Speaker: Reid Harris (USC)

Title: Hausdorff Measure and Convex Functions

Abstract: On a metric space, we can define an outer measure \langle^{α} by

$$\langle^{\alpha}(E) = \lim_{\delta \to 0} \left(\inf \left\{ \sum_{i} (\operatorname{diam} A_{i})^{\alpha} : E \subset \bigcup_{i} A_{i}, \operatorname{diam} A_{i} < \delta \right\} \right).$$

This measure is a generalization of Lebesgue measure \mathcal{L} , in the sense that it coincides with \mathcal{L} on Borel subsets of \mathbb{R}^n . Given a convex subset C of \mathbb{R}^n , we can find a decomposition of C into a union $C_0 \cup \ldots C_n$ where each C_i , i < n has zero Hausdorff measure in analogy with the decomposition of polytopes into it's faces. In order to do this, the notion of the subdifferential of a convex function needs to be outlined.