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1 INTRODUCTION AND STATEMENT OF RESULTS

Here, we find for any integer ¢ > 1, infinitely many congruences for the 2¢-core partition
functions (mod 2). One can use Ferrers-Young diagrams to investigate p(n), the partition
function. If A = Ay > --- > X is a partition of n, then the Ferrers-Young diagram of A is
the following staircase arrangement of nodes in k rows:

e o A1 nodes
Ao nodes

e ... o Ar nodes

Label the nodes (i, j), as if they were matrix entries. We associate a geometric object called
a hook to each node. The hook associated to the (i, 7) node consists of the nodes directly to
the right of the specified node, the nodes directly below it, and the node itself. If /\; denotes
the number of nodes in column j, the hook number H (i, j) of the (4, ) node is defined by:

H(i, j) ::)\i+)\;-—z'—j+1
We now define a t-core partition of a positive integer n.

Definition. Ift is a positive integer, then A is a t-core partition if none of the hook numbers
associated to the Ferrers-Young diagram of A is a multiple of t. We denote the number of
t-core partitions of n by az(n).

Example. Let A be the partition of 8 defined by A = 4,3,1. Then the Ferrers-Young

diagram of A is:
3 4

o 0 I

\)

—
e o o —
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The hook numbers are: H(1,1) =6, H(1,2) =4, H(1,3) = 3, H(1,4) = 1, H(2,1) = 4,
H(2,2) =2, H(2,3) =1, and H(3,1) = 1. Hence, it t ¢ {1,2,3,4,6}, then A is a t-core
partition of 8.

We are interested in 2%-core partition functions in light of some recent conjectures and
theorems of Hirschhorn, Kolitsch, and Sellers concerning the parity of these functions in
certain arithmetic progressions. One such conjecture is the following:

Conjecture. (Hirschhorn, Sellers [2]) If t and n are positive integers with t > 2, then for
k=0,2,

(32t_1_1(24n + 8k 4 7) — 41
Aot

3 ) =0 (mod 2).

This conjecture has been proved by Hirschhorn, Kolitsch, and Sellers for ¢t = 2, 3, 4. In our
investigation, we observe that such congruences for 2!-core partition functions (mod 2) can
be understood by analyzing the action of the Hecke operators T},, where p is an odd prime,
on Sy+1_4 (mod 2), the space of cusp forms of weight 4'*! — 4 with integer coefficients
on SLy(Z) (mod 2). Using this observation, we prove the following two general theorems
which hold for all ¢. We then calculate some examples.

Theorem 1.1. For any positive integer t > 1, if p1,...,pat_1 are distinct odd primes, then
3

preepar_s N — 252
Aot 38 =0 (mod 2)

for every N with gcd(N,[[p:;) = 1.

Theorem 1.2. If p is an odd prime, then

220771 4'—1
N — 41
agt (p S 3 ) =0 (mod 2),

whenever gcd(N, p) = 1, where

ifp=1 (mod 8),t >3
ifp=1 (mod 8),t=2,0or p=3 (mod 8),t>2, orp=>5,7 (mod 8),¢t >3
ifp=5,7 (mod 8),t =2

for any odd prime p, any positive integer ¢.

N W
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Remark. When p =3,¢t =6, and £k = 0 or 2, Theorem 1.2 yields

3511 (24 8k +7)— 1365
a64< ( n+8+) )EO (mod 2),

whereas the Hirschhorn-Sellers Conjecture yields
aes (3°7(24n + 8k +7) — 1365) =0 (mod 2).

Hence, while Theorem 1.2 does not give the full Hirschhorn-Sellers Conjecture, it gives
congruences very similar to those appearing in the Conjecture for every positive integer ¢
and every odd prime p, not only p = 3.

2. THE PROOF OF THEOREMS 1.1 AND 1.2.

We first establish the relationship between 2¢-core partition functions and modular forms.
The two modular forms of interest to us are Dedekind’s eta function 7(z), defined by the

infinite product
o0
g | | (1-¢")

where g := e*™*#, and Ramanujan’s delta function, A(z), the unique normalized weight 12
cusp form on SLy(Z), given by
A(z) = n*(2).

In what follows, we denote by S the space of cusp forms of weight £ with integer coefficients
on SLy(Z). Moreover, let S; (mod 2) denote the space of modular forms in Sy with integer
coefficients, reduced modulo 2. From [1], the generating function for a;(n) is given by the
following infinite product:

1) Zat n)" = H %

From the definitions of n(z) and A(z), it follows that:

27wz

t_1

) = A" (2) (mod 2).

2) S e (m)g**

t_ t_
Let Y7 , Aat(n)g™ be the Fourier expansion of A%(z). We observe that A4T1(z) €
Sut+1_4. Therefore, to prove our results about the parity of 2%-core partition functions in

t_
certain arithmetic progressions, we investigate the modular forms AT (z) and the spaces
Syt+1_4 (mod 2). In particular, we use two properties of Syt+1_4 (mod 2) to obtain congru-
ences for Ast(n) (mod 2). These properties are contained in the following theorems.
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Theorem 2.1. If j is a positive integer, then {A"(2)Y_, is a basis for Si2; (mod 2).

Proof. 1t is well known that {E12;_12-(2) A" () J_, is a basis for S12j, where, for a positive
even integer m, F,,(z) is the Eisenstein series of weight m. Furthermore, for any such m, it
is also known that E,,(z) =1 (mod 2). The result follows.

O

Next, we analyze the action of the Hecke operators T}, on Sy (mod 2). The Hecke oper-
ators are linear transformations on Sy defined as follows: If p is a prime, and

f(z) =) a(n)q" € Sk

then

)1 T,=3 (aum) 1" (?)) T < S,

n=0 p

where a(%) =0if % is not an integer. Note that if p is an odd prime,

3 111,23 (o +a () o moa2)

n=0

From [5], the action of the Hecke operators on S; (mod 2) has the following useful property.
It is the primary tool used to prove Theorems 1.1 and 1.2.

Theorem 2.2. If j is a positive integer, then there exists h(j), a positive integer, such that
for any collection of h(j) odd primes, pi,...,pp(;), and for any f(z) € S;, the following
vdentity holds:

f(2) | Ty, -+ | Ty =0 (mod 2).

By computing an upper bound on the number h(12j), where j = %, we can apply

t_
Theorem 2.2 to the modular form A5 (z), and thereby obtain congruences (mod 2) for
its coefficients, Ast(n). We obtain such an upper bound in the following two corollaries.

Corollary 2.3. If j is a positive integer, and p is an odd prime, then

(4) A(z) | T, = Z a;A*(z) (mod 2),

where a; =0 (mod 2).
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Proof. By Theorem 2.1, we have that A7 (z) | T, = g:l a;A*(z) (mod 2). We now suppose
that a; = 1 (mod 2). Letting A7(z) | (T,)® denote the Ith iteration of T, applied to
A¥(z), we find, by induction, that for any positive integer I, Ad(2) | (T,)® = S27_, b;A¥(2)
(mod 2), where b; = 1 (mod 2). That is, in this situation, A%(z) | (T,)® is not equivalent
to 0 (mod 2) for every I. But by Theorem 2.2, there exists h(125), a positive integer such
that A7(2) | (T,)*(12)) = 0 (mod 2), a contradiction.

0
Our upper bound on the number A(125) now follows.

Corollary 2.4. An upper bound on the number of Hecke operators T, where p is an odd
prime, needed to annhilate an arbitrary f(z) € S12; (mod 2) is j. (That is, h(125) < j).

Proof. An arbitrary f(z) € Siz; (mod 2) is a linear combination of basis elements from
{A"(2)}_; (mod 2). By Corollary 2.3, if p; is an odd prime, f(z) | T, is a linear combi-
nation of elements from {A”(z)}Z! (mod 2). Proceeding inductively, we find that for any
j odd primes, f(z) | Tp, -+ +| Tp; = 0 (mod 2), showing that h(125) < j.

(]

t_
We now prove Theorems 1.1 and 1.2. Observing that AT (z) € Syt+1_4, it follows by
Corollary 2.4 that for any p1,...,pst_,, odd primes, we have
3

(5) (Z Azt(n)q”) | Tpy -+ TP4t3_71 = Zth(n)q" =0 (mod 2).

Hence, By:(n) = 0 (mod 2). By placing constraints on the collection of primes and the
number n, we obtain simple formulas for the coefficients Bat(n) in terms of the coefficients
Asi(n), which we translate into the congruences for the 2!-core partition functions stated
by Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Letting pq, ..., pat_, be distinct odd primes, if gecd(py -« - pat_1,n) =1,
3 3
the action of T}, yields nth coefficient

n

Age(p1n) + Age (p—1> = Ayt (p1n)

since p1 t n. Proceeding inductively, we find that the nth coefficient of
(S Aot (M)q™) | Ty -+ | Ty, i

3

Byi(n) = Agt(p1 - p%n) =0 (mod 2)
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We now recall that the coefficients A,¢ and aq: are related:

Z Ast(n)q" = A4t3_1 (2) = Z agt (n)q8n+(4t3—71) (mod 2).

From this, we deduce the theorem.
O

Proof of Theorem 1.2. We prove the case of p = 3 (mod 8). The other cases have similar
proofs. It is well known that

(6) A(z) = iq(2”+1)2 (mod 2).

From this, it follows that if A7(z) = Y>7 a;(n)¢" (mod 2), then a;j(n) =0 (mod 2) unless
n = j (mod 8), in which case a;(n) = 0 or 1 (mod 2). Letting 4t—3_1 = 8k + 5, we bound
the number of iterations of T), needed to annhilate A3%¥5(2) =37 = Ay (n)g" (mod 2). If
ASKFS(2) | (Tp) D = 3°°°  bi(n)g™ (mod 2), by the above argument, we find that b;(n) =
Azt (pn) + Az (%) =0 (mod 2), unless n =7 (mod 8), in which case b; =0 or 1 (mod 2).
Hence, by Corollary 2.3, A%%+5(2) | T, is congruent (mod 2) to a linear combination of
powers of A(z), where each power is congruent to 7 (mod 8), the largest of which is at most
8(k — 1) + 7. Repeating this argument, we can show that A8%+5(2) | (T;,)® is congruent

(mod 2) to a linear combination of powers of A(z), each congruent to 5 (mod 8) and not
exceeding 8(k — 1) + 5. By induction, we find that A%%+5(2) | (T,)?**+Y) =0 (mod 2), and
hence, that

(7) A @) ) =0 (mod 2).

One can also show, using induction, that for any positive integer j,
(320 s Age(n)g™) | (T,)®~Y (mod 2) has nth coefficient Ay (p? ~1n) if ged(n,p) = 1.

In this case, if j is a positive integer and j > 2t — 3, then 29 — 1 > 4“31_1, so that

(3222, Aze(n)g™) | (T)@* =D = 0 (mod 2). Hence, Ay (p®>" "n) = 0 (mod 2). As in
Theorem 1.1, we translate this into a statement about 2t-core partition functions to prove
the theorem.

g
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3. SPECIFIC EXAMPLES

To prove our general congruences, we derived upper bounds for the number of Hecke
operators needed to annhilate A (z) (mod 2). These upper bounds are not always sharp.
In our first two examples, we exhibit collections of significantly fewer distinct odd primes
than %, the upper bound used in Theorem 1.1.

Example 3.1: If t = 3, the upper bound used in Theorem 1.1 is 21. However, by choosing
primes 3,5,7, we find that (3.2, As(n)¢") | T3 | T5 | Tr = 0 (mod 2). Furthermore, if
ged(105,n) = 1, we have:

(8) ag(105n + 63) =0 (mod 2).

Example 3.2: If t = 4, the upper bound used in Theorem 1.1 is 85, but we find three
primes, by choosing 3,5,17, such that (3 .- Ais(n)g") | T3 | Ts | Tz = 0 (mod 2). If
ged(255,n) = 1, we have:

(9) a16(255n +85) =0 (mod 2).

In examples 3.3-3.5, we consider the iterated action of a single Hecke operator associated
to a prime, p. We compare our calculated examples to the congruences given by Theorem
1.2.

Example 3.3: If p = 5, we find that (3°0 , As(n)g"™) | (T5)® = 0 (mod 2). Since the
coefficients of the resulting modular form contain multiple summands, we use that the nth
coefficient of (3°°7  As(n)g™) | (T5)(M is Ag(57n) if ged(5,n) = 1. Then for every positive
integer n, and for every k € {0, ...,4}, k # 3:

(10)

. (57(4On+ 8k + 1) — 21
8
8

) =0 (mod 2),

which coincides with the congruence obtained by applying Theorem 1.2.

Example 3.4: If p = 7, we have that (300, As(n)g") | (T7)® =0 (mod 2),
and (Y02 o A1s(n)g™) | (T7)™® =0 (mod 2). Reasoning as in the previous example, we use
that the nth coefficient of (3 oo, Ag(n)g™) | (T7)®) is Ag(7%n), and of

(322, Ass(n)g™) | (T7)(D, is A16(77n). Hence, for every positive integer n, and for every
k € {0,...,6}, k # 4 it follows that:

(73(56n +8k+3) —21
as

(11) < ) =0 (mod 2),



8 MATTHEW BOYLAN

and

(12)

(77(56n +8k+3) — 85
16

g ) =0 (mod 2),

whereas the powers of 7 in the moduli of the congruences obtained by applying Theorem
1.2 in these cases are 7 and 31 respectively.

Example 3.5: If p = 11, we see that (300, Ag(n)g™) | (T11)® = 0 (mod 2) and so, for
k€ {0,...,10}, k # 6:

113(88n + 8k + 7) — 21
8

(13) as ( ) =0 (mod 2).

The power of 11 in the modulus of the congruence obtained by applying Theorem 1.2 in this
case is 7.
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