ∈ R

n and (e1, . . . , en) is a positively oriented orthonormal basis of R
n.

Every pose defines a Cartesian coordinate system in R
n with origin e0 in the usual

way. Let P denote the set of all poses. Ga acts on P on the left by the rule
(b, A)(e0, e1, . . . , en) = (b+Ae0, Ae1, . . . , Aen). This action is transitive and fixed
point free. Since A = (Aê1, . . . , Aên) ∈ SO(n) we see that there is a natural identi-
fication of Ga with P; we will mostly ignore it however. Define Gp to be the group
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of all (n + 1) × (n + 1) matrices of the form
(

1 θT

b A

)
, where θ ∈ R

n is the zero

(column) vector, and where (b, A) ∈ Ga. Gp is a group under the operation of
ordinary matrix multiplication. In fact the groups Ga and Gp are isomorphic in
the obvious manner. Gp acts on P on the right by ordinary matrix multiplication.
This group action is also transitive and fixed point free. We call Gp the passive
group of coordinate transformations. The left action of Ga on P commutes with
the right action of Gp.

2.2. Orbit Spaces. If A and B are sets then let AB denote the set of all mappings
from B to A. Let N be a set of N elements. Elements of the set (Rn)N will be
called configurations; if R ∈ (Rn)N and i ∈ N then instead of R(i) we will write
Ri. Ga acts on (Rn)N via the diagonal action, i.e. if g ∈ Ga, R ∈ (Rn)N , and
i ∈ N then (g · R)i = g · Ri. Orbits GaR = {g · R | g ∈ Ga} of this left action will
be called shapes. If a group G acts on the left (resp. right) on a set X then G\\X
(resp. X//G) will denote the set of all orbits Gx (resp. xG) of elements x ∈ X.
Define

B : = {R ∈ (Rn)N | if (b, A) ∈ Ga and (b, A) · R = R then (b, A) = (θ, I)}.
B is a dense open subset of (Rn)N which is invariant under the action of Ga. This
action of the Lie group Ga on the manifold B is fixed point free and proper, and
hence general results [2] imply that the orbit space Ga\\B is a smooth manifold;
Ga\\B is sometimes called the shape space [63]. A coordinate chart φ : DC(φ) →
DP (φ) for this manifold is a smooth bijection whose inverse φ−1 : DP (φ) → DC(φ)
is also smooth. The open set DC(φ) ⊂ Ga\\B is called the coordinate domain of
φ. The open set DP (φ) ⊂ R

nN−n(n+1)/2 is called the parameter domain of φ. This
paper will define a particular atlas of coordinate charts in the manifold Ga\\B. Let
ρ : B → Ga\\B : R 7→ GaR be the smooth projection mapping. ρ is an example of a
principal fiber bundle with (a left acting) structure group Ga [51].

2.3. Simplices. If S is any set define
(
S
k

)
to be the set of all subsets of S with

exactly k elements. We call an element of
( N
k+1

)
an abstract k-simplex. An element

of
(

R
n

k+1

)
is called a k-simplex. If there is no possible confusion we will sometimes call

an abstract simplex a simplex. A k-simplex {R0,R1, . . . ,Rk} is called geometrically
independent if the set {( 1

R0

)
,
(

1
R1

)
, . . . ,

(
1

Rk

)} is linearly independent in R
n+1. If

R ∈ (Rn)N and s = {i0, i1, . . . , ik} is an abstract k-simplex then define Rs : =
{Ri0 ,Ri1 , . . . ,Rik

} to be the associated simplex. For s ∈ (N
n

)
define

Bs : = {R ∈ (Rn)N | Rs is a geometrically independent n − 1 simplex}.
Lemma. If N ≥ n ≥ 2 then B = ∪{Bs | s ∈ (N

n

)}.
Proof. Define B′ : = ∪{Bs | s ∈ (N

n

)}. First, suppose R ∈ B′, so that there is at
least one s ∈ (N

n

)
such that Rs is a geometrically independent n − 1 simplex. Let

(b, A) be such that (b, A) · R = R. Then b + ARi = Ri for all i ∈ s. Thus for
i, j ∈ s, i 6= j, we have A(Ri − Rj) = Ri − Rj . Thus the eigenspace of A for the
eigenvalue 1 is of dimension at least n − 1. If (e1, . . . , en) is a positively oriented
orthonormal basis of R

n such that Aei = ei for i = 1, . . . , n− 1 then we must have
Aen = en. Thus A = I and consequently b = θ. Hence R ∈ B. Therefore B′ ⊂ B.
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For the converse suppose R ∈ B. Let i0 ∈ N and V = span{Ri − Ri0 | i ∈
N \ {i0}}. If it were the case that the dimension of V is less than or equal to n− 2
then let (e1, . . . , en) be a positively oriented orthonormal basis of R

n such that V ⊂
span{e1, . . . , en−2}. By defining a nontrivial rotation in the plane span{en−1, en},
and extending it to be the identity on span{e1, . . . , en−2}, we obtain a nontrivial
A ∈ SO(n) which is the identity on V . Then (b, A) = (Ri0 − ARi0 , A) is a non-
identity element of Ga such that (b, A) ·R = R, contradicting the fact that R ∈ B.
Thus when R ∈ B we have that the dimension of V is greater than or equal to n−1.
Hence there is a set s′ = {i1, . . . , in−1} ⊂ N \ {i0} such that {Ri − Ri0 | i ∈ s′}
is linearly independent in R

n. A simple argument now shows that if s = {i0} ∪ s′

then Rs is a geometrically independent n − 1 simplex. Thus R ∈ B′, and hence
B ⊂ B′. ¤

Let {0: n} = {0, 1, . . . , n} and inj(A,B) denote the set of all injective map-
pings between sets A and B. Let even(A) denote the set of all bijections of the
finite linearly ordered set A with itself which determine even permutations. The
set inj({0: n},N ) has a right action of the group even({0: n}) by composition of
mappings: if α ∈ inj({0: n},N ) and p ∈ even({0: n}) then α ◦ p is the result of
p acting on α. An oriented abstract n-simplex s∗ is member of the orbit space
inj({0: n},N )//even({0: n}), i.e. an equivalence class s∗ = [α] = α · even({0: n})
of injections α : {0: n} → N , where two such injections α and α′ are equiva-
lent if α′ = α ◦ p for some even permutation p : {0: n} → {0: n}. If s∗ = [α]
is an oriented abstract n-simplex, then we also write s∗ = [α(0), α(1), . . . , α(n)]
with the understanding that [α(0), α(1), . . . , α(n)] = [α(p(0)), α(p(1)), . . . , α(p(n))]
for all even permutations p. Assigning every injective mapping its range defines
a mapping inj({0: n},N ) → ( N

n+1

)
. Since this mapping is invariant under the

action of the group even({0: n}), it factors through the projection onto the or-
bit space, giving a mapping Υ: inj({0: n},N )//even({0: n}) → ( N

n+1

)
. Thus Υ

maps any oriented abstract n-simplex to its underlying abstract n-simplex, i.e.
Υ(s∗) = Υ([α(0), α(1), . . . , α(n)]) = {α(0), α(1), . . . , α(n)} = s.

2.4. Graph Theory. Suppose V ⊂ (N
k

)
and E ⊂ ( N

k+1

)
, where k ≥ 1. We would

like to think of the pair τ = (V,E) as a graph, where V = vert τ is the set of
vertices, E = edge τ is the set of edges, and a vertex v ∈ V is incident on the edge
e ∈ E if and only if v ⊂ e. This is contrary to the traditional definition of graph,
which requires that each edge be an element of

(
V
2

)
, and each edge is incident on its

two members. However the essential thing about the traditional definition is that
each edge must be incident on exactly two vertices, and an edge should be uniquely
determined by its two vertices. We can insure this is true in the case of (V,E) if
we impose the additional condition:

• for each e ∈ E the set {v ∈ V | v ⊂ e} has exactly two elements.
If e ∈ E and {v ∈ V | v ⊂ e} = {v1, v2} then since v1 6= v2 it is automatic that
e = v1 ∪ v2, and hence that e is uniquely determined by v1 and v2. We will use
this non-traditional graph idea frequently, but we will always first check the above
additional condition. If a pair of sets (V,E) is a graph by the traditional definition,
then we will always call it a traditional graph.

For the convenience of the reader we record here several standard [87] graph
theory definitions. Consider an ordered list t = (v0, e1, v1, . . . , vm−1, em, vm) where
v0, . . . , vm are vertices of V and e1, . . . , em are edges from E, such that ei is incident
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on both vi−1 and vi for all i = 1, 2, . . . , m. t is called a path of length m in (V,E)
connecting v0 to vm if v0, v1, . . . , vm are distinct. t is called a cycle if v1, . . . , vm are
distinct, v0 = vm, and m ≥ 3. The graph (V,E) is said to be connected if for any
two distinct vertices v, v′ of V there exists a path connecting v to v′. If a graph
contains no cycle it is said to be acyclic. A connected acyclic graph is said to be a
tree. A vertex v is said to be a leaf if there is only one edge e incident on v. A triple
(V,E, r) is called a rooted graph if a distinguished vertex r of V has been chosen;
r is called the root vertex, or simply the root. Suppose (V1, E1) and (V2, E2) are
graphs. We say (V1, E1) is a subgraph of (V2, E2) if V1 ⊂ V2 and E1 ⊂ E2. The
subgraph (V1, E1) is said to be spanning if V1 = V2. The subgraph (V1, E1) is said
to be induced by V1 if E1 consists of exactly those elements of E2 whose two vertices
are actually elements of V1. If (V,E, r) is a rooted tree then a leaf-picking order
for this rooted tree is an ordering of the elements of the set V = {v1, v2, . . . , vm}
such that r = v1 and for every 2 ≤ k ≤ m the vertex vk is a leaf of the subgraph of
(V,E) induced by the set {v1, . . . , vk}. Such leaf-picking orders are known to exist
for any rooted tree [87].

2.5. Z-systems. Now we are ready to give a general definition of Z-systems.

Definition. An n-dimensional unoriented Z-system on the set N is a collection Γ
of subsets of N satisfying the following conditions.

(1) If e ∈ Γ then |e| ≤ n + 1. Define Γk = {e ∈ Γ | |e| = k + 1}, −1 ≤ k ≤ n.
(2) ∅ ∈ Γ−1 and if i ∈ N then {i} ∈ Γ0, i.e. Γ0 =

(N
1

)
.

(3) If 1 ≤ k ≤ n and e ∈ Γk then |{v ∈ Γk−1 | v ⊂ e}| = 2.
(4) If 1 ≤ k ≤ n and v1, v2 ∈ Γk−1 such that v1 ∪ v2 ∈ Γk then v1 ∩ v2 ∈ Γk−2.
(5) If 1 ≤ k ≤ n then the pair (Γk−1,Γk) is a tree graph.

Definition. Suppose Γ is an n-dimensional unoriented Z-system on the set N and
Γn
∗ is a collection of oriented abstract n-simplices such that Υ determines a bijective

mapping of Γn
∗ onto Γn. Then we say Γ∗ = (Γ \ Γn) ∪ Γn

∗ is an n-dimensional Z-
system on N whose underlying unoriented Z-system is Γ.

2.6. Iterated Line Graph Construction. It is not entirely obvious that unori-
ented Z-systems exist in higher dimensions. But if an unoriented Z-system exists it
is obvious that it can be made into a Z-system in many different ways. Thus we will
now give an inductive construction proving the existence of unoriented Z-systems
in every dimension and showing the degree of flexibility in the concept. To begin,
note that the complete graph (

(N
1

)
,
(N

2

)
) is connected. In any connected graph it is

possible to choose a spanning tree. So choose a spanning tree (Γ0,Γ1) as a subgraph
of (Γ0,

(N
2

)
). Notice that if e ∈ Γ1 is incident on the two vertices v1, v2 ∈ Γ0 then

v1 ∩ v2 = ∅ ∈ Γ−1. Thus a 1-dimensional unoriented Z-system necessarily exists.
Now suppose for n ≥ 2 that an (n − 1)-dimensional unoriented Z-system Γ has

been chosen. Thus, in particular, (Γn−2,Γn−1) is a tree. Recall that the traditional
line graph of (Γn−2,Γn−1) is defined to be the traditional graph (Γn−1, Lt), where

Lt = {{e1, e2} | e1, e2 ∈ Γn−1, e1 6= e2, and there exists v ∈ Γn−2 such that

v ⊂ e1 and v ⊂ e2}
= {{e1, e2} | e1, e2 ∈ Γn−1 and e1 ∩ e2 ∈ Γn−2}.
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There is the possibility of giving a non-traditional version (Γn−1, L) of this tradi-
tional graph, where

L = {e1 ∪ e2 | e1, e2 ∈ Γn−1, e1 ∩ e2 ∈ Γn−2},
but we must check the additional condition to insure that (Γn−1, L) is a graph.
This will follow from the following lemma, which proves an even stronger result
needed later.

Lemma. Suppose (Γk−1,Γk) is a tree for k = 1, . . . , n − 1. Suppose τ is a tree
subgraph of the traditional line graph (Γn−1, Lt) with m ≥ 1 edges, and S = ∪{e |
e ∈ vert τ}. Then for all 0 ≤ k ≤ n−1 we have that |{e ∈ Γk | e ⊂ S}| = n+m−k.

Proof. Define for each k = 0, 1, . . . , n− 1 the sets Γk
S = {s ∈ Γk | s ⊂ S}. We want

to show that |Γk
S | = n + m − k. Clearly τ is a tree with m edges, and therefore

m + 1 vertices, each of which is a member of Γn−1. Hence |Γn−1
S | ≥ m + 1. Now

for all k = 1, . . . , n − 1 we claim that (Γk−1
S ,Γk

S) is a graph. We must verify the
additional condition. To see this suppose e ∈ Γk

S ⊂ Γk. Since (Γk−1,Γk) is a graph
there are exactly two vertices v1, v2 ∈ Γk−1 on which e is incident. Since both are
subsets of e ⊂ S, both v1 and v2 are in Γk−1

S . Clearly there cannot be in Γk−1
S

any other vertex incident on e. Thus e is incident on exactly two vertices in Γk−1
S .

Therefore our claim is demonstrated. Hence (Γn−2
S ,Γn−1

S ) is a subgraph of the tree
(Γn−2,Γn−1), and hence is acyclic. The connected components of this subgraph are
all trees, and hence have one more vertex than the number of edges. Consequently
|Γk−1

S | ≥ |Γk
S | + 1. By an induction argument we see that |Γk

S | ≥ n + m − k for all
k = 0, . . . , n− 1 (we call this inequality the lower bound). Therefore n + m ≤ |Γ0

S |.
Let {e0, e1, . . . , em} be a leaf-picking order for τ , where the root vertex e0 is chosen
arbitrarily. Since e0 ∈ Γn−1 we have |e0| = n. Now {e0, e1} is an edge in Lt, and
hence e0∩e1 ∈ Γn−2. Thus |e0∪e1| = n+1. Likewise e2 is connected to either e0 or
e1 by an edge in Lt, and hence |e0 ∪ e1 ∪ e2| ≤ n + 2. Continuing in this fashion we
find that |e0 ∪ e1 ∪ · · · ∪ em| ≤ n + m. Since Γ0 =

(N
1

)
we have |Γ0

S | ≤ n + m (upper
bound). Since the lower bound and the upper bound agree we have |Γ0

S | = n + m.
Since we have already established that |Γk

S | ≤ |Γk−1
S |−1 (upper bound), an induction

argument shows that |Γk
S | = n + m − k for all k = 0, 1, . . . , n − 1, since the upper

and lower bounds agree at each value of k. ¤
We apply this lemma with the tree τ consisting of the two vertices e1 and e2 and

a single edge {e1, e2} ∈ Lt, (m = 1) and S = e1 ∪ e2. We find that |{e ∈ Γn−1 | e ⊂
S}| = n + 1− (n− 1) = 2. Thus the additional condition is verified, and (Γn−1, L)
is therefore the line graph of the tree (Γn−2,Γn−1). Since line graphs of connected
graphs are connected we can choose a spanning tree (Γn−1, Tn) in (Γn−1, L). If
Γ′ = Γ ∪ Tn then Γ′ is an n-dimensional unoriented Z-system.

It is also true that every unoriented Z-system can be obtained by means of the
inductive procedure just described. This is because condition (4) of the definition
implies that (Γk−1,Γk) is a spanning tree in the line graph of (Γk−2,Γk−1), 2 ≤
k ≤ n.

The n-dimensional unoriented Z-system Γ can be put in one-to-one correspon-
dence with the n-tuple (τ1, . . . , τn), where τ1 is a spanning tree in the traditional
complete graph on Γ0 and τk+1 is a spanning tree in the traditional line graph of
τk for all k = 1, . . . , n − 1. The simplicity of this alternate approach to unoriented
Z-systems makes it a natural object of study by pure mathematicians independent
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O
H3

C
H

H1

H2

Figure 3. The iterated line graph form (used by IMIMOL [22])
of the same Z-system Γ∗ for Methanol as in Figure 2. Bonds (1-
simplices, or edges of τ1) are indicated by solid lines. Triangles (2-
simplices) are in one-to-one correspondence with angles (edges of
τ2), and are indicated by dashed lines from one vertex bond to the
other. Tetrahedra (3-simplices) are in one-to-one correspondence
with unordered pairs of angles (edges of τ3), and are indicated
by curved or straight dotted lines from one vertex angle to the
other. Impropers must be given a direction; dihedrals assume their
canonical orientation (see section 6).

of its applications. Others have also noticed the utility of iterated line graphs for
the study of molecular shape [27]. A specification of Γ is to look at an unoriented
Z-system in the poset picture. A specification of (τ1, . . . , τn) is to look at an un-
oriented Z-system in the iterated line graph picture. These pictures can be used to
visualize a Z-system. For example in Figure 2 we give a 3-dimensional Z-system
for the molecule methanol in the poset picture. Figure 3 is the same Z-system, but
given in the iterated line graph picture. (See section 6 for a discussion of dihedrals
and impropers in the 3-dimensional case.) Although the diagrams are easier to draw
in the (3-dimensional) iterated line graph picture, the set theoretical nature of the
vertices and edges involved becomes quite complex for the higher level trees. Fur-
thermore, rather than orienting the edges of τn, we must orient the corresponding
n-simplices in Γn. So we commonly use the iterated line graph picture to display
3-dimensional Z-systems, but use the poset picture for statements of theorems and
their proofs.

2.7. Fences and Paths in Z-systems. A “top down” construction of a Z-system
satisfying certain geometrical constraints will be given in the proof of the theorem
of section 4.2. This construction will use the following concept.

Definition. Let τ1, . . . , τm be (k + 1)-simplices and s0, s1, . . . , sm be distinct k-
simplices in N , where τj = sj−1 ∪ sj for j = 1, . . . , m, and sj ∩ (sl+1 \ sl) = ∅ for
all 0 ≤ j ≤ l ≤ m − 1. We call this family (s0, τ1, s1, . . . , τm, sm) a fence of order
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τ3 τ4 τ5

s0 s1 s2 s3 s5 s6

t0 t1 t2 t3

τ6

s4

τ1 τ2

Figure 4. A k + 1-fence of length m = 6 with its k-fence. In this
example we have k0 = 1, k1 = 2, k2 = 4, k3 = 5, J = 3.

k + 1 and of length m. A fence of order k + 1 and of any length will be called a
k + 1-fence.

The term “fence” is taken from the work [25]. A natural example of a k + 1-
fence is obtained by considering a path (s0, τ1, s1, . . . , τm, sm) in the tree (Γk,Γk+1)
connecting s = s0 and s′ = sm, where 0 ≤ k ≤ n − 1 and Γ is an n-dimensional
unoriented Z-system on N . We only need to check that sj ∩ (sl+1 \ sl) = ∅ for
all 0 ≤ j ≤ l ≤ m − 1. This is obvious if j = l so suppose j < l and con-
sider the paths (sj , τj+1, sj+1, . . . , sl−1, τl, sl) and (sj , τj+1, sj+1, . . . , sl, τl+1, sl+1)
in (Γk,Γk+1). These paths are trees with l − j and l − j + 1 edges respectively. By
the lemma from section 2.6 we see that |sj ∪ sj+1 ∪ · · · ∪ sl| = k + 1 + l − j and
|sj ∪ sj+1 ∪ · · · ∪ sl+1| = k + 2 + l − j. Since τl+1 ∈ Γk+1 is an edge incident on
sl, sl+1 ∈ Γk, we have that sl ∩ sl+1 ∈ Γk−1, and hence |sl+1 \ sl| = 1. If the one
element of sl+1 \ sl were in sj then |sj ∪ · · · ∪ sl ∪ sl+1| = k + 1 + l − j, which is a
contradiction. Hence sj ∩ (sl+1 \ sl) = ∅, as claimed.

If s0, s1, . . . , sm are the k-simplices of any k + 1-fence then by definition sj ∩
(sl+1 \ sl) = ∅ for all 0 ≤ j ≤ l ≤ m − 1. We call this the disjointness condition.
However a reflected disjointness condition also holds: (sj−1 \ sj) ∩ sl = ∅ for all
1 ≤ j ≤ l ≤ m. The statement is trivial when l = j, and when l = j + 1 we have
(sj−1 \ sj)∩ sj+1 ⊂ sj−1 ∩ (sj+1 \ sj) = ∅. The general case is proved by induction
on l, for if (sj−1\sj)∩sl = ∅ and a ∈ (sj−1\sj)∩sl+1 then a ∈ sj−1∩(sl+1\sl) = ∅,
a contradiction.

The following general lemma allows us to construct from a k + 1-fence another
fence of order k.

Lemma. Suppose (s0, τ1, s1, . . . , τm, sm) is a fence of order k + 1 and of length m.
Define k0 = 1 and kj+1 = min{kj < l ≤ m | skj−1 ∩ skj

6= sl−1 ∩ sl}, for all j ≥ 0
for which the minimum is over a nonempty set. Let kJ be the last one defined in
this manner, where 0 ≤ J ≤ m − 1. Define tj = skj−1 ∩ skj

for j = 0, 1, . . . , J .
Then (t0, sk1−1, t1, . . . , skJ−1, tJ ) is a k-fence of length J (see Figure 4).

Proof. First we need to check that t0, t1, . . . , tJ are distinct (k−1)-simplices. Since
sl−1 and sl are distinct k-simplices contained in the k + 1 simplex τl, we see that
sl−1∩sl is a (k−1)-simplex of N . Suppose 1 ≤ j < l ≤ m are such that sj−1∩sj =
sl−1 ∩ sl. Then we claim that sj−1 ∩ sj = sj ∩ sj+1 = · · · = sl−2 ∩ sl−1 = sl−1 ∩ sl.
To see this, suppose i ∈ sj−1 ∩ sj = sl−1 ∩ sl. Since sj−1 ∩ (sl−1 \ sl−2) = ∅ and
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both i ∈ sj−1 and i ∈ sl−1 it follows that i ∈ sl−2. In a similar way i is a member
of all the intervening sk′ . Thus sj−1 ∩ sj ⊂ sk′−1 ∩ sk′ for all j ≤ k′ ≤ l. Since both
sets have k elements, they must be equal as sets. Thus t0, t1, . . . , tJ are distinct
(k − 1)-simplices. Next we show that tj ∪ tj+1 = skj+1−1 for j = 0, 1, . . . , J − 1. To
see this note that by definition tj+1 = skj+1−1∩skj+1 so clearly tj+1 ⊂ skj+1−1. Also
from the definition of kj+1 we have tj = skj−1 ∩ skj

= skj+1−2 ∩ skj+1−1, and hence
tj ⊂ skj+1−1. Thus tj ∪ tj+1 ⊂ skj+1−1. Since both tj and tj+1 have k elements and
are distinct, the union must have at least k + 1 elements. Thus tj ∪ tj+1 = skj+1−1

as claimed. Finally we check that tj ∩ (tl+1 \ tl) = ∅ for all 0 ≤ j ≤ l ≤ J − 1.
Suppose by way of contradiction that i ∈ tj ∩(tl+1 \ tl). Since kl+1 ≥ kl +1 ≥ kj +1
we have i ∈ skj−1 and i ∈ skl+1−1 but i 6∈ skl−1 ∩ skl

= skl+1−2 ∩ skl+1−1. Thus
i 6∈ skl+1−2, and hence i ∈ skj−1 ∩ (skl+1−1 \ skl+1−2), contradicting the assumption
that (s0, τ1, s1, . . . , τm, sm) is a k+1 fence. Thus if a Z-system contains a k+1-fence
of length m then it also contains a k-fence of length 0 ≤ J ≤ m − 1 by the above
construction. ¤

Remark. For the fence which comes from the path from s to s′ in the tree (Γk,Γk+1)
associated to an unoriented Z-system, we can use the above lemma to construct the
path between t ⊂ s and t′ ⊂ s′ in the tree (Γk−1,Γk). If (s0, τ1, s1, . . . , τm, sm) is the
path in (Γk,Γk+1) connecting s = s0 to s′ = sm, then (t0, sk1−1, t1, . . . , skJ−1, tJ )
will be a path in (Γk−1,Γk) connecting t0 = s0 ∩ s1 to tJ = sm−1 ∩ sm. If t = t0
and t′ = tJ then we are done. If t ⊂ s0, t ∈ Γk−1, and t 6= t0, then by the reflected
disjointness condition (s0 \ s1) ∩ sj = ∅ for all 1 ≤ j ≤ m we see that t is distinct
from t0, . . . , tJ , t′. Also s0 is an edge incident on t and t0. Likewise if t′ ⊂ sm,
t′ ∈ Γk−1, and t′ 6= tJ then the disjointness condition sj ∩ (sm \ sm−1) = ∅ for all
0 ≤ j ≤ m − 1 implies that t′ is distinct from t, t0, . . . , tJ . Furthermore sm is an
edge incident on tJ and t′. Thus the unique path in (Γk−1,Γk) connecting t to t′

passes through the vertices t0, t1, . . . , tJ . This result will be useful in sections 3.2
and 3.4.

3. Polyspherical Coordinates

3.1. Internal Coordinates Defined. Although Z-systems are natural combina-
torial objects, their true nature is revealed when they are considered as defining
polyspherical coordinate systems. Let Γ∗ be an n-dimensional Z-system on the set
N = {1, . . . , N}, with underlying unoriented Z-system Γ. Define

B(Γ) : = ∩{Bs | s ∈ Γn−1}
DC(Γ) : = Ga\\B(Γ).

B(Γ) ⊂ B depends only on Γn−1. B(Γ) is called the trivialization domain, and
DC(Γ) is called the coordinate domain corresponding to the given Z-system. Let
R ∈ B(Γ) be given. Then for every e = {i, j} ∈ Γ1 we define

Le(R) : = ‖Ri − Rj‖.
Note that the associated simplex Re must be geometrically independent, and hence
Le(R) > 0.

For any k = 2, . . . , n suppose e = v1 ∪ v2 ∈ Γk where v1, v2 ∈ Γk−1 and s =
v1 ∩ v2 ∈ Γk−2. Define Πs to be the orthogonal projection onto the subspace of
R

n spanned by the set of vectors {Rj − Ri | j ∈ s \ {i}}, where i ∈ s. When
k = 2 so that s = {i} we have that Πs maps every vector to the zero vector. For
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larger values of k we have that Πs does not depend on i ∈ s, as is easy to see. Now
suppose i ∈ s, {j1} = v1 \ s, and {j2} = v2 \ s. Then define

Ce(R) : =
(1 − Πs)(Rj1 − Ri)
‖(1 − Πs)(Rj1 − Ri)‖ · (1 − Πs)(Rj2 − Ri)

‖(1 − Πs)(Rj2 − Ri)‖ .

Since the associated (k − 1)-simplices Rv1 and Rv2 must each be contained in a
geometrically independent (n − 1)-simplex, we see that each of the denominators
must be positive. However, we must show that each of the unit vectors in the
above expression is independent of i ∈ s. To see this suppose i′ 6= i, i′ ∈ s. Then
Rj − Ri = Rj − Ri′ + (Ri′ − Ri). Since Πs(Ri′ − Ri) = (Ri′ − Ri) we have
that (1 − Πs)(Rj − Ri) = (1 − Πs)(Rj − Ri′), as desired. If 2 ≤ k ≤ n − 1 then
the associated simplex Re must be geometrically independent, and hence Ce(R) ∈
(−1, 1). We will use the coordinate Ce(R) rather than the angle θ = cos−1 Ce(R).

Now suppose e∗ = [i0, i1, . . . , in] ∈ Γn
∗ , where e = {i0, i1, . . . , in}, s = {i0, i1, . . . ,

in−2} ∈ Γn−2, v1 = s ∪ {in−1} ∈ Γn−1, and v2 = s ∪ {in} ∈ Γn−1. It is always
possible to arrange this. Ce(R) is defined as above except now we do not know Re

is geometrically independent, so we only have that Ce(R) ∈ [−1, 1]. Since Rv1 is
geometrically independent there is a unique unit vector en which is orthogonal to
the span of {Ri1 − Ri0 , . . . ,Rin−1 − Ri0} and such that (Ri1 − Ri0 , . . . ,Rin−1 −
Ri0 , en) is positively oriented. We define

Se∗(R) : = en · (1 − Πs)(Rin
− Ri0)

‖(1 − Πs)(Rin
− Ri0)‖

.

Since Rv2 must be geometrically independent, the denominator in the above ex-
pression is positive. Since Rs is geometrically independent there exists a unique
orthonormal set (e1, . . . , en−2) of vectors from R

n and a unique upper triangu-
lar (n − 2) × (n − 2) matrix U with positive diagonal entries such that (Ri1 −
Ri0 , . . . ,Rin−2 − Ri0) = (e1, . . . , en−2)U . This is simply Gram-Schmidt orthogo-
nalization, or QR factorization [34]. The entries of the vectors ek and of the matrix
U are smooth functions of R. It follows that Πs =

∑n−2
k=1 ekeT

k . Define

en−1 =
(1 − Πs)(Rin−1 − Ri0)

‖(1 − Πs)(Rin−1 − Ri0)‖
, and v =

(1 − Πs)(Rin
− Ri0)

‖(1 − Πs)(Rin
− Ri0)‖

.

It follows that (e1, . . . , en) is a positively oriented orthonormal basis of R
n. From

the definitions above we see that Ce(R) = en−1 · v, Se∗(R) = en · v, and hence
v = Cs(R)en−1 + Se∗(R)en. Thus

det(e1, . . . , en−1,v) = Se∗(R).

This proves that Se∗(R) is a smooth function of R. See figure 5 for the 3-dimensional
case.

Lemma. The number Se∗(R) does not depend on the representative (i0, i1, . . . , in)
of the chosen orientational equivalence class e∗, provided s = {i0, i1, . . . , in−2}.
Proof. So suppose [i0, i1, . . . , in] = [j0, j1, . . . , jn], where s = {j0, j1, . . . , jn−2}.
Then {in−1, in} = {jn−1, jn}, and there are therefore two cases: (in−1, in) =
(jn−1, jn) and (in−1, in) = (jn, jn−1). In the first case, (in−1, in) = (jn−1, jn),
which cannot happen in a nontrivial way in dimensions 2 and 3, we see that
(j0, j1, . . . , jn−2) is an even permutation of (i0, i1, . . . , in−2). Hence (j0, j1, . . . , jn−1)
is an even permutation of (i0, i1, . . . , in−1). Let P be the n×n permutation matrix
such that (j0, . . . , jn−1) = (i0, . . . , in−1)P . Let uT = (0, 1, . . . , 1) ∈ (Rn)∗, and
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θ′

θ

(1 − Πs)(Ri2 − Ri0)

Ri1

Ri2

e3 Ri3

Ri0
(1 − Πs)(Ri3 − Ri0)

Figure 5. The geometry of wedge angles in dimension n = 3.
In this case e∗ = [i0, i1, i2, i3], s = {i0, i1}, v1 = {i0, i1, i2}, and
v2 = {i0, i1, i3}. The square lies in a plane perpendicular to the line
through Ri0 and Ri1 . Both of the vectors (1−Πs)(Ri2 −Ri0) and
(1−Πs)(Ri3 −Ri0) lie in this plane since 1−Πs is an orthogonal
projection into this plane. Ce(R) = cos(θ) and Se∗(R) = cos(θ′) =
sin(θ) > 0 in this picture.

G = I − ê1uT an n × n Gauss transformation; note that G−1 = I + ê1uT . Then
we have that(

1 0 . . . 0 0
Rj0 Rj1 − Rj0 . . . Rjn−1 − Rj0 en

)

=
(

1 1 . . . 1 0
Rj0 Rj1 . . . Rjn−1 en

)(
G θ

θT 1

)

=
(

1 1 . . . 1 0
Ri0 Ri1 . . . Rin−1 en

)(
P θ

θT 1

)(
G θ

θT 1

)

=
(

1 0 . . . 0 0
Ri0 Ri1 − Ri0 . . . Rin−1 − Ri0 en

)(
G−1 θ

θT 1

) (
PG θ

θT 1

)
.

Since det(G−1PG) = det(P ) = 1 we see that

det(Rj1 − Rj0 , . . . ,Rjn−1 − Rj0 , en) = det(Ri1 − Ri0 , . . . ,Rin−1 − Ri0 , en) > 0.

Also êT
1 (I + ê1uT )P (I − ê1uT ) = (êT

1 +uT )P (I − ê1uT ) = (êT
1 +uT )(I − ê1uT ) =

êT
1 + uT − (êT

1 ê1)uT − (uT ê1)uT = êT
1 . Therefore G−1PG =

(
1 θT

v H

)
, where H
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is an (n − 1) × (n − 1) matrix with unit determinant. Since

(Rj0 ,Rj1 − Rj0 , . . . ,Rjn−1 − Rj0) = (Ri0 ,Ri1 − Ri0 , . . . ,Rin−1 − Ri0)
(

1 θT

v H

)

we see that

(Rj1 − Rj0 , . . . ,Rjn−1 − Rj0) = (Ri1 − Ri0 , . . . ,Rin−1 − Ri0)H,

and hence the same vector en works for both representatives of the orientational
equivalence class. Since we have already seen that (1 − Πs)(Rjn

− Rj0) = (1 −
Πs)(Rin

− Ri0), we have that Se∗(R) is independent of the representative of the
orientational equivalence class in this case.

Now consider the case where (in−1, in) = (jn, jn−1). Therefore (j0, j1, . . . , jn−2)
is an odd permutation of (i0, i1, . . . , in−2). Let B = (Ri1 − Ri0 , . . . ,Rin−2 − Ri0).
Using an argument similar to that given in the first case we have that there is an (n−
2)×(n−2) matrix K such that detK = −1 and (Rj1−Rj0 , . . . ,Rjn−2−Rj0) = BK.
There exists a vector z ∈ R

n−1 such that Ri0−Rj0 = Bz. Therefore Rjn−1−Rj0 =
Rin

−Ri0 +Bz and Rjn
−Rj0 = Rin−1 −Ri0 +Bz. Consequently (1−Πs)(Rjn−1 −

Rj0) = (1 − Πs)(Rin
− Ri0) and (1 − Πs)(Rjn

− Rj0) = (1 − Πs)(Rin−1 − Ri0),
and hence ẽn−1 = v, and ṽ = en−1. Since ẽn−1 = v = Cs(R)en−1 + Se∗(R)en

it is reasonable to define ẽn = Se∗(R)en−1 − Ce(R)en, since then we would have
ẽn−1 · ẽn = 0 and ẽn · ṽ = [Se∗(R)en−1 − Ce(R)en] · en−1 = Se∗(R) as desired.
Since ẽn · ẽn = Se∗(R)2 + Ce(R)2 = v · v = 1 we see that ẽn is a unit vector. To
finish showing that this choice for ẽn has all the properties specified for it in the
definition, we compute

(Rj1 − Rj0 , . . . ,Rjn−1 − Rj0 , ẽn)

= (Ri1 − Ri0 , . . . ,Rin−2 − Ri0 ,Rjn−1 − Rj0 , ẽn)


K θ θ

θT 1 0
θT 0 1




= (e1, . . . , en−2,Rjn−1 − Rj0 , ẽn)


 U θ θ

θT 1 0
θT 0 1





K θ θ

θT 1 0
θT 0 1




= (e1, . . . , en−2, ẽn−1, ẽn)


 I y θ

θT l 0
θT 0 1





UK θ θ

θT 1 0
θT 0 1




= (e1, . . . , en−2, en−1, en)


 I θ θ

θT Ce(R) Se∗(R)
θT Se∗(R) −Ce(R)





UK y θ

θT l 0
θT 0 1


 ,

where x = Rjn−1 − Rj0 , y = (e1, . . . , en−2)T x, and l = ‖(1 − Πs)x‖. Thus (Rj1 −
Rj0 , . . . ,Rjn−1 − Rj0 , ẽn) is positively oriented. ¤

Thus we define Ze∗(R) : = Ce(R) + iSe∗(R) ∈ S1 = {z ∈ C | |z| = 1}. Clearly
if e∗ is replaced by the opposite orientational equivalence class −e∗ with the same
underlying n-simplex e then S−e∗(R) = −Se∗(R). We will use the coordinate
Ze∗(R) rather than choosing a branch for the angle ϕ, where Ze∗(R) = eiϕ. We
consider S1 to be a one dimensional real manifold.
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We define the parameter domain DP (Γ∗) to be

DP (Γ∗) : = (0,∞)Γ
1 ×

[
n−1∏
k=2

(−1, 1)Γ
k

]
× (S1)Γ

n
∗ .

When R ∈ B(Γ) is given then, taking the values at R of all the coordinate
functions we have defined together, an element of DP (Γ∗), also called a parameter
specification, is defined:

(e ∈ Γ1 7→ Le(R), {e ∈ Γk 7→ Ce(R)}n−1
k=2 , e∗ ∈ Γn

∗ 7→ Ze∗(R)).

Thus we can think of elements of DP (Γ∗) as being a labeling of each of the edges of
each of the trees of the given Z-system Γ∗ with appropriate numerical coordinate
values. Thus a pair (Γ∗, γ) consisting of a Z-system and an element γ of DP (Γ∗)
will be called a labeled Z-system.

3.2. Sites and Conforming Poses. Suppose r = (i0, . . . , in−1) ∈ Nn is such that
|{i0, . . . , in−1}| = n. We call r a site. ik is called the kth element of the site r,
k = 0, 1, . . . , n − 1. Let sk(r) : = {i0, . . . , ik} for all 0 ≤ k ≤ n − 1. The set of
abstract simplices {s0(r), . . . , sn−1(r)} is said to be the flag associated to the site
r; a site and its flag contain exactly the same information, but in different forms.
Given a site r and R ∈ Bsn−1(r) we can define the pose at the site r conforming to
the configuration R as follows:

e0 = Ri0 , e1 =
Ri1 − Ri0

‖Ri1 − Ri0‖
, e2 =

(1 − e1eT
1 )(Ri2 − Ri0)

‖(1 − e1eT
1 )(Ri2 − Ri0)‖

, . . . ,

en−1 =
(1 − ∑n−2

k=1 ekeT
k )(Rin−1 − Ri0)

‖(1 − ∑n−2
k=1 ekeT

k )(Rin−1 − Ri0)‖
,

en = the unique unit vector in R
n perpendicular to e1, . . . , en−1 such that

(e1, . . . , en) is positively oriented.

Each of these vectors is well-defined since the simplex Rsn−1(r) is geometrically
independent for R ∈ Bsn−1(r). Let Er(R) : = (e0, e1, . . . , en) ∈ P denote this pose.
Notice that Πsj(r) =

∑j−1
k=1 ekeT

k , for j = 1, . . . , n−1. If (b, A) ∈ Ga then it is clear
that Er((b, A) · R) = (b, A)Er(R). The following diagram commutes:

Bsn−1(r)
(Er,ρ)−−−−→ P × Ga\\Bsn−1(r)

ρ

y yπ2

Ga\\Bsn−1(r)
1−−−−→ Ga\\Bsn−1(r)

This shows that choice of a site r determines a local trivialization in the principal
bundle ρ : B → Ga\\B. (Here we identify Ga and P in the obvious way.)

• Let vert S(Γ) denote the set of all sites r such that sk(r) ∈ Γk for 0 ≤ k ≤ n−1.
Such sites are said to be associated with or from the unoriented Z-system Γ. Note
that vert S(Γ) does not depend on the choice of Γn.

• For 1 ≤ k ≤ n − 1 let edgek S(Γ) denote the set of all two element subsets
{(i0, . . . , in−1), (j0, . . . , jn−1)} of vert S(Γ) such that (j0, . . . , jn−1) can be obtained
from (i0, . . . , in−1) by transposition of elements ik−1 and ik.
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• If Γ∗ is a Z-system, with underlying unoriented Z-system Γ, then let edgen S(Γ∗)
(resp. edgen S(Γ)) denote the set of all ordered pairs

((i0, . . . , in−2, i), (i0, . . . , in−2, i
′))

of distinct elements of vert S(Γ) (resp. two element subsets

{(i0, . . . , in−2, i), (i0, . . . , in−2, i
′)}

of vert S(Γ)) such that [i0, . . . , in−2, i, i
′] ∈ Γn

∗ (resp. {i0, . . . , in−2, i, i
′} ∈ Γn).

• Define edgeS(Γ) := ∪n
k=1edgek S(Γ).

• The data (vert S(Γ), edgeS(Γ)) forms a traditional graph called the undirected
site graph S(Γ). If {r1, r2} is an edge of the undirected site graph, then the asso-
ciated pair of flags {s0(r1), . . . , sn−1(r1)}, {s0(r2), . . . , sn−1(r2)} has the property
that for some 0 ≤ k ≤ n − 1 we have sk(r1) 6= sk(r2) and sj(r1) = sj(r2) for all
0 ≤ j ≤ n − 1, j 6= k. This uniform condition on the flags shows that the set of
edges of the undirected site graph is naturally defined.

• Define edgeS(Γ∗) := [∪n−1
k=1edgek S(Γ)] ∪ edgen S(Γ∗).

• The data (vert S(Γ), edgeS(Γ∗)) forms a traditional graph with certain edges
being directed, called the site graph S(Γ∗).

• Let G(Γ) be the set of all ordered pairs ((i0, . . . , in−2, i), (i0, . . . , in−2, i
′)) of

sites in vert S(Γ). Let this set G(Γ) be equipped with the following partially defined
binary operation: (r1, r2)(r2, r3) = (r1, r3). Thus the operation (r1, r2)(r3, r4) is
undefined unless r2 = r3. With this definition, G(Γ) becomes what is called a pair
groupoid.

• The pair (vert S(Γ), [∪n−1
k=1edgek S(Γ)] ∪ G(Γ)) is called the site network of Γ

(see Figure 6). Note that the site network does not depend on the choice of Γn
∗ or

even of Γn.

Lemma. If Γ is an n-dimensional unoriented Z-system on N then the undirected
site graph S(Γ) is connected.

Proof. Suppose r, r′ are distinct sites in vertS(Γ). We must construct a sequence
r = r0, r1, . . . , rm = r′ of distinct sites in vertS(Γ) such that for all k = 1, . . . , m the
pair {rk−1, rk} ∈ edgeS(Γ). This represents a path from r to r′ in the undirected
site graph. Note that there is a unique path in the tree (Γk,Γk+1) connecting sk(r)
to sk(r′), k = 0, 1, . . . , n− 1. The remark after the lemma of section 2.7 shows how
these paths relate to one another.

Suppose the sites r0, . . . , rj ∈ vertS(Γ) have been chosen, j ≥ 0, and sk(rj)
is on the path in (Γk,Γk+1) connecting sk(r) to sk(r′), 0 ≤ k ≤ n − 1. Let
U = {k | 0 ≤ k ≤ n − 1, sk(rj) 6= sk(r′)}, and for k ∈ U let s′k ∈ Γk be the
next vertex on the path in (Γk,Γk+1) connecting sk(r) to sk(r′) after sk(rj). Let
D = ∪k∈U{k, k + 1} and define ι : D → {0, 1} by the rule:

ι(k) =

{
0 k ∈ U, sk−1(rj) ⊂ s′k,

1 k − 1 ∈ U, s′k−1 ⊂ sk(rj)

In conjunction with the above we define s−1(rj) = ∅ and sn(rj) = sn−1(rj) ∪ s′n−1

when n − 1 ∈ U . To insure that ι(k) is defined for every k ∈ D suppose k ∈ U but
k − 1 /∈ U . Then sk−1(rj) = sk−1(r′) and the remark of section 2.7 implies that
sk−1(rj) ⊂ s′k and hence ι(k) = 0. Likewise suppose k /∈ U and k − 1 ∈ U . Then
sk(rj) = sk(r′) and the remark of section 2.7 implies that s′k−1 ⊂ sk(rj) and hence
ι(k) = 1. To insure that ι(k) is well-defined, suppose k−1, k ∈ U . From the remark
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NH1

H2

H3

(H1, N,H2)

(H1, N,H3)

(H2, N,H1)

(H3, H,H1)

(N,H1, H2)

(N,H1, H3)

(N,H2, H1)

(N,H3, H1)

Figure 6. The site network for ammonia, superimposed on the
molecular graph for the molecule. The Z-system has N = {N,H1,
H2,H3}, Γ1 = {{N,H1}, {N,H2}, {N,H3}}, Γ2 = {{H1, N,H2},
{H1, N,H3}}, and Γ3

∗ = {[N,H1,H2,H3]}. Sites are indicated by
dark circles, and labeled with the corresponding ordered triples of
atom names. Edges in the site graph are indicated by solid and
dashed lines. Elements of the pair groupoid are indicated by dotted
curving arrows.

of section 2.7 we see that sk(rj) ∩ s′k is either sk−1(rj) or s′k−1, but not both. In
the first case we have ι(k) = 0 and in the second case ι(k) = 1.

If U = ∅ then rj = r′ and we are done. Otherwise suppose k1 ≤ k2 and k2 − k1

is as large as possible subject to the condition that k ∈ U for all k1 ≤ k ≤ k2. Then
k ∈ D for all k1 ≤ k ≤ k2 + 1 and ι(k1) = 0 and ι(k2 + 1) = 1. Then there exists
an integer k∗ such that k1 ≤ k∗ ≤ k2, ι(k∗) = 0, and ι(k∗ + 1) = 1. Thus k∗ ∈ U ,
sk∗−1(rj) ⊂ s′k∗ , and s′k∗ ⊂ sk∗+1(rj). Now define the site rj+1, whose flag satisfies

sk(rj+1) =

{
sk(rj) 0 ≤ k ≤ n − 1, k 6= k∗,
s′k∗ k = k∗ .

Clearly rj+1 is a site associated with Γ and {rj , rj+1} is an edge of the undirected
site graph S(Γ). Clearly sk(rj+1) is on the path in (Γk,Γk+1) connecting sk(r) to
sk(r′), 0 ≤ k ≤ n − 1.

Thus we have given an inductive construction of a path in the undirected site
graph connecting r to r′. This construction must terminate once all the paths in
(Γk,Γk+1) connecting sk(r) to sk(r′), 0 ≤ k ≤ n − 1, have been traversed. ¤

3.3. Coordinate Transformations. The site graph associated to a Z-system may
seem to be an unnecessary construct, but it greatly illuminates the features of the
coordinates we have defined. To see this, define the following (n + 1) × (n + 1)
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matrix-valued functions:

T1(L) =




1 0 θT 0
L −1 θT 0
θ θ I θ

0 0 θT −1


 , L > 0;

Tk(C) =




I1 θ1 θ1 Θ θ1

θT
1 C S θT

2 0
θT

1 S −C θT
2 0

ΘT θ2 θ2 I2 θ2

θT
1 0 0 θT

2 −1


 ,

where I1 is a (k − 1) × (k − 1) identity matrix,

for C ∈ (−1, 1), S =
√

1 − C2, 2 ≤ k ≤ n − 1;

Tn(Z) =


 I θ θ

θT C −S

θT S C


 , Z = C + iS ∈ S1.

Note that each of the mappings Tk takes values in Gp and is injective for all 1 ≤ k ≤
n, and T1(L)−1 = T1(L) and Tk(C)−1 = Tk(C) whenever 2 ≤ k < n. The mapping
Tn : S1 → Gp is a group homomorphism, so that Tn(Z)−1 = Tn(Z̄). Note that for
n ≥ 3 we also have the identity: Tn(Z)T1(L) = T1(L)Tn(Z̄) = [Tn(Z)T1(L)]−1.

Now suppose R ∈ B(Γ) is given. To each site r ∈ vert S(Γ) we assign the pose
Er(R) at that site. Thus the vertices of the site graph become labeled with poses.
Now for every edge {r, r′} ∈ [∪n−1

k=1edgek S(Γ)] or (r, r′) ∈ edgen S(Γ∗) of the site
graph, there is a unique matrix Ar,r′(R) ∈ Gp such that Er(R)Ar,r′(R) = Er′(R).
Because of the special structure of the poses this matrix always turns out to be one
of the above three types.

Theorem. Suppose Γ∗ is a Z-system and R ∈ B(Γ). Suppose r, r′ are sites of Γ.
Let Ar,r′(R) denote the unique matrix in Gp such that Er(R)Ar,r′(R) = Er′(R).

(1) If {r, r′} ∈ edge1 S(Γ) and e = s1(r) = s1(r′) then Ar,r′(R) = T1(Le(R)).
(2) If {r, r′} ∈ edgek S(Γ), 2 ≤ k ≤ n − 1, and e = sk(r) = sk(r′), then

Ar,r′(R) = Tk(Ce(R)).
(3) If r = (i0, . . . , in−2, in−1) and r′ = (i0, . . . , in−2, in) and e∗ = [i0, . . . , in−2,

in−1, in] ∈ Γn
∗ , i.e. (r, r′) ∈ edgen S(Γ∗), then Ar,r′(R) = Tn(Ze∗(R)).

Proof. (1) We begin by considering an edge such as e = {r = (i0, i1, i2, . . . , in−1),
r′ = (i1, i0, i2, . . . , in−1)}, where r, r′ ∈ vert S(Γ). Define s = {i0, i1}, which de-
termines an edge in the tree (Γ0,Γ1) between the 0-simplices {i0} and {i1}. If
Er(R) = (e0, e1, . . . , en), then

Er(R)T1(Ls(R)) = (e0 + Ls(R)e1,−e1, e2, . . . , en−1,−en).

Our definitions immediately imply that this is the pose Er′(R).
(2) Now suppose {r = (i0, . . . , in−1), r′ = (j0, . . . , jn−1)} ∈ edge S(Γ) where for

some 2 ≤ k ≤ n − 1 we have

(i0, . . . , ik−2) = (j0, . . . , jk−2),

(ik+1, . . . , in−1) = (jk+1, . . . , jn−1), and

(ik−1, ik) = (jk, jk−1).
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sk(r) = {i0, . . . , ik} is equal to sk(r′) = {j0, . . . , jk}, and corresponds to an edge
e in the tree (Γk−1,Γk) with vertices v1 = sk−1(r) and v2 = sk−1(r′) in Γk−1.
Let u = v1 ∩ v2 = sk−2(r) = sk−2(r′) ∈ Γk−2. Let Er(R) = (e0, e1, . . . , en) and
Er′(R) = (e′0, e

′
1, . . . , e

′
n). Then for C = Ce(R) note that

Er(R)Tk(C) = (e0, . . . , ek−2, ek−1C + ekS, ek−1S − ekC, ek+1, . . . , en−1,−en).

Since (i0, . . . , ik−2) = (j0, . . . , jk−2) it is clear that e′0 = e0, . . . , e′k−2 = ek−2. We
claim that e′k−1 = ek−1C+ekS. To see this, note that 1−Πv1 = (1−ek−1eT

k−1)(1−
Πu). Therefore ek is the unit vector in the direction of (1 − Πv1)(Rik

− Ri0) =
(1 − ek−1eT

k−1)(1 − Πu)(Rik
− Ri0). Since jk−1 = ik it follows that e′k−1 is the

unit vector in the direction of (1 − Πu)(Rik
− Ri0), and thus that ek is the unit

vector in the direction of (1 − ek−1eT
k−1)e

′
k−1. Thus there is a positive constant α

such that ekα = e′k−1 − ek−1(ek−1 · e′k−1). But ek−1 · e′k−1 = Ce(R) = C. Thus
e′k−1 = ek−1C + ekα. Since e′k−1 is a unit vector and {ek−1, ek} is an orthonormal
set we have that C2 + α2 = 1. Since α > 0 we have α =

√
1 − C2 = S. Thus

e′k−1 = ek−1C+ekS, as claimed. In the same vein we claim that e′k = ek−1S−ekC.
To see this, note that 1−Πv2 = (1−e′k−1(e

′
k−1)

T )(1−Πu). e′k is the unit vector in
the direction of (1 − Πv2)(Rjk

− Rj0) = (1 − e′k−1(e
′
k−1)

T )(1 − Πu)(Rik−1 − Ri0),
or of (1− e′k−1(e

′
k−1)

T )ek−1. Hence there is a positive constant β such that e′kβ =
ek−1−e′k−1(e

′
k−1 ·ek−1) = ek−1−e′k−1Ce(R). Using our known expression for e′k−1,

we can easily derive the claim from this. Since (ik+1, . . . , in−1) = (jk+1, . . . , jn−1)
and sj(r) = sj(r′) for j = k, . . . , n − 2, we see that e′k+1 = ek+1, . . . , e′n−1 = en−1.

Finally, e′n is either en or −en, and it must be the latter since det
(

C S
S −C

)
= −1.

Thus we have shown that Er(R)Tk(Ce(R)) = Er′(R).
(3) Now consider a pair (r, r′) ∈ edgen S(Γ∗) of the form r = (i0, . . . , in−2, in−1),

r′ = (i0, . . . , in−2, in), where e∗ = [i0, . . . , in−1, in] ∈ Γn
∗ , v = {i0, . . . , in−2, in−1} ∈

Γn−1, v′ = {i0, . . . , in−2, in} ∈ Γn−1, e = v ∪ v′ ∈ Γn, and s = v ∩ v′ ∈ Γn−2. Let
Er(R) = (e0, e1, . . . , en) and Er′(R) = (e′0, e

′
1, . . . , e

′
n). Clearly we have e′k = ek

for k = 0, 1, . . . , n − 2. Then our definitions show that Ce(R) = en−1 · e′n−1 and
Se∗(R) = en · e′n−1. Since e′n−1 is in the two-dimensional space perpendicular to
the span of {e1, . . . , en−2}, and {en−1, en} is an orthonormal basis of this subspace,
then we have that e′n−1 = en−1Ce(R) + enSe∗(R). Also the vector −en−1Se∗(R) +
enCe(R) is a unit vector perpendicular to the span of {e′1, . . . , e′n−2, e

′
n−1} and

det(e′1, . . ., e
′
n−2, e

′
n−1,−en−1Se∗(R) + enCe(R))

= det(e1, . . . , en−2, en−1Ce(R) + enSe∗(R),−en−1Se∗(R) + enCe(R))

= det(e1, . . . , en) det
(

Ce(R) −Se∗(R)
Se∗(R) Ce(R)

)
= 1

Hence e′n = −en−1Se∗(R) + enCe(R). We have shown that Er(R)Tn(Ce(R) +
iSe∗(R)) = Er′(R). ¤

Thus given R ∈ B(Γ) we can label each edge of S(Γ∗) with an element Ar,r′(R) ∈
Gp such that Er(R)Ar,r′(R) = Er′(R). If (b, A) ∈ Ga then

Er((b, A) · R)Ar,r′(R) = (b, A) · Er(R)Ar,r′(R) = (b, A) · Er′(R) = Er′((b, A) · R)

= Er((b, A) · R)Ar,r′((b, A) · R),
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and hence Ar,r′((b, A) · R) = Ar,r′(R). The labeling of the edges of the site graph
S(Γ∗) with elements of the group Gp resembles the cocycle construction in non-
abelian sheaf cohomology [5]. Graphs whose edges are labeled with elements of a
group have been called gain graphs [92].

Since the numbers L,C, and Z can be uniquely recovered from the matrices
T1(L), Tk(C), and Tn(Z), and every element of Γk, 1 ≤ k ≤ n, can be associated
with at least one element of edge S(Γ), this theorem gives another way to recover
the coordinate functions Le(R), Ce(R), and Ze∗(R) from the configuration R. The
relation Ar,r′((b, A) ·R) = Ar,r′(R) implies (although this is easy enough to check
directly from the definitions) that

Le((b, A) · R) = Le(R) e ∈ Γ1,

Ce((b, A) · R) = Ce(R) e ∈ Γk, 2 ≤ k ≤ n − 1,

Ze∗((b, A) · R) = Ze∗(R) e∗ ∈ Γn
∗ ,

for all (b, A) ∈ Ga and all R ∈ B(Γ). Since the left action of Ga on B(Γ) is
fixed point free and proper, DC(Γ) = Ga\\B(Γ) is a smooth manifold, and the
projection mapping ρ : B(Γ) → DC(Γ) is a smooth submersion (see Proposition
4.1.23 on page 266 of [2]). By “passage to quotients” the (well-defined) mapping
L̂e : DC(Γ) → (0,∞) : GaR 7→ Le(R) is smooth, for each e ∈ Γ1. Likewise the
mappings Ĉe : DC(Γ) → (−1, 1) : GaR 7→ Ce(R) and Ẑe∗ : DC(Γ) → S1 : GaR 7→
Ze∗(R) are smooth.

3.4. Labeling the Site Network. Part (3) of the above theorem tells us how to
label a pair (r, r′) ∈ edgen S(Γ∗) with an element arr′(R) = Ze∗(R) of the group
S1, so that Er(R)Tn(arr′(R)) = Er′(R). However, edgen S(Γ∗) ⊂ G(Γ) and we will
now show that the labeling can be uniquely extended to a mapping a·(R) : G(Γ) →
S1 : (r, r′) 7→ arr′(R) such that Er(R)Tn(arr′(R)) = Er′(R) holds for all (r, r′) ∈
G(Γ), or equivalently, ar1r3(R) = ar1r2(R)ar2r3(R) for all (r1, r2), (r2, r3) ∈ G(Γ).
Mappings a·(R) with this property are said to be S1-valued cocycles, or groupoid
homomorphisms. The mapping a·(R) : G(Γ) → S1 is useful when relating two Z-
systems which differ only in the edges of the highest level tree; this situation can
arise when Z-systems are tethered (see section 6).

To see how this extended labeling should be done we proceed as follows. We
should label all pairs (r, r) with the number 1, i.e. ar r(R) = 1. Furthermore,
if (r, r′) ∈ edgen S(Γ∗) then we should define ar′r(R) = ar r′(R)−1. But these
instructions might not label all the pairs in G(Γ), although they do suffice for the
pair groupoid of ammonia (see Figure 6). So suppose (r, r′) ∈ G(Γ) is one of the
pairs not yet labeled. Let r = (i0, . . . , in−2, i), r′ = (i0, . . . , in−2, i

′); since r and r′

are sites we have v = {i0, . . . , in−2, i} ∈ Γn−1, v′ = {i0, . . . , in−2, i
′} ∈ Γn−1, and

s = {i0, . . . , in−2} ∈ Γn−2. We are assuming that v ∪ v′ /∈ Γn and i 6= i′, so that
s = v ∩ v′. We need the following result when k = n.

Lemma. Suppose Γ is an unoriented Z-system, 1 ≤ k ≤ n, and v and v′ are
distinct vertices in the tree (Γk−1,Γk), where v ∪ v′ /∈ Γk and s = v ∩ v′ ∈ Γk−2.
Let (v = v0, e1, v1, . . . , vm−1, em, vm = v′) be the unique path (m ≥ 2) connecting
them. (The distinct vertices vj ∈ Γk−1 and the distinct edges ej ∈ Γk are such that
ej is incident on vj−1 and vj.) Then vj−1 ∩ vj = s for all j = 1, . . . , m.

Proof. If k = 1 then Γ−1 = {∅}, and so the assertion of the lemma is trivial. So
suppose k ≥ 2. Consider the list (v0 ∩ v1, v1 ∩ v2, . . . , vm−1 ∩ vm, s) of simplices in



POLYSPHERICAL COORDINATES IN ORBIT SPACES 27

Γk−2. By the remark after the lemma of section 2.7 we have that the unique path
in the tree (Γk−2,Γk−1) connecting s to s must pass through all the vertices in this
list. Hence they must all be equal to s. Note that this implies that J = 0 in the
notation of that lemma. ¤

Each vertex vj in the list v0, v1, . . . , vm determines a site rj = (i0, . . . , in−2, i(j))
where {i(j)} = vj \ s. Furthermore, for each j = 1, . . . , m, the label arj−1rj

(R) has
been previously assigned, since ej = vj−1 ∪ vj = {i0, . . . , in−2, i(j − 1), i(j)} ∈ Γn.
Therefore we define

ar r′(R) = ar0r1(R)ar1r2(R) . . . arm−1rm
(R).

This is a complete and unique way to define the labels so that the result is a
groupoid homomorphism.

Thus a labeled Z-system induces a labeling of the edges of the site network with
appropriate elements of Gp. This pattern of labeling is consistent with a labeling
of the sites with poses arising from a choice of configuration R ∈ B(Γ). A labeling
of the edges of the site network is called balanced if the product in Gp of the
labels of the edges of any cycle in the site network is the identity. Every labeling
arising from a configuration is balanced. It would be interesting to give an effective
algebraic characterization of the class of labelings of the site network arising from
configurations. Perhaps this would give a theoretically attractive alternative way
to understand internal coordinates avoiding a choice of Γn or Γn

∗ .
The labeled site graph and the labeled site network provide a convenient formal-

ism for the detailed study of molecular shapes [33], [40], [78]; c.f. sections 6.5, 6.6,
and 6.7. Both structures are compactly coded by and most easily manipulated in
terms of the underlying Z-system.

3.5. Polyspherical Coordinate Mapping. If a distinguished site r is chosen for
an unoriented Z-system Γ it will be called a root of Γ, because sk(r) is thought of
as a choice of root vertex for the tree (Γk,Γk+1) for all k = 0, . . . , n − 1.

Definition. Suppose Γ∗ is a Z-system and r is a root for Γ. Then define the
mapping η : B(Γ) → P ×DP (Γ∗) by the rule

R 7→ (Er(R), e ∈ Γ1 7→ Le(R), {e ∈ Γk 7→ Ce(R)}n−1
k=2 , e∗ ∈ Γn

∗ 7→ Ze∗(R)).

We will call this the polyspherical trivialization associated to (Γ∗, r). Define also
the mapping η̂ : DC(Γ) → DP (Γ∗) by the rule:

O 7→ (e ∈ Γ1 7→ L̂e(O), {e ∈ Γk 7→ Ĉe(O)}n−1
k=2 , e∗ ∈ Γn

∗ 7→ Ẑe∗(O)).

We will call this the polyspherical coordinate mapping associated to Γ∗. Thus η =
(Er, η̂ ◦ ρ).

η and η̂ are clearly smooth mappings. In fact η is algebraic.
It may not yet be clear why we use the term “polyspherical” in conjunction with

these mappings. This will become clear in the next section where we learn how to
invert the mapping η.

4. The Main Theorems

4.1. The Coordinatization Theorem. A comparison of the dimensions of B(Γ)
and P ×DP (Γ∗) suggests that the mapping η defined in the previous section might
be invertible. B(Γ) is a dense open subset of (Rn)N and so has dimension nN . P
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is diffeomorphic to R
n ×SO(n), and so has dimension n+n(n− 1)/2 = n(n+1)/2.

(SO(n) has the same dimension as its Lie algebra, namely the set of all n × n
real antisymmetric matrices.) Since |Γ0| = N and (Γ0,Γ1) is a tree we have that
|Γ1| = N −1. Similarly |Γk| = N −k, for k = 1, . . . , n. Thus DP (Γ∗) has dimension∑n

k=1(N − k) = nN − n(n + 1)/2. Therefore P ×DP (Γ∗) also has dimension nN ,
as claimed.

Theorem. Suppose N ≥ n ≥ 2, Γ∗ is an n-dimensional Z-system on the set N , r
is a root for Γ, and η : B(Γ) → P×DP (Γ∗) is the polyspherical trivialization defined
in the previous section. Then η is a diffeomorphism. Furthermore the polyspherical
coordinate mapping η̂ : DC(Γ) → DP (Γ∗) associated to Γ∗ is also a diffeomorphism.

Proof. We will proceed by constructing the inverse ζ : P ×DP (Γ∗) → B(Γ) to η via
induction on N . We start with the case N = n. So let (E, γ) ∈ P × DP (Γ∗) be
given, where E = (e0, e1, . . . , en) ∈ P and

γ = (e ∈ Γ1 7→ Le, {e ∈ Γk 7→ Ce}n−1
k=2) ∈ DP (Γ∗).

When N = n we have Γn = ∅, so we have not included any parameters of type Ze∗ in
the definition of γ. Let r = (i0, i1, . . . , in−1) be the root site. Define Ri0 = e0, and
Ri1 = Ri0 +e1L{i0,i1}. Because γ ∈ DP (Γ∗) we have L{i0,i1} > 0, and hence the 1-
simplex {Ri0 ,Ri1} is geometrically independent and span {Ri1−Ri0} = span {e1}.
Now suppose Rij

has been defined for all 0 ≤ j ≤ k − 1, where 2 ≤ k ≤ n − 1.
Assume that the (k−1)-simplex {Ri0 , . . . ,Rik−1} is geometrically independent and
span {Ri1 − Ri0 , . . . ,Rik−1 − Ri0} = span {e1, . . . , ek−1}. We wish to define Rik

so that these properties are extended.
s1

k = sk(r) = {i0, i1, . . . , ik} ∈ Γk is incident on two (k − 1)-simplices in Γk−1,
one of which is s0

k−1 = sk−1(r) = {i0, . . . , ik−1} and the other we will denote by
s1

k−1; the intersection of these two being denoted by s0
k−2 ∈ Γk−2. Define jk−1 by

the relation s0
k−1 \ s0

k−2 = {jk−1}. Notice that s1
k−1 \ s0

k−2 = {ik}.
s1

k ←↩ s1
k−1 ←↩ s1

k−2 ←↩ . . . ←↩ s1
2 ←↩ s1

1 ←↩ s1
0

↑ ↑ ↑ ↑ ↑
s0

k−1 ←↩ s0
k−2 ←↩ s0

k−3 ←↩ . . . ←↩ s0
1 ←↩ s0

0

If the smallest simplex in this array is a 0-simplex then we stop, otherwise we
continue as follows: s1

k−1 is incident on s0
k−2 and one other (k − 2)-simplex, call it

s1
k−2 ∈ Γk−2. The intersection of s0

k−2 and s1
k−2 is a (k − 3)-simplex called s0

k−3 ∈
Γk−3. Define jk−2 such that s0

k−2 \ s0
k−3 = {jk−2}. Notice that s1

k−2 \ s0
k−3 = {ik}.

When this process stops we will have that s0
0 and s1

0 = {ik} are 0-simplices. Let
s0
0 = {j0}. Then s0

h = {j0, . . . , jh} and s1
h = {j0, . . . , jh−1, ik}, for h = 0, . . . , k.

Thus {j0, . . . , jk−1} = s0
k−1 = {i0, . . . , ik−1}, and hence Rj0 , . . . ,Rjk−1 are already

defined. Thus the following are sites of our Z-system:

rk = (j0, . . . , jk−2, jk−1, ik, ik+1, . . . , in−1)

× Tk(Cs1
k
)

rk−1 = (j0, . . . , jk−2, ik, jk−1, ik+1, . . . , in−1)
...

r2 = (j0, j1, ik, j2, . . . , jk−1, ik+1, . . . , in−1)



POLYSPHERICAL COORDINATES IN ORBIT SPACES 29

× T2(Cs1
2
)

r1 = (j0, ik, j1, . . . , jk−1, ik+1, . . . , in−1)

× T1(Ls1
1
)

r0 = (ik, j0, j1, . . . , jk−1, ik+1, . . . , in−1)

Each one is obtained from its predecessor by a single interchange of adjacent entries.
Thus {rh, rh−1}, h = 1, . . . , k is an edge of the undirected site graph. Define
Erk

= (e′0, e
′
1, . . . , e

′
k−1, ek, . . . , en−1,±en), where

e′0 = Rj0 , e′h =
(1 − Πsh−1(rk))(Rjh

− Rj0)
‖(1 − Πsh−1(rk))(Rjh

− Rj0)‖
, h = 1, . . . , k − 1,

and where the sign is chosen to assure that this is indeed a pose. The orthogonal
projection operators Πs are defined in section 3.1. Note that

span {e′1, . . . , e′k−1} = span {Rj1 − Rj0 , . . . ,Rjk−1 − Rj0}
= span {Ri1 − Ri0 , . . . ,Rik−1 − Ri0}
= span {e1, . . . , ek−1},

and hence ek, . . . , en are perpendicular to this span. Consider the product

Er0 = Erk
Arkrk−1 . . .Ar2r1Ar1r0 ,

where Ar1r0 = T1(Ls1
1
) and Arhrh−1 = Th(Cs1

h
), h = 2, . . . , k. This should be a pose

whose origin is located at Rik
, the quantity we are trying to define. Thus define

Rik
= Er0(1, 0, . . . , 0)T or

Rik
= Erk

Tk(Cs1
k
)Tk−1(Cs1

k−1
) . . . T2(Cs1

2
)T1(Ls1

1
)




1
0
...
0




= (e′0, e
′
1, . . . , e

′
k−1, ek, . . . , en−1,±en)




1
Cs1

2
Ls1

1

Cs1
3
Ss1

2
Ls1

1
...

Cs1
k
Ss1

k−1
. . . Ss1

2
Ls1

1

Ss1
k
Ss1

k−1
. . . Ss1

2
Ls1

1

0
...
0




In the above, we are using the notation Ss =
√

1 − C2
s . Because γ ∈ DP (Γ∗)

it follows that the component of ek is nonzero, which implies that the simplex
{Ri0 , . . . ,Rik

} is geometrically independent. By definition

Rik
− Rj0 ∈ span {e′1, . . . , e′k−1, ek} = span {e1, . . . , ek−1, ek}.

Since Rj0 − Ri0 ∈ span {e′1, . . . , e′k−1} = span {e1, . . . , ek−1}, we have that Rik
−

Ri0 = Rik
− Rj0 + (Rj0 − Ri0) ∈ span {e1, . . . , ek−1, ek}. Thus span {Ri1 −

Ri0 , . . . ,Rik
− Ri0} ⊂ span {e1, . . . , ek}. Since these subspaces have the same
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dimension, they are in fact equal. Clearly Rik
does not depend on the vectors

ek+1, . . . , en at all.
Thus by induction all n points (Ri0 , . . . ,Rin−1) have now been defined and the

resulting (n− 1)-simplex is geometrically independent. This list of n points defines
the value of the mapping ζ on the argument (E, γ). Clearly ζ is a smooth function.
By the theorem of section 3.3 we have that η ◦ ζ and ζ ◦ η are identity mappings.

Now suppose for N ≥ n + 1 that a smooth inverse ζ exists for the polyspherical
coordinate mapping η for all n-dimensional Z-systems on any set of N −1 elements.
Suppose N = {1, . . . , N} and Γ∗ is an n-dimensional Z-system on N , with its
trivialization domain B(Γ), parameter domain DP (Γ∗), root site r = (i0, . . . , in−1),
and smooth polyspherical trivialization mapping η : B(Γ) → P ×DP (Γ∗). The tree
(Γn−1,Γn) has leaves, which are vertices with degree one (having only one edge
incident on them). Since N ≥ n+1 we have |Γn−1| = N − (n− 1) ≥ 2. Thus, since
every tree with at least two vertices has at least two leaves, we can choose a leaf
vertex s1

n−1 ∈ Γn−1 which is not the root vertex sn−1(r) = {i0, . . . , in−1} ∈ Γn−1.
Let s1

n ∈ Γn denote the single edge incident on this leaf, and let s0
n−1 ∈ Γn−1 denote

the other vertex on which this edge is incident. Define s0
n−2 = s0

n−1 ∩ s1
n−1 ∈ Γn−2.

Note that s1
n−1 is an edge in the tree (Γn−2,Γn−1) incident on the vertex s0

n−2;
hence there is exactly one other vertex s1

n−2 ∈ Γn−2 on which it is also incident. If
the smallest of these simplices is a 0-simplex then we stop the process, but otherwise
we continue the process by defining s0

n−3 = s0
n−2 ∩ s1

n−2 ∈ Γn−3 and noting that
s1

n−2 is an edge in the tree (Γn−3,Γn−2) incident on the vertex s0
n−3, and therefore

also on exactly on other vertex s1
n−3 ∈ Γn−3. Continuing this process until the

smallest simplices are 0-simplices we obtain the following scheme:

s1
n ←↩ s1

n−1 ←↩ s1
n−2 ←↩ . . . ←↩ s1

2 ←↩ s1
1 ←↩ s1

0

↑ ↑ ↑ ↑ ↑
s0

n−1 ←↩ s0
n−2 ←↩ s0

n−3 ←↩ . . . ←↩ s0
1 ←↩ s0

0

Suppose s1
k−1 is a leaf vertex in the tree (Γk−1,Γk) for some 2 ≤ k ≤ n . We claim

that s1
k−2 is a leaf vertex in the tree (Γk−2,Γk−1). Suppose by way of contradiction

that s1
k−2 is a vertex of degree at least two in the tree (Γk−2,Γk−1), i.e. there is

an edge s ∈ Γk−1 which is incident on s1
k−2 and is distinct from s1

k−1. Suppose
s = s0

k−1. Then s0
k−2 = s0

k−1∩s1
k−1 = s∩s1

k−1 = s1
k−2, which is a contradiction. So

s 6= s0
k−1. If s ∪ s1

k−1 ∈ Γk then s1
k−1 would have two distinct edges incident on it,

namely s1
k and s∪s1

k−1, contradicting the assumption that s1
k−1 is a leaf. Therefore

s ∪ s1
k−1 /∈ Γk. Consider the unique path in the tree (Γk−1,Γk) connecting s to

s1
k−1. This path must have length at least two, and must contain the edge s1

k. By
the lemma from section 3.4 the intersection of the pair of vertices for each edge of
this path must be the same element of Γk−2. This element can be computed as the
intersection of the two vertices of the edge s1

k, namely s0
k−1∩s1

k−1 = s0
k−2. But this

would require that s0
k−2 ⊂ s, i.e. s is incident on s0

k−2, which is impossible, since s

would coincide with s1
k−1, both being incident on s0

k−2 and s1
k−2. This contradiction

shows that s1
k−2 has degree one as a vertex in (Γk−2,Γk−1), as claimed.

Thus each of s1
n−1, . . . , s

1
1, s

1
0 are leaf vertices in their respective trees. Define

Γ̃j = Γj \ {s1
j} for all j = 0, 1, . . . , n. In each case we have deleted a leaf vertex and

the single edge which was incident on it, so (Γ̃j−1, Γ̃j) is a tree for all j = 1, . . . , n.
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If v1, v2 ∈ Γ̃j−1 satisfy v1 ∪ v2 ∈ Γ̃j then v1 ∩ v2 ∈ Γj−2. Since v1 6= s1
j−1 and

v2 6= s1
j−1 and s1

j−1 is the only simplex in Γj−1 which is incident on s1
j−2, we have

that v1 ∩ v2 6= s1
j−2 and hence v1 ∩ v2 ∈ Γ̃j−2. Thus Γ̃∗ = {∅} ∪ Γ̃0 ∪ Γ̃1 ∪ · · · ∪ Γ̃n

∗
is an n-dimensional Z-system on the set Ñ = N \ s1

0. If s1
0 ⊂ sn−1(r) then one,

say s̃n−2, of the two (n − 2)-simplices in Γn−2 on which sn−1(r) is incident must
satisfy s1

0 ⊂ s̃n−2. Continuing this sort of argument, we show that s1
0 ⊂ s̃1 ⊂

· · · ⊂ s̃n−2 ⊂ sn−1(r). Since the only 1-simplex in Γ1 incident on s1
0 is s1

1 we must
have s̃1 = s1

1. Since the only 2-simplex in Γ2 incident on s1
1 is s1

2 we must have
s̃2 = s1

2. Continuing this argument we find that sn−1(r) = s1
n−1. This contradicts

our original choice of the leaf s1
n−1 6= sn−1(r). Therefore s1

0 6⊂ sn−1(r). Thus for
all 0 ≤ j ≤ n− 1 we have sj(r) 6= s1

j , since s1
0 ⊂ s1

j but s1
0 6⊂ sj(r). Therefore r is a

root for the Z-system Γ̃∗.
Define B(Γ̃) = {R̃ : Ñ → R

n | for all s ∈ Γ̃n−1 the simplex Rs is geometrically
independent}. The restriction mapping maps (Rn)N → (Rn)Ñ : R 7→ R̃. If
R ∈ B(Γ) then clearly its restriction R̃ is in B(Γ̃). Define DP (Γ̃∗) = (0,∞)Γ̃

1 ×[∏n−1
k=2(−1, 1)Γ̃

k
]
× (S1)Γ̃

n
∗ . Clearly the restriction mapping γ 7→ γ̃ maps DP (Γ∗)

onto DP (Γ̃∗). If η̃ : B(Γ̃) → P ×DP (Γ̃∗) is the polyspherical trivialization mapping
for the rooted Z-system (Γ̃∗, r) then we claim the following diagram commutes:

B(Γ)
η−−−−→ P ×DP (Γ∗)

restriction

y yrestriction

B(Γ̃)
η̃−−−−→ P ×DP (Γ̃∗)

This is because the only simplices which contain s1
0 = {i} as a subset are the ones

which are excluded from Γ̃j . Hence the labels of all the simplices in Γ̃j can be
computed without knowing Ri, and these computations are performed in exactly
the same manner, whether by η or by η̃. By the induction hypothesis there is a
smooth inverse ζ̃ : P ×DP (Γ̃∗) → B(Γ̃) to the mapping η̃.

Let (E, γ) ∈ P ×DP (Γ∗) be given, where

γ = (e ∈ Γ1 7→ Le, {e ∈ Γk 7→ Ce}n−1
k=2 , e∗ ∈ Γn

∗ 7→ Ze∗) ∈ DP (Γ∗).

We wish to define ζ(E, γ) ∈ B(Γ) such that the mapping ζ is a smooth inverse to
the polyspherical coordinate mapping η. Define the site rn = (j0, j1, . . . , jn−1) such
that {j0, . . . , jk} = s0

k ∈ Γ̃k for all k = 0, 1, . . . , n − 1. rn is a site of the Z-system
Γ̃∗. If R̃ = ζ̃(E, γ̃), then the pose Ern

(R̃) = (ẽ0, ẽ1, . . . , ẽn) is well-defined, and a
smooth function of (E, γ). To define R = ζ(E, γ) we augment R̃ by defining Ri.
Note that s1

k = {j0, . . . , jk−1, i} for all k = 0, 1, . . . , n. Thus we have the sequence
of sites:

rn = (j0, j1, j2, j3, . . . , jn−2, jn−1)

× Tn((Z(s1
n)∗)a)

rn−1 = (j0, j1, j2, j3, . . . , jn−2, i)
...

r2 = (j0, j1, i, j2, . . . , jn−3, jn−2)

× T2(Cs1
2
)
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r1 = (j0, i, j1, j2, . . . , jn−3, jn−2)

× T1(Ls1
1
)

r0 = (i, j0, j1, j2, . . . , jn−3, jn−2)

Define Er0 = Ern
(R̃)Arnrn−1 . . .Ar2r1Ar1r0 , where Ar1r0 = T1(Ls1

1
), Arkrk−1 =

Tk(Cs1
k
), k = 2, . . . , n − 1, and Arnrn−1 = Tn((Z(s1

n)∗)a), where

a =

{
1 if [j0, . . . , jn−2, jn−1, i] = (s1

n)∗,
−1 if [j0, . . . , jn−2, i, jn−1] = (s1

n)∗.

Thus a = 1 if (rn, rn−1) ∈ edgenS(Γ∗) and a = −1 otherwise. We define Ri =
Er0(1, 0, . . . , 0)T . Thus

(*) Ri = (ẽ0, ẽ1, . . . , ẽn)




1
Cs1

2
Ls1

1

Cs1
3
Ss1

2
Ls1

1
...

Cs1
n
Ss1

n−1
. . . Ss1

2
Ls1

1

aS(s1
n)∗Ss1

n−1
. . . Ss1

2
Ls1

1




.

This is clearly a well-defined smooth function of (E, γ). We need to check that
Rs1

n−1
is geometrically independent. Certainly Rs0

n−2
is geometrically independent,

since s0
n−2 ∈ Γ̃n−2 and R̃ ∈ B(Γ̃). The parts of the above expression for Ri which

depend on ẽ0, . . . , ẽn−2 describe a point on the codimension two hyperplane in R
n

containing Rs0
n−2

. Thus Rs1
n−1

is geometrically independent if and only if the sum
of the squares of the last two components of the above column vector is positive, i.e.
S2

s1
n−1

. . . S2
s1
2
L2

s1
1

> 0. This follows from the fact that γ ∈ DP (Γ∗). Thus, finally, the
smooth map ζ is defined on all P ×DP (Γ∗) and takes values in B(Γ). Furthermore
it is immediate that ζ is the inverse of η: certainly this is true for ζ̃ and η̃, but
also in light of the theorem of section 3.3 the above expressions for the Cartesian
coordinates of Ri in terms of n-dimensional spherical coordinates exactly invert our
definitions of those coordinates in terms of Cartesian coordinates. This finishes the
proof that η is a diffeomorphism.

A smooth inverse to η̂ can be found by composing ζ and the projection map ρ,
and then factoring this through the projection π2 : P ×DP (Γ∗) → DP (Γ∗). Thus η̂
is also a diffeomorphism. ¤

The formula (*) explains why we describe our coordinates as “polyspherical”
coordinates, for Ri is located relative to the pose Ern

(R̃) using n-dimensional
spherical coordinates, and there are many different poses used to position different
points.

η̂ is almost a chart φ in the manifold Ga\\B; it remains only to order the co-
ordinates and to choose a branch of the argument, such as (−π, π), and then the
resulting chart φ will have values in DP (φ) = (0,∞)N−1 × (−1, 1)

∑ n−1
k=2 N−k ×

(−π, π)N−n ⊂ R
nN−n(n+1)/2. The domain of this chart is DC(φ) = {O ∈ DC(Γ) |

Ẑe∗(O) 6= −1 for all e∗ ∈ Γn
∗}. We will loosely speak of η̂ itself as being a coordinate

chart.
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Note also that the orbit space DC(Γ) itself acquires the structure of a principal
fiber bundle with abelian structure group (S1)Γ

n
∗ , a fact which is not so obvious

from the definition of DC(Γ).

4.2. Scope of Z-system Coordinates. Thus our results so far provide us with a
family, indexed by different Z-systems Γ∗, of smooth coordinate charts η̂ on DC(Γ).
It remains to see if the domains of these charts cover all of Ga\\B.

Theorem. Suppose N ≥ n ≥ 2 and R ∈ B. Then there exists an n dimensional
unoriented Z-system Γ on the set N such that R ∈ B(Γ), and hence GaR ∈ DC(Γ).

Proof. Without loss of generality let N = {1, 2, . . . , N}. Without loss of generality
assume that sn = {1, . . . , n} and {R1, . . . ,Rn} is geometrically independent. We
intend to define Γn−1 = {sn, sn+1, . . . , sN}, and then extend it to an entire Z-
system; if N = n then Γn−1 is now defined; otherwise we have only defined the first
element of Γn−1.

If s is any n − 1 simplex such that Rs is geometrically independent, and if for
any k simplex t ⊂ s we denote by span (Rt) the k dimensional affine subspace of
R

n containing Rt (and span (∅) = ∅), then we claim that span (Rt1)∩ span (Rt2) =
span (Rt1∩t2). Clearly we have span (Rt1∩t2) ⊂ span (Rt1) ∩ span (Rt2). Now sup-

pose R̃ ∈ span (Rt1) ∩ span (Rt2), i.e.
(

1
R̃

)
=

∑
i∈t1

αi

(
1
Ri

)
=

∑
i∈t2

βi

(
1
Ri

)
.

Then
∑

i∈t1\t2
αi

(
1
Ri

)
+

∑
i∈t1∩t2

(αi−βi)
(

1
Ri

)
−∑

i∈t2\t1
βi

(
1
Ri

)
=

(
0
θ

)
. Since

t1 ∪ t2 ⊂ s, the set {
(

1
Ri

)
| i ∈ t1 ∪ t2} is linearly independent, and hence we have

that αi = 0 for i ∈ t1 \ t2, βi = 0 for i ∈ t2 \ t1, and αi = βi for i ∈ t1 ∩ t2. This
implies that R̃ ∈ span (Rt1∩t2), and hence the claim is established. An immediate
consequence of the claim is that ∩i∈s span (Rs\{i}) = ∅.

Suppose N ≥ n + 1 and (n − 1)-simplices sn, sn+1, . . . , sN−1 have been defined
such that Rsn

, Rsn+1 , . . . , RsN−1 are all geometrically independent, and {j} = sj \
sj−1 for all j = n + 1, . . . , N − 1. Since ∩i∈sN−1 span (RsN−1\{i}) = ∅ there is an
i ∈ sN−1 such that RN 6∈ span (RsN−1\{i}). Thus define sN = (sN−1 \ {i}) ∪ {N}.
Clearly RsN

is geometrically independent, and {N} = sN \ sN−1. Furthermore
sj ∩ (sl+1 \ sl) = ∅ for all n ≤ j ≤ l ≤ N − 1. Define n simplices τn+1, . . . , τN

by the rule: τj = sj−1 ∪ sj , j = n + 1, . . . , N . Define Γn−1 = {sn, . . . , sN} and
Γn = {τn+1, . . . , τN}. (Γn−1,Γn) clearly defines a linear tree with N − n edges.

We need to show that these can be extended to an unoriented Z-system Γ.
Clearly, according to the definition of section 2.7, (sn, τn+1, sn+1, . . . , τN , sN ) is an
n-fence of length N −n. Using the lemma of section 2.7 we can inductively define a
sequence of fences of decreasing orders and lengths. Let (Γj−1

j ,Γj
j) be derived from

the fence of order j, where Γj−1
j is the set of (j − 1)-simplices and Γj

j is the set of
j-simplices. We will eventually define Γj so that each of the j-simplices in these
fences will be members of Γj for j = 1, . . . , n. Let κ denote the order of the last
fence in this sequence and l denote its length. We have either κ = 1 or l = 0 (or
possibly both). If κ = 1, l > 0 then define N1 = ∪s∈Γ0

1
s, which has l + 1 elements.

In general if l = 0, then Γκ−1
κ has a single element, which we denote by Nκ, and

Γκ
κ = ∅. For example when N = n we have κ = n and Γn−1 = Γn−1

n = {sn},
where (sn) is an n-fence with length l = 0. When l = 0, κ > 1 it is always possible
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to choose sets Γ0
κ,Γ1

κ, . . . ,Γκ−2
κ such that (Γ1

κ, . . . ,Γκ−1
κ ,Γκ

κ) is a κ-dimensional Z-
system on a set Nκ of κ elements, where Γ0

κ =
(Nκ

1

)
and Γκ−1

κ = {Nκ}. (This can
be done by choosing spanning trees in line graphs as in section 2.) Of course if
κ = 1, l = 0 there is nothing to do. If κ = 2, l = 0 then N2 = {a, b} is a 1-simplex,
and Γ0

2 = {{a}, {b}}. If κ ≥ 3, l = 0 then there are some choices to make.
Our strategy beyond this point is to inductively (for k = κ, . . . , n) extend the

sets Γ0
k,Γ1

k, . . . ,Γk
k by adding leaves to each of the trees involved to obtain the

sets Γ0
k+1,Γ

1
k+1, . . . ,Γ

k
k+1. Then we adjoin the set Γk+1

k+1 to this list, so that the
top level tree is a linear chain. We assume that Nk = ∪s∈Γ0

k
s ⊂ {1, . . . , N}

and Γj
k ⊂ (Nk

j+1

)
, j = 0, 1, . . . , k. We also assume that (Γj−1

k ,Γj
k) is a tree for

j = 1, . . . , k and whenever s, s′ ∈ Γj
k are such that s∪ s′ ∈ Γj+1

k then s∩ s′ ∈ Γj−1
k .

This extension involves using information from the k + 1-fence (Γk
k+1,Γ

k+1
k+1). Let

Γk
k+1 = {s0, s1, . . . , sm} and Γk+1

k+1 = {τ1, . . . , τm}; we use all the notation intro-
duced in section 2.7 to define from the k + 1-fence (s0, τ1, s1, . . . , sm−1, τm, sm)
the k-fence (t0, sk1−1, t1, . . . , skJ−1, tJ ). Thus Γk−1

k = {t0, t1, . . . , tJ} and Γk
k =

{sk1−1, . . . , skJ−1}. Define also kJ+1 = m + 2. There is a mapping g : Γk
k+1 \ Γk

k →
Γk−1

k defined as follows.

(1) s0 ∈ Γk
k+1 \ Γk

k and g(s0) : = t0 = s0 ∩ s1.
(2) Also if 0 ≤ j ≤ J is such that kj+1 − 2 ≥ kj and kj ≤ l ≤ kj+1 − 2 then

sl ∈ Γk
k+1 \ Γk

k, and g(sl) : = tj .

If s ∈ Γk
k+1 \ Γk

k then we always have t = g(s) ⊂ s; let s \ g(s) = {i(s)}. We will
be able to insure that we are always adding leaves provided we can show that the
mapping Γk

k+1 \ Γk
k → N : s 7→ i(s) is injective and its range is disjoint from Nk.

This is a consequence of the disjointness of our fences. Suppose s ∈ Γk
k+1\Γk

k and
i(s) ∈ Nk. If m = 0 then Γk−1

k = {Nk} and hence g(s) = Nk, which is impossible
since i(s) 6∈ g(s). If m > 0 there exists an s′ ∈ Γk

k such that i(s) ∈ s′ and which is as
close to s in the sequence {s0, s1, . . . , sm} as possible. If s′′ is adjacent to s′ in the
sequence {s0, s1, . . . , sm} in the direction of s then i(s) 6∈ s′′ unless s′′ = s. If s 6= s′′

then i(s) ∈ s ∩ (s′ \ s′′), which contradicts our disjointness properties. If s = s′′

then s and s′ are adjacent in the sequence {s0, s1, . . . , sm} and since s ∈ Γk
k+1 \ Γk

k

we have that s ∩ s′ must equal g(s). Thus i(s) ∈ g(s), which is impossible. Hence
we cannot have i(s) ∈ Nk.

Now suppose s, s′ ∈ Γk
k+1 \ Γk

k, s 6= s′, and i(s) = i(s′). If s and s′ are adja-
cent in the sequence {s0, s1, . . . , sm} then i(s) = i(s′) ∈ s ∩ s′ = g(s) = g(s′), a
contradiction. If s and s′ are not adjacent then let s′′ ∈ Γk

k+1 be adjacent to s′

and between s and s′ in the sequence {s0, s1, . . . , sm}. Clearly i(s′) 6∈ s′′ because
otherwise i(s′) ∈ s′∩s′′ = g(s′), a contradiction. Therefore i(s′) ∈ s′\s′′, and hence
i(s) = i(s′) ∈ s ∩ (s′ \ s′′), which contradicts our disjointness properties. Thus we
must have i(s) 6= i(s′), which establishes the claimed injectivity.

So for any s ∈ Γk
k+1 \ Γk

k and tk−1(s) : = g(s) ∈ Γk−1
k we can choose (in an

arbitrary manner) a sequence tj(s) ∈ Γj
k for j = 0, 1, . . . , k − 2 such that t0(s) ⊂

t1(s) ⊂ · · · ⊂ tk−1(s). (Let us agree that t−1(s) = ∅.) If s \ tk−1(s) = {i(s)} then
{i(s)} ⊂ t0(s)∪{i(s)} ⊂ · · · ⊂ tk−2(s)∪{i(s)} ⊂ s is a sequence of simplices which
are distinct from any in Γj

k, j = 0, 1, . . . , k. Thus we define

Γj
k+1 = Γj

k ∪ {tj−1(s) ∪ {i(s)} | s ∈ Γk
k+1 \ Γk

k}, 0 ≤ j ≤ k − 1,
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Nk+1 = Nk ∪ {i(s) | s ∈ Γk
k+1 \ Γk

k}.
When the new tree (Γj−1

k+1,Γ
j
k+1) is compared with the old tree (Γj−1

k ,Γj
k) we see

for each s that a new vertex tj−2(s) ∪ {i(s)} has been added, and a new edge
tj−1(s) ∪ {i(s)} has also been added connecting the new vertex to the old vertex
tj−1(s). Thus the addition of these new simplices are in every case the addition of
leaves, with the consequence that after these additions we have trees at each level.
Since (tj−2(s) ∪ {i(s)}) ∩ tj−1(s) = tj−2(s), the intersection condition is satisfied.
Hence Γ0

k+1, . . . ,Γ
k+1
k+1 is an extended system of sets satisfying the same hypotheses

that Γ0
k, . . . ,Γk

k satisfied.
Thus we ascend the hierarchy of fences, using each one as the basis of an extension

as we have described. When completed we have the sets Γ0
n,Γ1

n, . . . ,Γn
n, which is

an unoriented Z-system on the set Nn. Since Γn−1
n = Γn−1 and Γn

n = Γn, by the
lemma of section 2.6 we must have Nn = {1, . . . , N}. Clearly then we have defined
a Z-system Γ such that R ∈ B(Γ). ¤

Thus Z-systems index coordinate charts in an atlas which covers the manifold
Ga\\B, over which B is a principal bundle with structure group Ga. For other
mathematical results on the principal bundle ρ : B → Ga\\B see [30] (where Ga =
R

n × O(n)), and [50].

5. Z-Matrices

5.1. Unlabeled Z-matrices Defined. Three dimensional Z-matrices were dis-
cussed in the introduction. Here we give a rigorous mathematical definition of
labeled and unlabeled Z-matrices in the n-dimensional case.

Definition. An (unlabeled) n-dimensional Z-matrix on the set N is a mapping

α : {(i, j) ∈ Z
2 | 0 ≤ j ≤ n, j < i ≤ N} → N ,

where N = |N | ≥ n, with the following properties:

(1) N = {α(i, 0) | 1 ≤ i ≤ N}.
(2) For every 1 ≤ k ≤ n and for every k < i ≤ N there exists k ≤ i′ < i such

that {α(i, j) | 1 ≤ j ≤ k} = {α(i′, j) | 0 ≤ j ≤ k − 1}.
The precise mathematical definition of the n-dimensional Z-matrix is apparently

new to this work. For a different looking definition in the 3 dimensional case, see
[70]. A different use of the term Z-matrix is in [75]. It may be that some of the
conditions in the above definition can be omitted without changing the concept; we
have not attempted a minimal axiomatization of Z-matrices.

An example of an unlabeled 3-dimensional Z-matrix on the set N = {C,O,H1,
H2,H3,H} is as follows.

j = 0 j = 1 j = 2 j = 3
i = 1 C
i = 2 O C
i = 3 H1 C O
i = 4 H2 C O H1

i = 5 H3 C O H1

i = 6 H O C H1
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This (unlabeled) Z-matrix is for the molecule methanol, so refer to Figures 2 and
3. A labeled form (precisely defined below) of this Z-matrix was listed in the
introduction.

5.2. Relating Z-matrices and Z-systems. The question naturally arises about
the exact relation between Z-matrices and Z-systems.

Theorem. Let Zmat (N ) denote the set of all (unlabeled) Z-matrices α on N .
Let Zsys (N ) denote the set of all triples (Γ, r, λ), where Γ is an unoriented Z-
system on N , r is a site from Γ, and λ is a leaf-picking order in the rooted tree
(Γn−1,Γn, sn−1(r)). Define a mapping Ψ: Zmat (N ) → Zsys (N ) : α 7→ (Γ, r, λ),
where

Γk = {{α(i, j) | 0 ≤ j ≤ k} | k + 1 ≤ i ≤ N}, 1 ≤ k ≤ n,

r = (α(1, 0), α(2, 0), . . . , α(n, 0)),

λ = (vn, . . . , vN ) is an ordering of Γn−1, where

vi = {α(i, j) | 0 ≤ j ≤ n − 1}, n ≤ i ≤ N.

Then Ψ is a bijection.

Proof. Assume that α is a Z-matrix and Ψ(α) = (Γ, r, λ). To demonstrate that Γ
is an unoriented Z-system we first verify the following: for all 1 ≤ j ≤ n and for
all j < i ≤ N there exists 1 ≤ i′ < i such that α(i, j) = α(i′, 0). This result is a
consequence of condition (2) if j = 1, so suppose it is true for 1 ≤ j ≤ j′−1 ≤ n−1.
Since by condition (2) {α(i, 1), . . . , α(i, j′)} = {α(i′, 0), . . . , α(i′, j′ − 1)} we can
apply the induction hypothesis to obtain 1 ≤ i′′ < i′ such that α(i, j′) = α(i′′, 0).
Thus the result is true for j = j′ as well.

Next we must show that {α(i, j) | 0 ≤ j ≤ k} is always an abstract k-simplex, i.e.
it cannot have fewer than k + 1 elements. Let 2 ≤ i ≤ N be the first row in which
repetitions occur (assuming by way of contradiction that they occur somewhere).
Let j ≥ 0 be as small as possible such that α(i, j) = α(i, k) for some j < k ≤ n.
If j = 0 then since k ≥ 1 we must have α(i, k) ∈ {α(i′, 0) | 0 ≤ i′ < i}, a contra-
diction with condition (1). If j ≥ 1 then by condition (2) {α(i, 1), . . . , α(i, k)} =
{α(i′, 0), . . . , α(i′, k − 1)} for some i′ < i, and a repetition must have occurred on
an earlier row, a contradiction of the choice of i.

Now suppose {α(i, j) | 0 ≤ j ≤ k} ∈ Γk is a k-simplex. It is incident on two
(k − 1)-simplices, namely {α(i, j) | 0 ≤ j ≤ k − 1} and {α(i, j) | 1 ≤ j ≤ k}. We
need to show that it is incident on no other (k − 1)-simplex. Suppose s ∈ Γk−1

is a (k − 1)-simplex on which {α(i, j) | 0 ≤ j ≤ k} is incident. We have s =
{α(i′, j) | 0 ≤ j ≤ k − 1} for some k ≤ i′ ≤ N . i′ > i is impossible since then
α(i′, 0) = α(i′′, 0) for some i′′ ≤ i < i′ contradicting condition (1). If i′ = i then s
is one of the two (k − 1)-simplices we already know about. So suppose i′ < i. s is
obtained from {α(i, j) | 0 ≤ j ≤ k} by omitting a single element, which must be
α(i, 0) since otherwise α(i, 0) ∈ s and hence α(i, 0) = α(i′′, 0) for some i′′ ≤ i′ < i,
contradicting condition (1). Thus s = {α(i, j) | 1 ≤ j ≤ k}, which is the other of
the (k − 1)-simplices that we already knew about.

Since each k-simplex is incident on exactly two (k − 1)-simplices, (Γk−1,Γk)
is a graph. It is easy to see that this graph is connected, since every (k − 1)-
simplex (vertex) appears on a row of the Z-matrix defining a k-simplex (edge)
connecting it to a (k − 1)-simplex (vertex) appearing on a previous row. This
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can only end if the previous vertex is the first (k − 1)-simplex specified, namely
{α(k − 1, 0), . . . , α(k − 1, k − 2)}. A connected graph with one fewer edges than
vertices must be a tree. Finally it is clear that the intersection of the two (k − 1)-
simplices {α(i, j) | 0 ≤ j ≤ k − 1} and {α(i, j) | 1 ≤ j ≤ k} is the (k − 2)-simplex
{α(i, j) | 1 ≤ j ≤ k − 1} ∈ Γk−2 by condition (2). Thus Γ = (Γ1, . . . ,Γn

∗ ) is an
unoriented Z-system.

We claim that r = (α(1, 0), α(2, 0), . . . , α(n, 0)) is a site for the Z-system Γ.
Clearly {α(1, 0), α(2, 0)} = {α(2, 0), α(2, 1)} ∈ Γ1. Suppose {α(i, 0) | 1 ≤ i ≤ k} =
{α(k, j) | 0 ≤ j ≤ k − 1} for some 2 ≤ k < n. Then {α(k + 1, j) | 1 ≤ j ≤ k} must
equal {α(k, j) | 0 ≤ j ≤ k − 1} by condition (2), and by the induction hypothesis
this must equal {α(i, 0) | 0 ≤ i ≤ k}. Adding the element α(k + 1, 0) to both sets
shows that {α(i, 0) | 1 ≤ i ≤ k + 1} = {α(k + 1, j) | 0 ≤ j ≤ k} ∈ Γk. Thus r is a
site of Γ.

Note that {α(N, j) | 0 ≤ j ≤ n − 1} ∈ Γn−1 is of degree one in the graph
(Γn−1,Γn, σ), since no n-simplex other than {α(N, j) | 0 ≤ j ≤ n} ∈ Γn can
contain the element α(N, 0). Thus the Z-matrix determines a leaf-picking order
for the rooted tree (Γn−1,Γn, σ), in the sense that the vertices of this tree are
ordered (assigned numbers n through N) starting at the root vertex sn−1(r) =
{α(1, 0), . . . , α(n, 0)} = {α(n, 0), . . . , α(n, n − 1)} with number n, such that for
every n < k ≤ N the vertex {α(k, 0), . . . , α(k, n− 1)} is a leaf of the tree subgraph
of (Γn−1,Γn) induced by the set of vertices numbered n through k. Thus the
mapping Ψ is well-defined.

Now we will show that Ψ is bijective, namely given (Γ, r, λ) ∈ Zsys (N ) there
is a unique Z-matrix α such that Ψ(α) = (Γ, r, λ). The key ideas for how the
Z-matrix is determined have already been explained in the proof of the main the-
orem in section 4.1. We obviously must define α(1, 0), . . . , α(n, 0) so that the root
site is given by r = (α(1, 0), α(2, 0), . . . , α(n, 0)). Also we must define α(2, 1) =
α(1, 0), so that {α(2, 0), α(2, 1)} = s1(r) ∈ Γ1. If S ⊂ Γ0 then define the no-
tation: Γk

S = {s ∈ Γk | s ⊂ S}. Notice that Γ0
s1(r)

= {{α(1, 0)}, {α(2, 0)}}
and Γ1

s1(r)
= {{α(2, 0), α(2, 1)}}. Now suppose the first k rows of the Z-matrix

have been defined for 2 ≤ k ≤ n − 1 such that for all 0 ≤ h ≤ k − 1 we have
Γh

sk−1(r)
= {{α(i, j) | 0 ≤ j ≤ h} | h + 1 ≤ i ≤ k}.

s0
0 = {α(k + 1, 1)}

s0
1 = {α(k + 1, 1), α(k + 1, 2)}
...

...
...

. . .
s0

k−1 = {α(k + 1, 1), α(k + 1, 2), . . . α(k + 1, k)}
s1

k = {α(k + 1, 0), α(k + 1, 1), α(k + 1, 2), . . . α(k + 1, k)}
...

...
...

...
s1
2 = {α(k + 1, 0), α(k + 1, 1), α(k + 1, 2)}

s1
1 = {α(k + 1, 0), α(k + 1, 1)}

s1
0 = {α(k + 1, 0)}

Define s1
k = sk(r) = {α(1, 0), . . . , α(k + 1, 0)} ∈ Γk. s1

k is incident on two (k − 1)-
simplices, one of which is s0

k−1 = sk−1(r) = {α(1, 0), . . . , α(k, 0)} ∈ Γk−1, and
the other we denote by s1

k−1. Note that α(k + 1, 0) ∈ s1
k−1. As in the proof of

the main theorem we define s0
k−2 = s0

k−1 ∩ s1
k−1, and let s1

k−2 be the (k − 2)-
simplex on which s1

k−1 is incident besides s0
k−2. Note again that α(k +1, 0) ∈ s1

k−2.
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Continuing this procedure as in the proof of the main theorem we end up with
two 0-simplices: s1

0 = {α(k + 1, 0)} and s0
0. We define α(k + 1, 1), . . . , α(k + 1, k)

such that s0
h = {α(k + 1, 1), . . . , α(k + 1, h + 1)} for h = 0, 1, . . . , k − 1. Since

s0
0 ⊂ s0

1 ⊂ · · · ⊂ s0
k−1 = sk−1(r) we have that s0

h ∈ Γh
sk−1(r)

for h = 0, 1, . . . , k − 1,
and by the induction hypothesis this means that s0

h = {α(i, j) | 0 ≤ j ≤ h} for
some h + 1 ≤ i < k + 1, verifying condition (2) for row k + 1 of the Z-matrix.
Note also that s1

h = {α(k + 1, 0), α(k + 1, 1), . . . , α(k + 1, h)} for h = 0, 1, . . . , k.
Thus Γh

sk−1(r)
∪{s1

h} ⊂ Γh
sk(r). Thus these two sets will be equal if we can show that

|Γh
sk(r)| = k−h+1, since |Γh

sk−1(r)
| = k−h. As we argued in the proof of the second

lemma in section 2 (Γl−1
sk(r),Γ

l
sk(r)) is an acyclic subgraph of the tree (Γl−1,Γl, σ), and

hence |Γl−1
sk(r)| ≥ |Γl

sk(r)| + 1. Since Γk
sk(r) = {s1

k}, and hence |Γk
sk(r)| = 1, we have

|Γl
sk(r)| ≥ k− l+1 for all l = 0, 1, . . . , k. But then k+1 ≤ |Γ0

sk(r)| ≤ |sk(r)| = k+1.
Thus k − l + 1 ≤ |Γl

sk(r)| ≤ k − l + 1 for l = 0, 1, . . . , k, showing the desired
result. This shows that Γh

sk(r) = {{α(i, j) | 0 ≤ j ≤ h} | h + 1 ≤ i ≤ k + 1}
for h = 0, 1, . . . , k. This finishes the induction step, so that the first n rows of the
Z-matrix α are defined so that condition (2) is satisfied for these rows and moreover
we have Γh

sn−1(r)
= {{α(i, j) | 0 ≤ j ≤ h} | h + 1 ≤ i ≤ n} for h = 0, 1, . . . , n − 1.

To define rows n + 1 through N of the Z-matrix we need to use the leaf-picking
order λ for the tree (Γn−1,Γn) with root sn−1(r). Thus the elements of Γn−1 are
assumed numbered n through N , the root vertex being numbered n, so that for all
n ≤ k ≤ N the vertex numbered k is a leaf in the subgraph of (Γn−1,Γn) induced
by the set of vertices numbered n through k. Suppose rows 1 through k of the
Z-matrix have been defined, where n ≤ k ≤ N − 1, such that Γh

S(k) = {{α(i, j) |
0 ≤ j ≤ h} | h + 1 ≤ i ≤ k} for h = 0, 1, . . . , n, where S(k) = {α(1, 0), . . . , α(k, 0)}.
Assume that condition (2) is satisfied for each of these k rows. Also assume that
for all n ≤ i ≤ k that {α(i, 0), . . . , α(i, n − 1)} is element number i in Γn−1. Let
s1

n−1 be element number k + 1 in Γn−1, and since it is a leaf in the subgraph of
(Γn−1,Γn) induced by the set of vertices numbered n through k + 1, let the unique
edge of this subgraph incident on s1

n−1 be denoted by s1
n ∈ Γn. Let s0

n−1 ∈ Γn−1

denote the other vertex on which this edge is incident. It must be one of the vertices
numbered n through k, and hence in Γn−1

S(k). By the properties of Z-systems we have
that s0

n−2 = s0
n−1 ∩ s1

n−1 ∈ Γn−2. Also let s1
n−2 ∈ Γn−2 denote the other vertex

besides s0
n−2 on which the edge s1

n−1 is incident. Continuing as in the proof of the
main theorem we define s1

h and s0
h for h = 0, 1, . . . , n − 1. We define α(k + 1, 0)

such that s1
0 = {α(k + 1, 0)}, and we define α(k + 1, 1), . . . , α(k + 1, n) such that

s0
h = {α(k + 1, j) | 1 ≤ j ≤ h + 1} for h = 0, 1, . . . , n − 1. We also have that

s1
h = {α(k + 1, j) | 0 ≤ j ≤ h} for h = 0, 1, . . . , n. We know that |Γn

S(k)| = k − n

by the induction hypothesis. s1
n ∈ Γn

S(k+1) is incident on element number k + 1 of
Γn−1, and hence is distinct from the edges in Γn

S(k) which are incident on elements
numbered n through k of Γn−1; so |Γn

S(k+1)| ≥ k − n + 1. Using the fact that
(Γh−1

S ,Γh
S) is a subgraph of a tree, with the consequence that |Γh−1

S | ≥ |Γh
S | + 1,

we obtain after n applications that |Γ0
S(k+1)| ≥ k + 1. Thus |S(k + 1)| = k + 1

and hence α(k + 1, 0) /∈ S(k). Furthermore we have that |Γh
S(k+1)| = k − h + 1, for

h = 0, 1, . . . , n. Thus Γh
S(k+1) = Γh

S(k) ∪ {s1
h} for h = 0, 1, . . . , n. Since s0

h ∈ Γh
S(k)

for 0 ≤ h ≤ n−1 we have that condition (2) is satisfied by row k+1 of the Z-matrix.
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This finishes the inductive definition of the Z-matrix. The first column of the Z-
matrix has N distinct elements from the set N , which has exactly N elements; so
condition (1) is also satisfied.

The above construction of the Z-matrix α obviously satisfies Ψ(α) = (Γ, r, λ).
Also if α̃ is another Z-matrix and Ψ(α̃) = Ψ(α) = (Γ, r, λ), then the Z-matrices
α and α̃ must coincide by a simple induction argument, similar to those already
given; the reader is invited to generate this argument as an exercise. ¤

Any Z-matrix α on N determines an unoriented Z-system Γ such that Ψ(α) =
(Γ, r, λ). But it also determines an oriented Z-system Γ∗(α), whose underlying
unoriented Z-system is Γ, by the rule

Γn
∗ (α) = {[α(i, 0), α(i, 1), . . . , α(i, n)] | n < i ≤ N}.

Not every possible set Γn
∗ of oriented n-simplices such that Υ is a bijection of Γn

∗
onto Γn is equal to Γn

∗ (α), where α = Ψ−1(Γ, r, λ) for some site r from Γ and
leaf-picking order λ for (Γ, r). For example, suppose Γ is the underlying unoriented
Z-system for methanol given in Figure 2. Choose the root site r = (C,O,H1), and
the leaf-picking order λ = ({O,C,H1}, {O,C,H2}, {O,C,H3}, {O,C,H}). Then
α = Ψ−1(Γ, r, λ) is the same as the Z-matrix α given above for methanol. We can
make the following choice of Γ3

∗ and compare it with the Z-system determined by
α:

Γ3
∗ = {[C,O,H1,H2], [C,O,H1,H3], [H,O,C,H1]},

Γ3
∗(α) = {[H2, C,O,H1], [H3, C,O,H1], [H,O,C,H1]}.

Since [Hj , C,O,H1] = [C,O,Hj ,H1] = −[C,O,H1,Hj ], j = 2, 3, we see that
Γ3
∗(α) 6= Γ3

∗. All the improper (c.f. section 6.2) edges of the tree (Γ2,Γ3) are
always directed toward the root vertex s2(r) by the Z-matrix convention for any
leaf-picking order. This makes Γ3

∗ unattainable regardless of the choice of the root
site.

5.3. Labeled Z-matrices. The concept of a labeled Z-system has its counterpart
in the concept of a labeled Z-matrix.

Definition. If α : {(i, j) ∈ Z
2 | 0 ≤ j ≤ n, j < i ≤ N} → N is a Z-matrix, then a

mapping β : {(i, j) ∈ Z
2 | 1 ≤ j ≤ n, j < i ≤ N} → R is a labeling of the Z-matrix

α if

(1) β(i, 1) > 0 for 2 ≤ i ≤ N ;
(2) 0 < β(i, j) < π for 2 ≤ j ≤ n − 1, j + 1 ≤ i ≤ N ;
(3) −π < β(i, n) ≤ π for n + 1 ≤ i ≤ N .

Suppose γ ∈ DP (Γ∗) is a labeling for the Z-system Γ∗, and suppose α = Ψ(Γ, r, λ)
for some choice of root site r and leaf-picking order λ. Assume that Γn

∗ = Γn
∗ (α).

Then we define the labeling β of the Z-matrix associated to γ as follows.

(1) If 2 ≤ i ≤ N then define β(i, 1) = Le, where e = {α(i, 0), α(i, 1)}.
(2) If 2 ≤ j ≤ n − 1 and j + 1 ≤ i ≤ N then define β(i, j) = cos−1 Ce, where

e = {α(i, h) | 0 ≤ h ≤ j}.
(3) If n + 1 ≤ k ≤ N then define β(k, n) ∈ (−π, π] such that ei(−1)n−1β(k,n) =

Ze∗ , where e∗ = [α(k, 0), . . . , α(k, n)].
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i2 i1

i0

Figure 7. An oriented angle in the case n = 2. The Z-system
convention would assign a positive angle to [i0, i1, i2]. The Z-matrix
convention would assign a positive angle to [i1, i0, i2].

The only unexpected aspect of this definition is the factor (−1)n−1 appearing in the
equation for β(k, n). It reflects a discrepancy in even dimensional spaces between
the interpretation of an oriented n simplex that is natural for Z-systems versus
that which is conventional and natural for Z-matrices (see Figure 7). In Z-systems
it is natural to interpret [i0, . . . , in] in terms of a positive rotation of the half-
hyperplane bounded by the codimension 2 subset Y (spanned by Ri0 , . . . ,Rin−2)
and containing Rin−1 into the half-hyperplane bounded by Y and containing Rin

.
According to the usual conventions for Z-matrices this would be represented by
the oriented n simplex [in−1, i0, . . . , in−2, in]. These two oriented n simplices are
related by n − 1 transpositions. Fortunately in 3 dimensions, where the Z-matrix
convention is standard among chemists, the two conventions agree. Note that since
Z−e∗(R) = Ze∗(R) we may relax the assumption Γn

∗ = Γn
∗ (α) in the above by

introducing a negative sign in the Z-matrix label β(k, n) when the orientation from
Γn
∗ is opposite to that from the Z-matrix.
Labelled Z-matrices are very close to usual coordinate systems where the coor-

dinates are all assumed to be real numbers and where a specific ordering of the
coordinates is specified. However, even a labelled Z-matrix does not tell us whether
the coordinates should be ordered by rows or by columns. In our discussion of
Z-systems we have not assigned any importance to the ordering of coordinates.

6. Biomolecular Shape

6.1. Terminology for Molecular Z-systems. In this section we will not always
distinguish notationally between a Z-system Γ∗ and its underlying unoriented Z-
system Γ. We begin by explaining some terminology natural in the context of
molecules. Recall from the Introduction that members of the sets Γ0,Γ1,Γ2,Γ3 are
called atoms, bonds, triangles and tetrahedra respectively. The bonds in Γ1 should
not be confused with chemical bonds, although it is often convenient to choose as
bonds in Γ1 pairs of atom names which are chemically bonded in the molecule. We
will see (in our discussion of five-membered rings) that it is sometimes convenient
to include as an element in Γ1 a pair of atom names corresponding to atoms which
are not covalently bonded in the molecule. We call a pair α = {b1, b2} of bonds,
where b1∪b2 ∈ Γ2 and b1∩b2 ∈ Γ0, an angle of Γ. Recall the lemma from section 2.6
implies that triangles in Γ2 and angles of Γ are in one-to-one correspondence, where
the triangle t associated to the angle {b1, b2} is of course t = b1 ∪ b2. The common
atom of the angle {b1, b2} is a = b1 ∩ b2. We call a pair ω = {t1, t2} of triangles,
where t1∪ t2 ∈ Γ3 and t1∩ t2 ∈ Γ1, a wedge of Γ. Similarly this same lemma implies
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α2
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Figure 8. (a) ω = {t1, t2} is a dihedral. (b) ω = {t1, t2} is an
improper. In both cases angles α1, α2 correspond to triangles t1, t2,
and b = t1 ∩ t2 is the common bond shared by t1, t2.

that tetrahedra in Γ3 and wedges of Γ are in one-to-one correspondence, where the
tetrahedron d associated to the wedge {t1, t2} is d = t1 ∪ t2. The common bond of
the wedge {t1, t2} is b = t1 ∩ t2.

6.2. Dihedrals and Impropers. According to the lemma from section 2.6 the
only bonds which are subsets of a triangle are those in the associated angle. Hence
the common bond b of a wedge must be part of both of the angles associated to
t1 and t2. So triangle ti is associated to angle αi = {b, bi}, i = 1, 2. Let ai be the
common atom of angle αi, i = 1, 2; we always have a1, a2 ⊂ b. Tetrahedra (and
also wedges) are classified into two disjoint categories. We say d (or ω) is a dihedral
if a1 6= a2 so that b = a1 ∪ a2. We say d (or ω) is an improper if a1 = a2. See
Figure 8. This categorization of a tetrahedron as either a dihedral or an improper
depends on the details of the Z-system; different Z-systems might cause the same
tetrahedron to be categorized in opposite ways. In the example of the Z-system for
methanol introduced in Figures 2 and 3, we have the dihedral [H,O,C,H1] and the
impropers [H2, C,O,H1] and [H3, C,O,H1].

One important consequence of the dichotomy between dihedral and improper is
their behavior in relation to orientations. There is a canonical way to assign an
orientation to a tetrahedron (3-simplex) which is a dihedral. Let d be a dihedral,
where we adopt the notation above, and add the definitions bi = ai ∪ a′

i, i =
1, 2. Then the canonical orientation of the tetrahedron d is [A′

1, A1, A2, A
′
2], where

ai = {Ai} and a′
i = {A′

i}, i = 1, 2. We say it is canonical because it does not
depend on the ordering of the triangles t1, t2 forming the associated wedge, i.e.
[A′

1, A1, A2, A
′
2] = [A′

2, A2, A1, A
′
1] as one can easily check. We will call this the

canonical dihedral orientation. Although it is not necessary to do so, it is the usual
practice when building a Z-system to assign the canonical dihedral orientation to
any tetrahedron which is a dihedral. When a dihedral tetrahedron is equipped
with its canonical orientation it is called a torsion. As one can easily check, we
have done this for the dihedral in our Z-system for methanol. The situation for
impropers is quite different. An orientation needs to be chosen but neither of the
two possibilities stands out as a better choice. Unlike dihedrals, the common bond
b is oriented, from a1 = a2 toward the other atom a3 = {A3} . But since the
two triangles are not ordered, no particular orientation is determined. If we add
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information to the tetrahedron d which orders the two triangles as t1, t2, then an
orientation consistent with this choice is [A1, A3, A

′
1, A

′
2]. But if we reverse the

order of the two triangles then we get [A1, A3, A
′
2, A

′
1], which is clearly the opposite

orientation to that obtained from the other ordering. Even though there is no
canonical orientation of an improper, a choice of an orientation of an improper is
equivalent to a choice of an ordering of the two triangles forming the improper
wedge. This explains the arrows on the impropers in Figure 3.

One practical difference between dihedrals and impropers arises from the nature
of chemical forces. Since the Z-system Γ∗ determines a coordinate system valid
throughout the dense open set DC(Γ), the potential energy of the molecule is a
well-defined (except where the energy is infinite due to two non-bonded atoms
occupying the same point of space) function on DP (Γ∗). (We are assuming there
are no external forces so that the potential energy is invariant under all rigid motions
of the molecular configuration.) For biological molecules under most biologically
relevant conditions such potential energies are not greatly elevated above their
minimum possible values. Thus if the Z-system is chosen correctly we can expect
that the bond lengths will be effectively constrained to be within one or two tenths of
an angstrom of a minimum energy value. Likewise the bond angles are constrained
to be within 0.5 to 1 degrees of a minimum energy value. Improper wedge angles
are also constrained to be within 1 or so degrees of a minimum energy value. But
dihedral wedge angles are not so strongly constrained under normal biologically
important conditions [60]. Thus an interesting mathematical model of a biomolecule
is obtained by exactly freezing the values of all the bond lengths, bond angles,
and improper wedge angles, but allowing complete freedom for the dihedral wedge
angles (unless they are involved in covalently bound rings). However the clarity of
this situation can be marred by a poor choice of Z-system, namely if there is an
overuse of dihedrals. For example, consider the methyl group in methanol, namely
the group of atoms C,H1,H2,H3, which is attached to the rest of the molecule via
the bond {C,O}. Under normal biologically relevant conditions the methyl group
is well approximated as a rigid body whose primary degree of freedom is its ability
to rotate about the axis of the bond {C,O}. This one degree of freedom should
correspond to a single free dihedral. Thus in our Z-system for methanol we use the
single dihedral d1 = {H,O,C,H1} to describe the orientation of the methyl group
relative to the rest of the molecule, and we use the two impropers {H2, C,O,H1} and
{H3, C,O,H1} to fix the shape of the methyl group as a rigid body. However it is
mathematically possible (but chemically inadvisable) to replace these two impropers
with the two dihedrals d2 = {H2, C,O,H} and d3 = {H3, C,O,H}. The rigid body
constraint would in this new coordinate system translate into constraints on the
differences between pairs of dihedral angles: ϕd2 − ϕd1 = 120◦ and ϕd3 − ϕd1 =
−120◦. Thus as the methyl group rotates three dihedral angles change, but would
do so in concert. Clearly it is preferable to have only one angle change during this
rotation. Let Γ3

d ⊂ Γ3 denote the subclass of dihedrals. If the mapping Γ3
d → Γ1,

which takes a dihedral to its common bond, is injective, then the Z-system is sparing
in its use of dihedrals. This can always be arranged by converting (if necessary) the
extra dihedrals into impropers. Thus, if when constructing a Z-system care is taken
not to overuse dihedrals, then a biomolecule (excluding the covalently bonded rings
of atoms) can be approximated as a system of linked rigid bodies whose primary
independent degrees of flexibility are its torsion angles [33], [24], [72].
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6.3. Tethering. Chemical reactions give rise to interesting constructions on Z-
systems. Suppose molecules described by Z-systems Γ and Λ approach one another
in space and undergo a chemical reaction from which molecules described by Z-
systems Σ and Ω emerge. When the reaction is viewed in this way, Γ and Λ describe
the reactants and Σ and Ω describe the products. In order to describe the approach
of the reactants toward one another in space and the early stages of the chemical
reaction it is necessary to form a Z-system Γ ⊕µ Λ for the reactant supermolecule.
There are many ways this approach could be described, and a particular choice of
how this will be done is represented by the information µ (see below). Similarly
there will be a product supermolecule described by a Z-system Σ⊕ν Ω. Both of the
Z-systems Γ⊕µ Λ and Σ⊕ν Ω should be able to describe the shapes of the transition
states, i.e. all such shapes should be members of DC(Γ ⊕µ Λ) ∩ DC(Σ ⊕ν Ω). The
operation of forming from Γ and Λ the new Z-system Γ⊕µ Λ using the information
µ will be called tethering. (See Figure 9 for an important example.) We assume
that Γ is a Z-system on the set N of N elements, and Λ is a Z-system on the set
M of M elements, where N ∩M = ∅. Then Γ ⊕µ Λ will be a Z-system on the set
N ∪M of N + M elements. Thus tethering conserves atoms. One simple way to
specify the tethering information µ is to give two sites, γ from Γ and λ from Λ, i.e.
µ = {γ, λ}. Thus we must specify a triple γ = (i0, i1, i2) of elements of N such that
{i0} ∈ Γ0 (necessarily true), {i0, i1} ∈ Γ1, and {i0, i1, i2} ∈ Γ2; this defines a site
from Γ. Likewise we must specify a triple λ = (j0, j1, j2) of elements of M such
that {j0} ∈ Λ0 (necessarily true), {j0, j1} ∈ Λ1, and {j0, j1, j2} ∈ Λ2. Clearly we
will have (Γ ⊕µ Λ)0 = Γ0 ∪ Λ0. We define

(Γ ⊕µ Λ)1 = Γ1 ∪ Λ1 ∪ {{i0, j0}}
(Γ ⊕µ Λ)2 = Γ2 ∪ Λ2 ∪ {{i0, i1, j0}, {j0, j1, i0}}
(Γ ⊕µ Λ)3 = Γ3 ∪ Λ3 ∪ {{i0, i1, i2, j0}, {i0, i1, j0, j1}, {j0, j1, j2, i0}}
(Γ ⊕µ Λ)3∗ = Γ3

∗ ∪ Λ3
∗ ∪ {[j0, i0, i1, i2], [i1, i0, j0, j1], [i0, j0, j1, j2]}.

The new bond {i0, j0} is called the tether. In regard to orientations we note that the
central tetrahedron must be a dihedral, so we choose its orientation to be canonical,
i.e. [i1, i0, j0, j1]. The other two tetrahedra could be either dihedrals or impropers,
but we assign their orientations as follows: [j0, i0, i1, i2] and [i0, j0, j1, j2]. In the
dihedral case, this is the canonical orientation. But in the improper case we have
effectively decided that the new triangle should be rotated into the old triangle.

Lemma. Γ ⊕µ Λ is a well-defined Z-system.

Proof. Conditions (3) and (4) in the definition of Z-system are verified by in-
spection. Since |Γ1| = N − 1 and |Λ1| = M − 1 we have that |(Γ ⊕µ Λ)1| =
(N − 1) + (M − 1) + 1 = N + M − 1. Since the graph ((Γ ⊕µ Λ)0, (Γ ⊕µ Λ)1) is
obviously connected, it must be a tree. By similar counting arguments we see that
both ((Γ ⊕µ Λ)1, (Γ ⊕µ Λ)2) and ((Γ ⊕µ Λ)2, (Γ ⊕µ Λ)3) are trees. Hence condition
(5) also holds true. ¤

It should be clear that Γ ⊕µ Λ = Λ ⊕µ Γ. Furthermore if γ is a site in Γ, λ1, λ2

are sites in Λ, and δ is a site in another Z-system ∆, then we have an associative
property:

Γ ⊕{γ,λ1} (Λ ⊕{λ2,δ} ∆) = (Γ ⊕{γ,λ1} Λ) ⊕{λ2,δ} ∆.
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Figure 9. a) A tethered Z-system for the reactant supermolecule:
two amino acids approach one another. b) A tethered Z-system for
the product supermolecule: a water molecule moves away from a
dipeptide. This example is illustrative; see [47] and [21] for more
realistic reaction mechanisms. The tethers (bonds) are shown as
dark lines, the tether angles as dark dashed lines, and the tether
wedges are shown as dark dotted curves or lines.
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Tethering can also be done with labeled Z-systems, where the numerical labels
of the six added simplices specify the relative position and orientation of the two
molecules. This is an interesting symmetrical way to do this.

Figure 9 shows that the tethering process can produce Z-systems which overuse
dihedrals. The set of wedges can be changed to remove this problem and the new
wedges can be assigned labels according to the theory in section 3.4 so that the
shape is not changed.

6.4. Gluing. Z-systems for large biomolecules are extremely laborious to generate
from scratch. As compact as a Z-matrix is, it nevertheless has one row for each
atom, and biomolecules can easily have thousands of atoms. The details of the
structure of these molecules cannot be neglected if a mechanistic understanding of
biological processes is to be achieved so we must find ways to deal with the huge
quantity of information in large Z-systems. One idea is to build up large Z-systems
from smaller Z-systems by gluing the smaller pieces together. Biomolecules lend
themselves to this approach because they are polymers, synthesized from many
copies of smaller molecules called monomers. But as we have seen, mimicking the
chemical reactions involved in joining these monomers together is rather compli-
cated in its detail. It is desirable to have a gluing operation which can bypass the
chemical processes and go straight to the final result. In fact, when one builds plas-
tic models of molecules one uses exactly such a gluing operation. It is interesting
that Z-systems are perfectly suited to such an operation.

Suppose Z-systems Γ and Λ on disjoint sets N and M respectively, and with
sites γ = (i0, i1, i2) ∈ vert S(Γ) and λ = (j0, j1, j2) ∈ vert S(Λ) are given. We
require that {i0} is a leaf vertex in the tree (Γ0,Γ1), and that {j0} is a leaf vertex
in the tree (Λ0,Λ1). We intend to define a new Z-system Γ ∗µ Λ, where µ = {γ, λ}.
It will be a Z-system on the set L = (N \ {i0}) ∪ (M\{j0}), which (together with
the mappings ιN , ιM) is the pushout of the following diagram:

{i1, j1} i1 7→j0,j1 7→j1−−−−−−−−→ M
i1 7→i1,j1 7→i0

y yιM

N ιN−−−−→ L.

Given any set S and any mappings f : M → S, g : N → S such that f(j0) = g(i1)
and f(j1) = g(i0) there exists a unique mapping h : L → S such that f = h ◦ ιM
and g = h ◦ ιN . This pushout property requires the definitions:

ιN (i) =

{
i i ∈ N \ {i0}
j1 i = i0

, ιM(j) =

{
j j ∈ M \ {j0}
i1 j = j0

,

and hence h(l) =

{
f(l) l ∈ M \ {j0}
g(l) l ∈ N \ {i0}

. (We describe these mappings in such an

elaborate manner to suggest how the construction might be generalized to the case
n 6= 3, where instead of gluing along a 1 simplex, one glues along an n− 2 simplex.
The upper horizontal and left vertical mappings of the pushout rectangle would be
required to be monomorphisms of Z-systems.) Now we define

(Γ ∗µ Λ)1 = {ιN (b) | b ∈ Γ1} ∪ {ιM(b) | b ∈ Λ1},
(Γ ∗µ Λ)2 = {ιN (t) | t ∈ Γ2} ∪ {ιM(t) | t ∈ Λ2},



46 DANIEL B. DIX

(Γ ∗µ Λ)3∗ = {ιN (τ∗) | τ∗ ∈ Γ3
∗} ∪ {ιM(τ∗) | τ∗ ∈ Λ3

∗} ∪ {[i2, i1, j1, j2]}.
The mappings ιN and ιM take oriented 3 simplices into oriented 3 simplices in the
obvious manner. The new 3 simplex {i2, i1, j1, j2} is a dihedral, and it is given the
canonical orientation [i2, i1, j1, j2].

Lemma. The above definitions define a Z-system Γ ∗µ Λ on L.

Proof. Since {i0} is a leaf vertex in the tree (Γ0,Γ1) the bond {i0, i1} is the only
bond in Γ1 incident on {i0}. So if b ∈ Γ1 \ {{i0, i1}} then ιN (b) = b. Likewise since
{j0} is a leaf vertex in the tree (Λ0,Λ1) the bond {j0, j1} is the only bond in Λ1

incident on {j0}. So if b ∈ Λ1 \ {{j0, j1}} then ιM(b) = b. Clearly ιN ({i0, i1}) =
ιM({j0, j1}) = {i1, j1}. Thus

(Γ ∗µ Λ)1 = (Γ1 \ {{i0, i1}}) ∪ (Λ1 \ {{j0, j1}}) ∪ {{i1, j1}}.
It is easy to see that ((Γ∗µΛ)0, (Γ∗µΛ)1) is a connected graph. Since (Γ∗µΛ)0 =

(L
1

)
has (N−1)+(M−1) = N+M−2 elements, and (Γ∗µΛ)1 has (N−2)+(M−2)+1 =
N + M − 3 elements, this graph must be a tree.

To see that condition (3) is true for k = 2, let t ∈ (Γ ∗µ Λ)2 and consider the set
σ̃(t) = {b ∈ (Γ∗µΛ)1 | b ⊂ t}. We must show that σ̃(t) has exactly two elements. We
may assume that t = ιN (t′) for t′ ∈ Γ2, since the argument for t′ ∈ Λ2 is completely
analogous. Suppose first of all that i0 6∈ t′. Thus t′ ⊂ N \ {i0}. Therefore t′ = t.
There exist exactly two bonds b1, b2 ∈ Γ1 such that b1 ⊂ t and b2 ⊂ t. Therefore
b1, b2 ⊂ N\{i0} and hence b1, b2 ∈ (Γ1\{{i0, i1}}) ⊂ (Γ∗µΛ)1. Thus {b1, b2} ⊂ σ̃(t).
Now suppose b ∈ σ̃(t), i.e. b ∈ (Γ ∗µ Λ)1 and b ⊂ t. Since b ⊂ N \ {{i0}} we have
b ∈ Γ1 \ {{i0, i1}}. Thus b ∈ {b1, b2} and σ̃(t) = {b1, b2}, as desired. On the
other hand if i0 ∈ t′ then b1 = {i0, i1} (being the only bond in Γ1 incident on
{i0}) satisfies b1 ⊂ t′. There is exactly one other bond b2 ∈ Γ1 such that b2 ⊂ t′,
and we must have i0 6∈ b2. Thus b2 = {i1, i}, where i ∈ N \ {i0, i1}. Therefore
ιN (b1) = {j1, i1} and ιN (b2) = b2 are two members of σ̃(t). {j1, i} 6∈ σ̃(t) since
{i0, i} 6∈ Γ1. Hence σ̃(t) = {{j1, i1}, {i1, i}}, as desired. The sets {ιM(t) | t ∈ Γ2}
and {ιN (t) | t ∈ Λ2} are disjoint, hence (Γ∗µΛ)2 has (N−2)+(M−2) = N +M−4
elements. The graph ((Γ∗µ Λ)1, (Γ∗µ Λ)2) is clearly connected, so it must be a tree.
Thus condition (5), k = 2 is verified.

Again we must show that condition (3) with k = 3 is true, so let d ∈ (Γ ∗µ Λ)3

and consider the set σ̃(d) = {t ∈ (Γ ∗µ Λ)2 | t ⊂ d}. We must show this set has
exactly two elements. First suppose d = {i2, i1, j1, j2}. Clearly {t, t′} ⊂ σ̃(d) where
t = {i2, i1, j1} = ιN ({i0, i1, i2}) and t′ = {i1, j1, j2} = ιM({j0, j1, j2}). If t′′ ∈ σ̃(d)
then either t′′ = ιN (t̃) for t̃ ∈ Γ2 or t′′ = ιM(t̃) for t̃ ∈ Λ2. Thus either t̃ = {i0, i1, i2}
or t̃ = {j0, j1, j2}, implying that t′′ ∈ {t, t′}, and hence σ̃(d) = {t, t′} as desired.
Now suppose that d = ιN (d′) where d′ ∈ Γ3. (The case where d = ιM(d′) where
d′ ∈ Λ3 is argued analogously.) Let σ̃(d′) = {t, t′}. Then {ιN (t), ιN (t′)} ⊂ σ̃(d).
On the other hand if t′′ ∈ (Γ ∗µ Λ)2 and t′′ ⊂ d then we must have t′′ = ιN (t̃)
for t̃ ∈ Γ2. Since ιN is an injection and ιN (t̃) ⊂ ιN (d′), it follows that t̃ ⊂ d′,
and hence t̃ ∈ {t, t′}. Thus σ̃(d) = {ιN (t), ιN (t′)}, as desired. In both cases d
is the union of the two triangles in σ̃(d), so d is uniquely determined by σ̃(d),
finishing the proof of condition (3) with k = 3. The union defining (Γ ∗µ Λ)3 is a
disjoint union, so (Γ ∗µ Λ)3 has (N − 3) + (M − 3) + 1 = N + M − 5 elements.
The tetrahedron {i2, i1, j1, j2} connects the triangle ιN ({i0, i1, i2}) = {i2, i1, j1} to
the triangle ιM({j0, j1, j2}) = {i1, j1, j2}, so the graph ((Γ ∗µ Λ)2, (Γ ∗µ Λ)3) is
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Figure 10. Unlabeled Z-matrices for methane and water.

connected and hence a tree. Condition (5) with k = 3 in the definition of Z-system
is now verified.

Since {i2, i1, j1} ∪ {i1, j1, j2} = {i2, i1, j1, j2} and {i2, i1, j1} ∩ {i1, j1, j2} =
{i1, j1} ∈ (Γ ∗µ Λ)1, we see the intersection property (condition (4)) is satisfied
in this case. Elsewhere it is a consequence of the intersection property in each of
the Z-systems Γ and Λ. So Γ ∗µ Λ is an unoriented Z-system. ¤

Gluing is also commutative and associative under the same assumptions (distinct
sites) as for tethering together with the always necessary leaf assumptions.

This gluing operation on Z-systems can be illustrated by the example of combin-
ing methane and water to make methanol. Let unlabeled Z-matrices determining
Z-systems Γ and Λ for methane and water respectively be given in Figure 10. As
discussed in section 5.2 we use a Z-matrix to define a Z-system, where we ignore
the root site and the leaf-picking order. We choose the site γ = (H∗, C,H1) in
methane, and the site λ = (H∗, O,H) in water. We have N = {C,H∗,H1,H2,H3}
and M = {O,H,H∗} and the mappings

A | C H∗ H1 H2 H3 O H H∗

−−− −− −− −− −− −− −− −− −−
ιN (A) | C O H1 H2 H3

ιM(A) | O H C

The result of gluing is the Z-system Γ ∗µ Λ on the set L = {C,H1,H2,H3, O,H},
where

(Γ ∗µ Λ)1 = {{C,H1}, {C,H2}, {C,H3}, {O,H}, {C,O}}
(Γ ∗µ Λ)2 = {{H1, C,O}, {H2, C,O}, {H3, C,O}, {C,O,H}}
(Γ ∗µ Λ)3∗ = {[H2, C,O,H1], [H3, C,O,H1], [H1, C,O,H]}.

This Z-system for methanol coincides with the one pictured in Figures 2 and 3. As
usual there are many Z-matrices one could write for this Z-system, such as the one
given in section 5, but none of them are obtained from the two initial Z-matrices
by a simple manipulation, even if we could easily reorder Z-matrices [81].

Labeled Z-systems can be glued as above to yield another labeled Z-system.
The gluing information µ, in addition to the two sites γ and λ, must contain a
bond length for the bond {i1, j1} and a unit modulus complex number as the
wedge angle coordinate for the oriented 3 simplex [i2, i1, j1, j2]. The other labels
are carried over from the corresponding simplices of Γ or Λ. The bond length
of {i1, j1} is often determined by the element types of i1 and j1, since {i1, j1} is
usually a single bond. It is possible to glue “building block” versions of amino acid
Z-systems so that the new bond {i1, j1} is the peptide bond, which has a well-
known bond length. The shape of the substituent atoms to {i1} and {j1} can be
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chosen so that they are correct after gluing; since the peptide bond has a partial
double bond character these shapes will not be the correct ones for individual
amino acids in solution—hence the name “building block”. The (dihedral) wedge
angle coordinate is often not uniquely determined at normal biological conditions.
However, when gluing amino acid building blocks, this angle (called ω) is usually
close to π (leading to a “trans” peptide unit). Thus labeled Z-systems provide the
fundamental mathematical tool we need to begin a systematic study of biomolecular
geometry.

6.5. Five-Membered Rings. The most serious difficulty in using Z-systems in
the study of biomolecular geometry is the presence of flexible covalently bound
rings [79], [18], [19], [61], [26]. Flexible five-membered rings are present in both
proteins (i.e. proline) and in all nucleic acids (the furanose ring) [3], [55], [57], [73],
[1]. Six-membered rings are in sugars (see section 6.7). Larger flexible rings are
frequently present (via disulfide bonds) in proteins, and constitute an important
constraint on their flexibility [46].

Consider a five-membered ring. If N = {0, 1, 2, 3, 4} then the orbit space Ga\\B is
15−6 = 9 dimensional. Because of the five covalent bonds of the ring, it is desirable
to use those bond lengths as five of the nine coordinates. This clearly takes us
outside the realm of Z-systems. A simple possibility (see [66]) is to use as additional
coordinates the bond angles {{0, 1}, {1, 2}} and {{1, 2}, {2, 3}} and the dihedral
wedge angles [0, 1, 2, 3] and [1, 2, 3, 4]. The cosine of the angle {{2, 3}, {3, 4}} is
found by solving a quadratic equation derived by imposing the distance constraint
between atoms {0} and {4}. There are obviously generically either two or zero real
solutions, so these nine coordinates either do not determine any shape or do not
determine a unique shape. If we always choose the larger of the two solutions of
the quadratic equation, the coordinate domain (which cannot be dense) and the
parameter domain still need to be characterized. Furthermore, practically speaking,
the measure of the angle {{2, 3}, {3, 4}} is usually known with greater certainty than
that of the wedge angle [1, 2, 3, 4].

Another more complex (yet more symmetrical) choice of the four coordinates
supplementing the five bond lengths has been proposed and studied [65]. This
coordinate system has the benefit that the primary degree of flexibility of the ring
is described by one of the coordinates, the so-called pseudorotation phase angle.
However, the coordinate and parameter domains for this system have not been
characterized.

An interesting alternative to these approaches can be based directly on Z-system
theory. Consider the Z-system Γ on N derived from the following Z-matrix (see
also Figure 11).

1
2 1
0 2 1
3 0 2 1
4 3 0 2

This system has the “bonds” {0, 2} and {3, 0} which are not covalently bonded pairs
of atoms. Nevertheless our main theorem gives us a diffeomorphism η̂ : DC(Γ) →
DP (Γ∗). As usual DC(Γ) is the set of all shapes O for which the three triangles
{0, 2, 1}, {3, 0, 2}, {4, 3, 0} represent non collinear spatial triangles. Also DP (Γ∗) =
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Figure 11. A Z-system Γ for a Five-Membered Ring.

(0,∞)Γ
1 × (−1, 1)Γ

2 × (S1)Γ
3
∗ . Define

Λ1 = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0}},
Λ2 = {α1 = {{0, 1}, {1, 2}}, α4 = {{3, 4}, {4, 0}}}.

Define the mapping ξ′ : (0,∞)Γ
1 × (−1, 1)Γ

2 → (0,∞)Λ
1 × (−1, 1)Λ

2
by the rule

ξ′(L′, C ′) = (L,C), where

L{0,1} =
√

(L′
{1,2})

2 + (L′
{0,2})

2 − 2L′
{1,2}L

′
{0,2}C

′
{0,2,1}

L{1,2} = L′
{1,2}

L{2,3} =
√

(L′
{0,2})

2 + (L′
{0,3})

2 − 2L′
{0,2}L

′
{0,3}C

′
{3,0,2}

L{3,4} = L′
{3,4}

L{4,0} =
√

(L′
{0,3})

2 + (L′
{4,3})

2 − 2L′
{0,3}L

′
{4,3}C

′
{4,3,0}

Cα1 =
L′
{1,2} − L′

{0,2}C
′
{0,2,1}

L{0,1}

Cα4 =
L′
{4,3} − L′

{0,3}C
′
{4,3,0}

L{4,0}

This mapping simply recoordinatizes each of the three triangles in Γ2. Define
∆ ⊂ (0,∞)Λ

1 × (−1, 1)Λ
2

to be the range of ξ′. The new coordinatization for
the triangle {0, 2, 3} is in terms of the lengths of its three sides, and this entails a
restriction on the possible triples of lengths. Hence

∆ = {(L,C) | L : Λ1 → (0,∞), C : Λ2 → (−1, 1), such that

[(L′
{0,2})

2 + (L′
{0,3})

2 − (L{2,3})2]2 < 4(L′
{0,2})

2(L′
{0,3})

2,

where (L′
{0,2})

2 = (L{0,1})2 + (L{1,2})2 − 2L{0,1}L{1,2}Cα1 ,

and (L′
{0,3})

2 = (L{0,4})2 + (L{4,3})2 − 2L{0,4}L{4,3}Cα4}.
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Figure 12. Bridging between sites r = (A1, A2, A3) and r′ =
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1, A
′
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′
3). Atoms {A0} and {A′

0} are added with distance
constraints shown as darker dashed lines. Constrained angles
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′
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′
1 are also shown.

If ξ is equal to ξ′ with its codomain restricted to ∆ then ξ is a diffeomorphism
(as the reader is invited to check by explicitly constructing its inverse mapping). If
DP (Λ) = ∆×(S1)Γ

3
∗ , then (ξ×1)◦η̂ is a diffeomorphism between DC(Γ) and DP (Λ).

This is an internal coordinate system for the five-membered ring where both the
coordinate and the parameter domains are explicitly identified. The coordinates
are the five bond lengths L{0,1}, L{1,2}, L{2,3}, L{3,4}, L{4,0}, the two bond-angle
cosines Cα1 , Cα4 , and the two wedge angles ϕ[3,0,2,1], ϕ[4,3,0,2]. The two wedge
angle coordinates are called flap angle coordinates in this case. Pseudorotation
cycles form closed paths in the flap angle plane and in the bond angle plane. Flap
angle coordinates have also appeared in the study of rings with more than five
atoms [48], [39].

This result on five-membered rings suggests that there may be interesting gener-
alizations of our coordinatization theorem (section 4.1) where Λ is more general than
a Z-system, DC(Λ) has the usual definition, and where DP (Λ) is a semi-algebraic
set [12], [88].

6.6. Bridging Algorithm, Ring Closure Equations. In order to further illus-
trate the utility of the Z-system formalism in regard to geometric problems con-
cerning biomolecular shapes we will now give a systematic method for solving a
“bridging” or “ring closure” problem. This problem occurs in proteins at the site
of a disulfide bond and in DNA at the juncture between one base pair and the next.
Many algorithms for the solution of this problem have been studied and used in
practice ( [33], [83]). Z-systems allow an abstract formulation and solution of the
problem, which seems simpler than previous treatments.

Suppose Γ∗ is a Z-system on N describing a molecule within which two sites r =
(A1, A2, A3) and r′ = (A′

1, A
′
2, A

′
3) from Γ are defined. We think of these two sites as

being at the ends of two flexible “arms” of the molecule, and the bridging problem
is to position these two arms in such a manner that two additional atoms, named
A0 and A′

0, can be placed so as to form a bridge between A1 and A′
1. In addition

we require that the bond lengths l01, l00′ , l0′1′ > 0 of {A1, A0}, {A0, A
′
0}, {A′

0, A
′
1}

are given and the bond angles θ1, θ0, θ0′ , θ1′ ∈ (0, π) associated to the angles

{{A2, A1}, {A1, A0}} = α1,

{{A1, A0}, {A0, A
′
0}} = α0,

{{A0, A
′
0}, {A′

0, A
′
1}} = α′

0,
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{{A′
0, A

′
1}, {A′

1, A
′
2}} = α′

1

are also given (see figure 12).
According to the lemma of section 3.2 there is a path r = r0, r1, . . . , rm = r′

in the undirected site graph S(Γ) connecting r to r′. As was shown in sections
4.1 and 3.4 each of these edges is labeled with Arj−1,rj

∈ Gp which is of the
type Tk, for some 1 ≤ k ≤ 3, and depends on an internal coordinate. Let χ
stand for one or more parameters of which the internal coordinates appearing in
this list are known functions. Let M(χ) = Ar0,r1Ar1,r2 . . .Arm−1,rm

. The matrix
M(χ) is uniquely determined by the shape, and is independent of exactly which
path is used to connect r to r′ in the undirected site graph. It can be computed
numerically or symbolically by the computer program IMIMOL [22] in conjunction
with the computer algebra program Maple. So for each χ let R(χ) ∈ B(Γ) be
such that Er′(R(χ)) = Er(R(χ))M(χ) (our coordinatization theorem in section 4.1
guarantees the existence of R(χ)).

This bridging algorithm involves three steps.

(1) Find, as functions of χ and σ ∈ {1,−1}, the position RA0 of the atom {A0}
relative to the configuration R(χ) such that

‖RA0 − RA1(χ)‖ = l01,

RA0 − RA1(χ)
‖RA0 − RA1(χ)‖ · RA2(χ) − RA1(χ)

‖RA2(χ) − RA1(χ)‖ = cos θ1,

‖RA0 − RA′
1
(χ)‖ = l01′ ,

σ det
(

1 1 1 1
RA1(χ) RA2(χ) RA′

1
(χ) RA0

)
> 0

where l201′ = l200′ + l20′1′ − 2l00′ l0′1′ cos θ0′ .
(2) Find, as functions of χ and σ′ ∈ {1,−1}, the position RA′

0
of the atom

{A′
0} relative to the configuration R(χ) such that

‖RA′
0
− RA′

1
(χ)‖ = l0′1′ ,

RA′
0
− RA′

1
(χ)

‖RA′
0
− RA′

1
(χ)‖ · RA′

2
(χ) − RA′

1
(χ)

‖RA′
2
(χ) − RA′

1
(χ)‖ = cos θ1′ ,

‖RA′
0
− RA1(χ)‖ = l0′1,

σ′ det
(

1 1 1 1
RA′

1
(χ) RA′

2
(χ) RA1(χ) RA′

0

)
> 0

where l20′1 = l200′ + l201 − 2l00′ l01 cos θ0.
(3) For each pair (σ, σ′) ∈ {1,−1}2, find χ such that

‖RA0(χ, σ) − RA′
0
(χ, σ′)‖ = l00′ .

Steps (1) and (2) are completely dual to one another, and both steps entail a
restriction on χ so that there are two points of intersection between a sphere and
a circle. Step (3) can only be performed over those χ satisfying both restrictions.

To begin the analysis of step (1) note that the position of A′
1 is

RA′
1
(χ) = Er′(R(χ))

(
1
θ

)
= Er(R(χ))M(χ)

(
1
θ

)
= Er(R(χ))

(
1

x′
1(χ)

)
,
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where
(

1
x′

1(χ)

)
= M(χ)

(
1
θ

)
and x′

1 = (x′
1, y

′
1, z

′
1)

T . Let RA0 = Er(R(χ))
(

1
x0

)
, where

x0 = (x0, y0, z0)T . We wish to solve the system of equations

(l01 cos θ1 − x′
1(χ))2 + (y0 − y′

1(χ))2 + (z0 − z′1(χ))2 = l201′ , y2
0 + z2

0 = l201 sin2 θ1,

for y0, z0, where x0 = l01 cos θ1.

Lemma. If [y′
1(χ)]2 + [z′1(χ)]2 > 0 then the above system of equations has at least

one real solution 〈y0, z0〉 if and only if

|l201 sin2 θ1 + [y′
1(χ)]2 + [z′1(χ)]2 + (l01 cos θ1 − x′

1(χ))2 − l201′ |
≤ 2l01 sin θ1

√
[y′

1(χ)]2 + [z′1(χ)]2.

If these conditions hold then all the solutions are of the form

x0 = l01 cos θ1,

〈y0, z0〉 = 〈y′
1(χ), z′1(χ)〉 l01 sin θ1 cos α√

[y′
1(χ)]2 + [z′1(χ)]2

+ σ〈−z′1(χ), y′
1(χ)〉 l01 sin θ1 sinα√

[y′
1(χ)]2 + [z′1(χ)]2

,

where σ ∈ {+1,−1}, and α ∈ [0, π] is such that

cos α =
l201 sin2 θ1 + [y′

1(χ)]2 + [z′1(χ)]2 + (l01 cos θ1 − x′
1(χ))2 − l201′

2l01 sin θ1

√
[y′

1(χ)]2 + [z′1(χ)]2
.

Under the conditions of the above lemma we let x0(χ, σ) denote the above solu-
tion. Geometrically x0(χ, 1) and x0(χ,−1) represent the two points of intersection
between a sphere (centered at A′

1 and of radius l01′) and a circle of possible posi-
tions of A0 (arising from fixing the distance l01 and the angle θ1). The proof of this
lemma is elementary and will be omitted. Thus we have completed step (1).

Step (2) is completely analogous to step (1); we need only exchange the roles of
primed and unprimed objects. The position of A1 is

RA1(χ) = Er(R(χ))
(

1
θ

)
= Er′(R(χ))M(χ)−1

(
1
θ

)
= Er′(R(χ))

(
1

x1(χ)

)
,

where
(

1
x1(χ)

)
= M(χ)−1

(
1
θ

)
and x1 = (x1, y1, z1)T . Since M(χ) =

(
1 θT

x′
1(χ) A(χ)

)
,

where A(χ) ∈ SO (3), we have that M(χ)−1 =
(

1 θT

−A(χ)T x′
1(χ) A(χ)T

)
, and

hence x1(χ) = −A(χ)T x′
1(χ). Let RA′

0
= Er′(R(χ))

(
1
x′

0

)
, where x′

0 = (x′
0, y

′
0, z

′
0)

T .
Applying the analog of the above lemma we obtain solutions x′

0(χ, σ′) under certain
(additional) restrictions on χ.

For step (3) note that

RA′
0
(χ, σ′) = Er′(R(χ))

(
1

x′
0(χ, σ′)

)
= Er(R(χ))M(χ)

(
1

x′
0(χ, σ′)

)

= Er(R(χ))
(

1
x′

1(χ) + A(χ)x′
0(χ, σ′)

)
.
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Hence for each (σ, σ′) ∈ {+1,−1}2 the equation

l200′ = ‖RA0(χ, σ) − RA′
0
(χ, σ′)‖2 = ‖x0(χ, σ) − x′

1(χ) − A(χ)x′
0(χ, σ′)‖2

= l201 + l20′1′ + ‖x′
1(χ)‖2 − 2x0(χ, σ) · x′

1(χ) − 2x0(χ, σ) · A(χ)x′
0(χ, σ′)

+ 2x′
1(χ) · A(χ)x′

0(χ, σ′)

must be solved for χ also satisfying the pair of restrictions

|l201 sin2 θ1 + [y′
1(χ)]2 + [z′1(χ)]2 + (l01 cos θ1 − x′

1(χ))2 − l201′ |
≤ 2l01 sin θ1

√
[y′

1(χ)]2 + [z′1(χ)]2

|l20′1′ sin2 θ′1 + [y1(χ)]2 + [z1(χ)]2 + (l0′1′ cos θ′1 − x1(χ))2 − l20′1|
≤ 2l0′1′ sin θ′1

√
[y1(χ)]2 + [z1(χ)]2

as well as [y′
1(χ)]2 + [z′1(χ)]2 > 0 and [y1(χ)]2 + [z1(χ)]2 > 0.

Lemma. This method finds all solutions of the bridging problem in the parameter-
ized family R(χ) for all χ such that the simplices {RA1(χ),RA2(χ),RA′

1
(χ)} and

{RA′
1
(χ),RA′

2
(χ),RA1(χ)} are non-collinear.

Proof. Clearly any solution of the bridging problem in the parameterized family
R(χ) with the simplices {RA1 ,RA2 ,RA′

1
} and {RA′

1
,RA′

2
,RA1} being non-collinear

must satisfy [y′
1(χ)]2 + [z′1(χ)]2 > 0 and [y1(χ)]2 + [z1(χ)]2 > 0, and all the other

equations and inequalities in our method. Conversely, any χ obtained from our
method gives rise to a solution of the bridging problem: most of the constraints are
applied directly, but the angle constraints at α0 and α′

0 are imposed indirectly via
the distance constraints on l01′ and l0′1. ¤

6.7. Hexagons with two-fold symmetry. As an application of our bridging
algorithm and as a further illustration of the systematic procedure for solving geo-
metric problems made possible by the Z-system formalism we will study closed
six-sided polygons in R

3 with fixed bond lengths and bond angles. For simplicity
we will assume a two-fold rotational symmetry is present in these lengths and an-
gles, i.e. opposite sides are of equal length and opposite angles are of equal measure;
see figure 13. Well-known chemical examples of this situation are the molecules cy-
clohexane and cyclohexanedione ( [18], [19], [79]). We will derive a single equation
which will allow the classification of almost all the shapes of the hexagon. Some
of the solutions of this equation represent “flexible” hexagons, whereas the others
represent “rigid” hexagons. The existence of flexible hexagons in the generality
presented here is a theorem in the kinematics [68] of six-membered rings and of
octahedra first proved by Bricard [15] (see also [53], and especially [13]).

Consider a hexagon whose vertices have names from the set N ′ = {A0, A1, A2,
A′

0, A
′
1, A

′
2}, as in figure 13. Let N = {A0, A1, A2, A

′
0} and the Z-system Γ∗ on N

be defined as

Γ1 = {{A0, A1}, {A1, A2}, {A2, A
′
0}},

Γ2 = {{A0, A1, A2}, {A1, A2, A
′
0}},

Γ3
∗ = {[A0, A1, A2, A

′
0]}.

The (given) labels of the bonds in Γ1 are l0, l1, l2 respectively, and the (given)
labels of the angles in Γ2 are cos θ1, cos θ2 respectively. Let the (unknown) label of



54 DANIEL B. DIX

θ0

θ1

θ2

A′
0

A2A1

l0

l2

A0

θ2

θ1

θ0

l1

l0

l2

l1

A′
2 A′

1

Figure 13. A symmetric hexagon with fixed lengths l0, l1, l2 and
fixed angles θ0, θ1, θ2.

e∗ = [A0, A1, A2, A
′
0] in Γ3

∗ be eiϕ1 . ϕ1 plays the role of χ of the bridging algorithm.
Let sites r = (A0, A1, A2) and r′ = (A′

0, A2, A1) from the Z-system be given. A
path in the site graph S(Γ∗) from r to r′, together with the label from Gp of each
edge is given by the following.

(A0, A1, A2)

× T1(l0)

(A1, A0, A2)

× T2(cos θ1)

(A1, A2, A0)

↓ T3(eiϕ1)

(A1, A2, A
′
0)

× T1(l1)

(A2, A1, A
′
0)

× T2(cos θ2)

(A2, A
′
0, A1)

× T1(l2)

(A′
0, A2, A1)

Define M(ϕ1) = T1(l0)T2(cos θ1)T3(eiϕ1)T1(l1)T2(cos θ2)T1(l2). Matrix products
like these should be performed using computer algebra software, such as Maple. The
program IMIMOL allows the user to define two sites and export a Maple procedure
for computing this matrix product, since the path in the site graph connecting the
two sites can be generated algorithmically (see section 3.2), and edges of trees in
the Z-system can be labeled (in IMIMOL) with variable names (any string) as well
as with numbers [22].
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We will use a Z-system Γ′ on N ′ to describe shapes of the symmetric hexagon.
This Z-system is defined by

Γ′1 = Γ1 ∪ {{A0, A
′
2}, {A′

0, A
′
1}},

Γ′2 = Γ2 ∪ {{A′
2, A0, A1}, {A′

1, A
′
0, A2}},

Γ′3
∗ = Γ3

∗ ∪ {[A′
2, A0, A1, A2], [A1, A2, A

′
0, A

′
1]}.

The labeling of Γ′ will be an extension of that of Γ. The labels of the two new bonds
are l2, l0 respectively, and the labels of the two new angles are both cos θ0. The
(unknown) labels of the two new wedges will be denoted by eiϕ0 and eiϕ2 respec-
tively. By a “configuration of the symmetric hexagon” we will mean a configuration
R : N ′ → R

3 such that η̂(GaR) is the above labeling of the Z-system Γ′ (containing
three unknown variables ϕ0, ϕ1, ϕ2) such that the distance between A′

1 and A′
2 is

l1 and the angles at A′
1 and A′

2 are θ1 and θ2 respectively, as indicated in figure 13.
If we apply our three step bridging method we obtain the following.

Theorem. Suppose l0, l1, l2 > 0 and 0 < θ0, θ1, θ2 < π. Define

a0 : = l21 + l22 − 2l1l2 cos θ2

a1 : = l20 + l22 − 2l0l2 cos θ0

a2 : = l20 + l21 − 2l0l1 cos θ1

b0 : = cos θ1 cos θ2 − cos θ0

b1 : = cos θ0 cos θ2 − cos θ1

b2 : = cos θ0 cos θ1 − cos θ2

c : = a1b0 + l0l2 sin2 θ0 + l1(l2b1 + l0b2)

=
(l22 − a2)(l20 − a0) + (a1 − l21)[a1 + (l1 − 2l0 cos θ1)(l1 − 2l2 cos θ2)]

4l0l2

d : = l21l
2
2 sin2 θ2 + l20l

2
2 sin2 θ0 + l20l

2
1 sin2 θ1 + 2l0l1l2[l0b2 + l1b0 + l2b1]

= 1
4 (a0 + a1 + a2)2 − 1

2 (a2
0 + a2

1 + a2
2)

Y : = sin θ1 sin θ2 cos ϕ1

K : = a0 − (l1 cos θ1 − l2 cos θ1 cos θ2 + l2Y )2

K ′ : = a2 − (l1 cos θ2 − l0 cos θ1 cos θ2 + l0Y )2.

Suppose d ≥ 0 and ϕ1 satisfies K > 0, K ′ > 0, and

c − sin θ0

√
d

a1 sin θ1 sin θ2
≤ cos ϕ1 ≤ c + sin θ0

√
d

a1 sin θ1 sin θ2
.

Let (σ, σ′) ∈ {+1,−1}2. Suppose there exists a configuration R : N ′ → R
3 of the

symmetric hexagon such that the sets {RA0 ,RA1 ,RA′
0
} and {RA′

0
,RA2 ,RA0} are

not collinear and

σ det
(

1 1 1 1
RA0 RA1 RA′

0
RA′

2

)
≥ 0, σ′ det

(
1 1 1 1

RA′
0

RA2 RA0 RA′
1

)
≥ 0.

Then one of the following conditions holds.
(1) 1 + σσ′ = 0.
(2) Y − b0 = 0, i.e. cos ϕ1 = b0

sin θ1 sin θ2
.

(3) a1 − l21 = 0 and (l22 − a2)(l20 − a0) = 0.
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(4) a1 6= l21 and (a1 − l21)(Y + b0) − 2c = 0, i.e. cos ϕ1 = 2c−b0(a1−l21)

(a1−l21) sin θ1 sin θ2
.

In any of these cases ϕ0 and ϕ2 are explicit functions of ϕ1 as follows:

ϕ0 = arg
[
l1 sin θ1 − l2(sin θ1 cos θ2 + cos θ1 sin θ2 cos ϕ1) − il2 sin θ2 sin ϕ1√

K

]
− σα

ϕ2 = arg
[
l1 sin θ2 − l0(cos θ1 sin θ2 + sin θ1 cos θ2 cos ϕ1) − il0 sin θ1 sin ϕ1√

K ′

]
− σ′α′

where α, α′ ∈ [0, π] are such that

cos α =
(l2 cos θ0 − l0)(Y − b0) + l1b2 + l2 sin2 θ0

sin θ0

√
K

cos α′ =
(l0 cos θ0 − l2)(Y − b0) + l1b1 + l0 sin2 θ0

sin θ0

√
K ′ .

Proof. We always have K ≥ 0, and K = 0 if and only if {RA0 ,RA1 ,RA′
0
} is

collinear. A similar assertion holds for K ′ and {RA′
0
,RA2 ,RA0}. Because of the

two-fold symmetry of the hexagon the two inequality restrictions required in the
bridging algorithm coincide with the restriction on cosφ1 in the statement of the
theorem. This is because the quantities c, d, a1, etc. involved in the upper and
lower limits for cosφ1 are invariant under the replacements l0 7→ l2, l1 7→ l1, l2 7→
l0, θ0 7→ θ0, θ1 7→ θ2, θ2 7→ θ1, which correspond to switching the roles of primed
and unprimed variables in the bridging algorithm.

The main equation to be solved for φ1 (step (3) of the bridging algorithm)
involves both the sine and cosine of the angles α and α′. Especially sinα and sinα′

are complicated functions of φ1. A crucial identity which allows us to simplify the
main equation is: K sin2 α = K ′ sin2 α′. This verification, as well as most of the
others of this proof, are best done using a computer algebra system like Maple.
Define Q = K sin2 α sin2 θ0 and Y = sin θ1 sin θ2 cos φ1. It follows that

Q = −a1Y
2 + 2cY − 2b0c + (a1 − l21)b

2
0 + l21 sin2 θ1 sin2 θ2

= −a1

(
Y − c − sin θ0

√
d

a1

) (
Y − c + sin θ0

√
d

a1

)
.

The inequality restriction on cosφ1, or better on Y , is exactly that Q ≥ 0. The main
equation to be solved can be written as C1(Y )

√
Q = C2(Y ), where C1(Y ), C2(Y )

are polynomials in Y with coefficients which are polynomials in l0, l1, l2, σ, σ′, and
the sines and cosines of θ0, θ1, θ2. We must square both sides of this equation,
keeping in mind the possibility of thereby introducing extraneous solutions. What
results is a polynomial in Y of degree 8, and we desire its roots. Remarkably it
factors (up to trivial non-vanishing quantities) as follows:

(1 + σσ′)(Y − b0)[(a1 − l21)(Y + b0) − 2c]QKK ′ = 0.

(This must be checked using Maple; the expression has over 24000 terms.) Alter-
natives (1) and (2) in the statement of the theorem are obviously arising from the
first two factors. Alternative (3) is the only way the third factor can vanish for all
Y . Alternative (4) is the only Y dependent way the third factor can vanish. When
Q = 0 we have sinα = 0 and sinα′ = 0 (and hence the two determinants in the
statement of the theorem also vanish) so the values of (σ, σ′) do not matter, and
the solutions are already included in alternative (1). The last two factors K,K ′
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are positive by assumption. Hence the four listed alternatives exhaust all possible
solutions. ¤

Several remarks about this theorem are in order. First of all in the classical case
of cyclohexane l0 = l1 = l2 = 1, θ0 = θ1 = θ2 = cos−1(− 1

3 ), the parameterized
curves {(φ0(φ1, σ), φ1, φ2(φ1, σ

′)) | |φ1| ≤ cos−1( 10−3
√

6
8 )} for (σ, σ′) = (1,−1) or

(−1, 1) (i.e. alternative (1)) fit together to form a smooth closed curve correspond-
ing to the well-known one-parameter “twist/boat” family of solutions. Alternative
(2) yields either (φ1, σ, σ′) = (π/3, 1, 1) or (−π/3,−1,−1), which are the well-known
rigid “chair” solutions. The other two possibilities (π/3,−1,−1) or (−π/3, 1, 1) are
extraneous. Alternative (3) does not occur, and the value for cosφ1 in alternative
(4) is out of the allowed range. Hence the classically known solutions are the only
solutions in this case.

Alternative (1) corresponds to Bricard’s first family of flexible octahedra [15],
although we do not assert that any (φ1, σ, σ′) satisfying alternative (1) is a (non-
extraneous) solution. We however have no example where a (φ1, σ, σ′) satisfying
alternative (1) fails to be a solution. Alternative (3) corresponds to the intersection
of Bricard’s first and second families of flexible octahedra [15], and when σσ′ = 1
yields a distinct family of solutions from alternative (1), where σσ′ = −1. An
example where alternative (3) solutions occur is l0 = 1, l1 =

√
2, l2 = 1, θ0 = θ1 =

π/2, θ2 = π/4. When (σ, σ′) = (1, 1) the φ1 interval [−π, 0] gives actual solutions
whereas the interval (0, π) gives extraneous solutions, except at φ1 = π/2 which is an
alternative (2) rigid solution. When (σ, σ′) = (−1,−1) the φ1 interval (−π, 0) gives
extraneous solutions except at φ1 = −π/2, which is an alternative (2) rigid solution;
the φ1 interval [0, π] gives actual solutions. These two parameterized curves of
actual solutions fit together to form a smooth closed curve in (φ0, φ1, φ2) space.
Alternative (1) yields two additional closed curves of solutions. One is given by
(σ, σ′) = (1,−1), φ1 ∈ [−π, 0] together with (σ, σ′) = (−1, 1), φ1 ∈ [0, π]. The other
is given by (σ, σ′) = (−1, 1), φ1 ∈ [−π, 0] together with (σ, σ′) = (1,−1), φ1 ∈ [0, π].
All three closed curves pass through the two points (φ0, φ1, φ2) = (π, 0, 0), (0, π, 0),
where Q = 0. Both K and K ′ remain positive on all three curves. Alternative (4)
is impossible in this example.

Another interesting example is l0 = l1 = l2 = 1, θ0 = π/4, θ1 = θ2 = π/2.
Alternative (1) gives rise to two disjoint smooth closed curves of actual solu-
tions in (φ0, φ1, φ2) space, corresponding to the two possibilities (σ, σ′) = (1,−1)
or (−1, 1). Alternative (2) solutions are (φ0, φ1, φ2) = (π/2,−3π/4, π/2) (when
(σ, σ′) = (−1,−1)) and (φ0, φ1, φ2) = (−π/2, 3π/4,−π/2) (when (σ, σ′) = (1, 1)),
the other two possibilities being extraneous. Alternative (3) is impossible, but alter-
native (4) gives two additional rigid solutions: (φ0, φ1, φ2) = (34.06◦, 72.97◦, 34.06◦)
(when (σ, σ′) = (−1,−1)) and (φ0, φ1, φ2) = (−34.06◦,−72.97◦,−34.06◦) (when
(σ, σ′) = (1, 1)), the other two possibilities being extraneous. The existence of
rigid solutions arising from alternative (4) seems to have been missed in [13], and
they in fact yield counterexamples to several of the assertions in that paper. For
example it is claimed that for rigid solutions the three lines determined by the
pairs {RA0 ,RA′

0
}, {RA1 ,RA′

1
}, and {RA2 ,RA′

2
} all intersect in a single point of

space. In the above example these three lines behave as claimed for the alterna-
tive (2) solutions but the three lines are distinct and parallel in the alternative (4)
solutions.
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It is easy to show that Q = l21[sin
2 θ1 sin2 θ2 − Y 2] if and only if we are in

alternative (2) or in alternative (4). Thus in either of these cases we have
√

Q =
l1 sin θ1 sin θ2| sin φ1|. One can verify (again using Maple) that (RA′

0
− RA0) ×

(RA′
2
− RA2) = θ under the assumption that the pose at the site (A0, A1, A2) is

(θ, ê1, ê2, ê3), and for a solution from alternative (4) with σ| sin φ1| = − sin φ1. By
symmetry we also have (RA′

0
− RA0) × (RA′

1
− RA1) = θ. Thus alternative (4)

solutions of this type always have the three lines passing through pairs of opposite
vertices being parallel. For this reason we could call them hexagons on a triangular
cylinder. Such hexagons can have one crossing (i.e. a pair of opposite sides intersect)
or three crossings. The example in the previous paragraph has one crossing. An
example with three crossings is l0 = l1 = l2 = 1, θ0 = θ1 = θ2 = π/4, (φ0, φ1, φ2) =
(40.768◦,−40.768◦, 40.768◦) when (σ, σ′) = (1, 1). It is possible to make arbitrarily
small perturbations of this last example (into the family of hexagons which have a
three-fold symmetry instead of the two-fold symmetric hexagons we have studied
in this section) which form trefoil knots [79].

Models for all the examples discussed in this section can be constructed using the
set of building toys called “K’nex”. The bond angles occurring in most of these ex-
amples are too small to be chemically relevant. Nevertheless we have demonstrated
the utility of the Z-system formalism introduced in this paper when coupled with
the power of computer algebra software such as Maple.
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èmatique, 43, 173–198, 1997.

[40] T.F. Havel, I. Najfeld, Applications of geometric algebra to the theory of molecular confor-
mation 2. The local deformation problem, Theochem- J. Mol. Struc., 336, 175–189, 1995.

[41] S.Q. He, H.A. Scheraga, Macromolecular conformational dynamics in torsional angle space,
J. Chem. Phys, 108, 271–286, 1998.

[42] W.J. Hehre, L. Radom, P.R. v. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory,
Wiley, New York, 1986.

[43] IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and Symbols for the
Description of the Conformation of Polypeptide Chains, Biochemistry, 9, 3471–3479, 1970.

[44] IUPAC-IUB Joint Commission on Biochemical Nomenclature, Symbols for the Specifying the
Conformation of Polysaccharide Chains, Eur. J. Biochem., 131, 5–7, 1983.

[45] IUPAC-IUB Joint Commission on Biochemical Nomenclature, Abbreviations and Symbols for
the Description of Conformations of Polynucleotide Chains, Eur. J. Biochem., 131, 9–15,
1983.

[46] D.J. Jacobs, L.A. Kuhn, M.F. Thorpe, Flexible and Rigid Regions in Proteins, in Rigidity
Theory and Applications, [85], 357–384, 1999.

[47] J.H. Jensen, K.K. Baldridge, M.S. Gordon, Uncatalyzed Peptide Bond Formation in the Gas
Phase, J. Phys. Chem., 96, 8340–8351, 1992.

[48] M. Kapovich, J.J. Millson, The symplectic geometry of polygons in Euclidean space, Journal
of Differential Geometry, 44, 479–513, 1996.

[49] H. Katayama, Building Geometric Models of Biological Molecules, Master’s thesis in mathe-
matics, University of South Carolina, 2003. c.f. http://www.math.sc.edu/˜dix/katayama.

[50] K. Kawakubo, The Theory of Transformation Groups, Oxford University Press, Oxford,
1991.

[51] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Volume I, John Wiley and
Sons, New York, 1996.

[52] N.P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer,
New York, 1998.

[53] H.A. Lauwerier, A Note on Flexible Hexagons, Nederl. Akad. Wetensch. Proc. Ser. A, 69,
330–334, 1966.

[54] A. R. Leach,, Molecular Modelling: Principles and Applications, Second edition, Prentice
Hall, Harlow, 2001.

[55] H.P.M. de Leeuw, C.A.G. Haasnoot, C. Altona, Empirical Correlations Between Conforma-
tional Parameters in β-D-Furanoside Fragments Derived from a Statistical Survey of Crystal
Structures of Nucleic Acid Constituents, Israel J. Chem., 20, 108–126, 1980.

[56] S.H. Lee, K. Palmo, S. Krimm, A new formalism for molecular dynamics in internal coordi-
nates, Chem. Phys., 265, 63–85, 2001.

[57] M. Levitt, A. Warshel, Extreme Conformational Flexibility of the Furanose Ring in DNA
and RNA, J. Am. Chem. Soc., 100, no. 9, 2607–2613, 1978.

[58] R. Littlejohn, M. Reinsch, Gauge Fields in the Separation of Rotations and Internal Motions
in the n-Body Problem, Reviews of Modern Physics, 69, no. 1, 213–275, 1997.

[59] H. Lodish, D. Baltimore, A. Berk, S.L. Zipursky, P. Matsudaira, J. Darnell, Molecular Cell
Biology, Scientific American Books, Inc., New York, 1995.

[60] A.D. MacKerell Jr., N. Foloppe, All-Atom Empirical Force Field for Nucleic Acids, J.
Computational Chem., 21, 86–120, 2000. See also the website:
http://www.pharmacy.umaryland.edu/˜alex/research.html

[61] D. Manocha, Y. Zhu, W. Wright, Conformational analysis of molecular chains using nano-
kinematics, Computer Applications in the Biosciences, 11, no. 1, 71–86, 1995.

[62] J.L. Markley, A. Bax, Y. Arata, C.W. Hilbers, R. Kaptein, B.D. Sykes, P.E. Wright, K.
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