ARITHMETIC PROPERTIES OF THE PARTITION FUNCTION

SCOTT AHLGREN AND MATTHEW BOYLAN

1. INTRODUCTION AND STATEMENT OF RESULTS

Let p(n) denote the number of partitions of the positive integer n; p(n) is the number of
representations of n as a non-increasing sequence of positive integers (by convention, we agree
that p(0) = 1 and that p(n) = 0 if n < 0). The study of the arithmetic properties of p(n) has
a long and rich history; see, for example, the works of Andrews, Atkin, Dyson, Garvan, Kim,
Stanton, and Swinnerton-Dyer [An, An-G, Atl, At-SwD, D, G-K-S]. These works have their
origins in the groundbreaking observations of Ramanujan [R1, R2, R3, R4]. In Ramanujan’s
own words [R3],

I have proved a number of arithmetical properties of p(n) ... in particular that
p(bn+4) =0 (mod 5), (1.1)
and
p(Tn+5)=0 (mod7).... (1.2)

I have since found another method which enables me to prove all of these properties
and a variety of others, of which the most striking is

p(1ln+6) =0 (mod 11). (1.3)

There are corresponding properties in which the moduli are powers of 5, 7, or 11.
. It appears that there are no equally simple properties for any moduli involving
primes other than these three.

Recently (see [A], [O], [A-O]) it has been shown that in one sense, congruences like Ra-
manujan’s original three examples are quite common. After these works, for example, it is now
known that if M is any integer coprime to 6, then there exist integers a and b such that

plan+b)=0 (mod M) for all n.
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However, these congruences are much more complicated than (1.1)—(1.3); for example, one of
the simplest congruences modulo 13 (which was first recorded by Atkin and O’Brien [At-Ob))
is

p(59*-13n 4+ 111247) =0 (mod 13).

In general, if ¢ is a prime, then by a Ramanujan congruence modulo £ we will mean a

congruence of the form
p(ln+pPB)=0 (mod¥) forall n

with some fixed 8 € Z.
A natural quantification of Ramanujan’s statement is the assertion that the congruences
(1.1)-(1.3) are the only ones of their kind. In other words,

Conjecture 1. Suppose that £ is prime. If there is a Ramanujan congruence modulo £, then
the congruence must be one of (1.1), (1.2), or (1.3).

Here we prove
Theorem 1. Conjecture 1 is true.

We also consider another classical conjecture regarding the arithmetic of the partition func-
tion. In particular, we recall the conjecture of Newman [N1].

Conjecture 2. (Newman’s Conjecture). If M is a positive integer, then for every integer
0 <7 < M there are infinitely many non-negative integers n such that p(n) =r (mod M).

Atkin, Kolberg, Newman, and Klgve [At2, Ko, N1, Kl] proved the conjecture for M = 2, 5,
7,13 17, 19, 29, and 31. In work of the first author [A] and Ono [O], conditions are obtained
which (presumably) allow one to check the proof of the conjecture for any M coprime to 6. For
prime values of M these conditions were recently simplified by Bruinier and Ono [B-O]. This
allowed them to verify the truth of Newman’s Conjecture for every prime M < 2 x 10% with
the possible exception of M = 3.

Combining a result of Bruinier and Ono [B-O] (see the end of Section 3 for a precise statement
of the relevant theorem) with Theorem 1 yields the following as an immediate corollary.

Corollary 2. Newman’s Conjecture is true for every prime modulus M with the possible ez-
ception of M = 3. Moreover, if £ > 5 is prime, then we have

{\/)_(/logX if1<r<¢-—1,

#{0<n<X : pn)=r (modl)} >, )
ifr=0.

The proof of Theorem 1 depends on a careful study of the filtration of certain modular forms
related to the partition function (this is the minimal weight at which the reductions of these
forms can be realized as modular forms modulo #; see Section 2 for details). In the second part
of the paper we investigate a closely related topic; for every prime £ > 5 and every j7 > 1 we
determine the minimal weight k£ at which a natural generating function for partitions can be
found as a modular form of weight k¥ modulo 7. To state the result requires some notation.
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If £ > 5 is prime and j > 1 is an integer, then we define 1 < 3, ; < #7 — 1 as the unique
integer for which

24fy ;=1 (mod #).

Further, we define the even integer k, ; by
i gy 1 (L%ﬁ—l + 1) = WHDEY g9 (|g/24] +1)  if j is odd,
0,j =

’ 10— 1) — % (24/823;—1 + 1) =71 —1)-12 if j is even.

If k£ is an even integer, then we denote by M}, the space of holomorphic modular forms of weight
k for SL2(Z). We will prove the following.

Theorem 3. If ¢ > 5 is prime and j is a positive integer, then there exists a modular form

Fy(z) € My, ; NZ[[q]] such that

S pln+ B e = [[A—a") " F  Fus(z) (mod £9). (1.4)

n=0 n=1

Remark 1. We recall the fact (see, for example, Théoreme 1 of [S]) that if f € My N Z][[q]],
g € My NZ[[q]] have f = g (mod #) and f # 0 (mod £), then k = k' (mod ##~1(£ — 1)).
Therefore, we see that the weight k; ; guaranteed by Theorem 3 is minimal in the sense that it
can be reduced only in the case when Y7 p(#in + B¢ ;)¢™ =0 (mod ¥).

Remark 2. We also remark that k,; < 0 if and only if j = 1 and £ = 5,7, or 11. Therefore
(1.1), (1.2), and (1.3) follow immediately from Theorem 3.

Remark 3. In the case when j = 1, this result has been obtained independently by K. S. Chua
and H. H. Chan [C].

Theorem 3 is closely related to a claim made by Ramanujan in his Lost Notebook (see §15
of [Be-O]). In the case when j = 1, Ramanujan asserted that (1.4) holds for some modular
form Fy,, € M,_13, which is indeed the case if 5 < ¢ < 23; in the general case, £ — 13 should
be replaced by £ — 13 — 12 - |£/24]. For £ < 23 Ramanujan computed the modular form Fy,
explicitly; he obtained, for example,

> p(13n+6)¢" =p(6)- [[(1 —¢™)" (mod 13),
> p(A7n+5)¢" =p(5)- [[(1 - ¢")" Ea(2) (mod 17)

(here E4 denotes the usual normalized Eisenstein series of weight 4 on SLy(Z)).

In the next section we collect some facts which we shall need from the theory of modular
forms. In Section 3, we prove Theorem 1 and Corollary 2, and in Sections 4 and 5 we prove
Theorem 3.
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2. PRELIMINARIES ON MODULAR FORMS MODULO /.

In this section we recall some facts about modular forms modulo £. One may consult, for
example, [SwD] or [S] for details. Throughout we will suppose that £ is a fixed prime with
£ > 5. If k is an even integer, then we denote by M} the complex vector space of holomorphic
modular forms of weight k& with respect to SL2(Z). Each modular form f in such a space has
a Fourier expansion

If f € My N Z[q]], then f=f (mod £) € Fy[[q]]. We define the space of weight £ modular
forms modulo ¢ by
My:={f : feMOZ[lg]}.
The filtration of a modular form f € M N Z[[q]] is defined by
w(f) == inf{k’ : fe My}.
If f € M,NZ[[q]] and g € My N Z[[g]] have f = g # 0 (mod £), then we must have k = &’

(mod £ —1). It follows that if f € My N Z[[g]] has f # 0 (mod £), then w(f) =k (mod £ —1).
Moreover, we see that w(f) = —oo if and only if f =0 (mod £). We define the theta operator

on formal power series by
o0 o0
) (Z a(n)q") = Zna(n)q".
n=1

n=0
We have the following fundamental lemma.
Lemma 2.1 ([SwD, Lemmas 3, 5]). The operator © maps Mk to Mk+£+1- Moreover, if
f € My NZ[[q]] for some k, and f # 0 (mod £), then w(Of) < w(f) + £+ 1, with equality if
and only if w(f) Z0 (mod ).

We define the operator U on formal power series by

(Z a(n)q") U := Z a(fn)q™.

n=0 n=0

We also recall that for each prime ¢ we have the Hecke operator T, : Mj — M} whose action
on a form f =Y 2 a(n)g" € My is given by

o0

F|Te =" (altn) + £ a(n/0) "

n=0
From this we see that, on each space My, the operators U and T agree modulo £; in particular
we conclude that U maps each space My into itself. Moreover, we have the relationship

(f|0) = f—©*'f (mod ¢) (2.1)

for all f € Z[[q]]. Finally, we recall the fact [S, §2.2, Lemme 1] that if f € Mj N Z[[q]] for some
k, then for each i € N we have

w(f) = iw(f). (2.2)
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3. PROOF OF THEOREM 1.

That there are no Ramanujan congruences modulo 2 or 3 follows from the fact that p(0) = 1,
p(1) =1, and p(2) = 2. Now suppose that £ > 5 is prime. Kiming and Olsson [K-Ol, Theorem 1]
proved that if for some g € Z there is a congruence

p(dn+B)=0 (mod ¢) for all n,
then we must have 243 =1 (mod £). We define the positive integer d; by

2 —1
24

0p :=

In order to prove Theorem 1 it will, in view of this discussion, suffice to prove

Theorem 3.1. If ¢ > 13 is prime, then

> p(tn—e)q" 0 (mod ).

n=0

The proof of Theorem 3.1 occupies most of this section. Let

2)i=q (1 —g"*

be the unique normalized cusp form of weight 12 for SLa(Z). For the duration we will suppose
that

We now define

Since o .

H 1—g") "' =) p(n)g",

n=1 n=0
we have - 2 . .

_ sy (=4 B cyn
fe(z) =q };[1 = nlill(l gt T;p(n 80)g™ (mod ¥£).
Therefore -
flu=Tla-q Zp (In = 6,)g™  (mod ). (3.2)
n=1

We conclude from (3.2) that if there is a Ramanujan congruence modulo ¢, then f¢|U =0
(mod £), or, in other words, w(f|U) = —oo.

As in [K-Ol], we must study the filtration of the forms © f,, ©2fy, - --. We record two short
lemmas for convenience.
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Lemma 3.2. (c.f. Lemma 2 of [K-Ol]). If m € N, and £ > 5 is prime, then

w(©™ fr) > w(fe) = 5~

Proof of Lemma 3.2. By (2.2) we have w(f;) = 0yw(A) = 227_1 Now note that f, = g% + ...,
so that

O™fy=07"¢% +---#0 (mod £). (3.3)
Suppose that w(O™ fy) = k and set d := dim M}, > 0. We recall the well known fact that M}
has a basis {go, ..., g4—1} of forms with integral coefficients which have the form
gozl—i-...,glzq+...,g2:q2—|-..., ...... ,gd_lzqd_l—i-...

(such a basis can be constructed using A(z) and the Eisenstein series of weights 4 and 6 on
SLy(Z)). Considering this fact, it is clear from (3.3) that d > £ ! + 1. On the other hand, by

classical dimension formulas we have d < % + 1. Therefore k 2 L as claimed. O

3
Lemma 3.3. Suppose that £ > 5 is prime and let f, = A%. Then either
(1) w(®*1f,) =0 (mod £), o
2
(2) w(© fe) = w(fe) = 52

Moreover, in the first case we have 'w(fg‘U) > 0.

Remark. We note that, in view of Theorem 5.1 below, we always have w(fg|U) <{-1.

Proof of Lemma 3.3. We have ©f f = @f (mod #) for all f € Z[[q]]. Therefore, using Lemma 2.1,
we see that ’U)(@efe) = w(Of) = £-1 1 + ¢+ 1. Using Lemma 2.1 again and the fact that

w(fe) = , the assertion regarding the two possible values of w(©*~1f,) follows.
We turn to the other assertion. Combining (2.1) and (2.2), we see that

w(fe|U) = 2w(fe — O fy). (3.4)

If we are in the first case, then w(©%"1f,) = 0 (mod £). Suppose by way of contradiction that
w(fg‘U) < 0. Then (3.4) would imply that f,—©*"! f, is constant modulo #; it is then clear that

this constant must be zero. In other words, we would be led to the conclusion that f, = ©¢1f,
(mod ¢), which is impossible since w(f;) = £-1 1 #0 (mod ¢). O

We now turn to the proof of Theorem 3.1. Suppose by way of contradiction that £ > 13 is a
prime for which

ZP(ZH —00)¢" =0 (mod ¥).

Then w(fe‘U) = —o00, and so, by Lemma 3.3, we must have

2 -1

w(© 1 fo) =w(fe) = 5
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If it were the case that w(©"2f,) # 0 (mod £), then by Lemma 2.1 and (3.5) we would have
w(fe) = w(© " fo) =w(O 7 fo) + £+ 1,
which contradicts Lemma 3.2. Therefore we must have
w(©2f) =0 (mod ). (3.6)

Since w(f;) = 827_1, iterating Lemma 2.1 shows that w(@HT1 fe) =0 (mod £). Then, again
using Lemma 2.1, we see that there exists a > 1 such that

2-1 (+3

w(©F f) = 5+ a1 (3.7)

Together, Lemma 3.2 and (3.7) imply that

£+ 3 £+5 4

Sou—n Y=oty

Therefore, since £ > 5, we conclude that 1 < o < &5,

Suppose now that j is the least integer with 1 < j < 75 for which w(@HTleg) =0 (mod ¢)
(such a j exists by (3.6)). Then by Lemma 2.1 and (3.7) we have

£+1

w(©®F T f) = 62_14—(£+1-I—j)(@—l—l)—a(é—l)zj—{-azo (mod ¢).

2 2
Since 1 < a < ”75 and 1 <5< K_TE’, this implies that o = 8+75. Therefore (3.7) becomes

8 -1 (+3 £+5 2 -1
wOF )= ey e =5

+4. (3.8)

To finish the proof of Theorem 3.1, note that

3 o8 g2
@HTsfe:5e2 q6l+"':5e2 ql241+--.. (3-9)
Let
o0
Es(z):=1+240) ) d%" =1+240¢+...
n=1 d|n
be the usual Eisenstein series of weight 4 on SLy(Z). Since 327_1 = 0 (mod 12), a basis for

M,_722_1+4 is given by

2 _ 2_
21 £-1_4

2_
(B4 E,® , Ex-A-E,® ° ..., Eg-A7 ). (3.10)
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In view of (3.8), (3.9), and (3.10) we must have

243 l+3
02 f= (5 Es- fo (mod¥). (3.11)
Now ,
fo=q (1= =%+ . (mod £).
Therefore
4
O f=6,7 ¢+ (6, + 1) 1. (mod 0). (3.12)

Further, we have

6 "By f¢_52 (14240g4...) (g% +¢° "+ .. )_52 q% +241 - 52 @t ... (mod £).

Together with (3.11) and (3.12), this shows that

4—‘,—3
)=

5o +1)% =241.5,%  (mod £). (3.13)
I4

Since 1/0p = —24 (mod £), (3.13) yields
(—23)2-(—23) T =241 (mod £),
which in turn (note that £ = 23 is impossible) implies that
+529 = 241 (mod /).

Theorem 3.1 follows since
929 +241=7710=2-5-7-11,

and
529 — 241 = 288 = 25 . 32,

This establishes Theorem 1. [

Proof of Corollary 2. For the primes £ > 13, Corollary 2 follows immediately from Theorem 1
together with the following result of Bruinier and Ono [B-O].

Theorem ([B-O], Theorem 4). If£ > 5 is prime then at least one of the following is true:

(1) Newman’s Conjecture is true for M = £ and

vX/logX if 1<r<¥,
#{O0<n<X : pn)=r (modf)}>>r,e{X /18 Tf _;
1T r = u.

(2) There is a Ramanujan congruence modulo £.

Although the density results stated in Corollary 2 for £ = 5, 7, and 11 are not given explicitly
in [B-0O], a modification of the arguments in that paper shows that the results remain true for
these primes. Therefore we include them in the statement of Corollary 2 for completeness. [
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4. MODULAR FORMS ON Ig(#7).

In this section we will suppose that £ > 5 is prime and that j > 1. If x is a Dirichlet character
defined modulo #/ and k is a positive integer, then we denote by M, (To (#7), x) the usual space
of holomorphic modular forms of weight k£ and character x for I (#?).

If f(z) is a function of the upper half-plane and v = <CCL Z) € GL3 (Q), then we define the
slash operator by

k _
(f])(2) = (det7) % (cz + d) ™" f(v2).

If m is a positive integer, then we define operators U,,, and V,, on formal power series by

(Z a(n)q") | Up, = Za(mn)q",

(Z a(n)q") | Vi = Za(n)qm".

If f(z) =3, ,a(n)g™ and k € Z, then we have

1 m—1 Z+] . m—1 1 .
1000 = 5 32 (5 = R Ao ) @
=0 =0

If j > 1, then the map f — f|U, takes My(To(¢7),x) into itself, while the map f — f|V;
takes My (Lo (#7),x) into Mg (To(#F1), x). We define W, by

0 -1
WeiZ(g 0);

if x is a real character, then the Fricke involution
e fl W

maps My (Ty(£), x) into itself.
If f € M(To(¢)) then we define the trace of f by

Te(f) := f + £ (f] ,We) |Us. (4.2)

We recall two important properties of these operators.

Proposition 4.1 [At-L, Lemma 17]. Suppose that £ is prime and that f € My(To(#7)).

(1) If j > 2, then f|Uy € My(To(£771)).
(2) If j =1, then Tx(f) € M.
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Finally, we recall that Dedekind’s eta-function is given by

n(z) = %ﬁl—q

If (Z Z) € SLy(Z), then we have the transformation formula

N[

n (az - b) = €apc,d (cz+d)? - n(z), (4.3)

cz+d

where €, 5,4 is a 24-th root of unity (we always take the branch of the square root having
non-negative real part). As a special case of this formula, we have

(=1/2) = V/2]i-n(2)- (4.4)

5. THE PROOF OF THEOREM 3.

For the duration we will fix a prime £ > 5 and a positive integer j. We define

foi(2) =
Using standard facts (see, for example, [G-H| or [N2]), we see that

fes(2) € Moy (To(®), (3)) - (5.1)
For convenience, we define

_24Bp; -1 { 24 (|£/24] +1) —£ if j is odd,
- 123 if j is even,

and

2

£o1 2200 s odd,
Aej =19 .
ESL 403710 —1) if j is even.
We will show that Theorem 3 is a consequence of the following result.

Theorem 5.1. If £ > 5 is prime, and j > 1 is an integer, then there is a modular form
Gy (z) € My, N Z[[q]] such that fe,j(Z)‘Uej = Gy j(z) (mod #7).

To show that Theorem 5.1 implies Theorem 3, we begin by observing that

o0 ; o0 . r(,ml—lj T, +l
feilUo = [T =) - S pWn+ Bej)a™ 5 =p(Bej)a 5+ (5.2)

n=1 n=0
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By Theorem 5.1, there exists Gy ; € My, ; N Z[[g]] such that ng‘Ugj = Gy,; (mod #7). We
”JH at co. Using the fact that

may clearly suppose that G, ; vanishes to order at least

i pi
e =keoj+ ”’J;e , we conclude that

Grj(2) = A(z) "7 - Fyj(2),
where Fy j(z) € My, . By (5.2) we then have

Ty ]+l] Ty ]+l~7

[Ta—a)" Y p@n+By)g™t 5 = A5 (2)- Fiy(2) (mod &),
n=1

from which Theorem 3 follows immediately.
We turn, therefore, to the proof of Theorem 5.1. We define

O

N (z

hg,' Z) = < )

.7( ) 7’](62)

We begin by recording some basic properties of this modular form.

Lemma 5.2. Suppose that £ > 5 is prime and that j > 1. Then

(1) hej(z) € M= (To(0), (3))-
(2) hej(z) =1 (mod #).

N+N L N Yoz et
(3) he(2)| o-10-) ey Wy = €7 (=) '(nng)))

Proof of Lemma 5.2. The first assertion follows from standard facts [G-H, N2J, and the second
is clear from the fact that

H =1 (mod/¥).

The third follows from a computation using (4.4). O

Now define
1 if j is odd,
Pej =

2 if j is even.
Then define
9e,j = {fe,j : (hﬁfjj|‘/ef—1)} |Ugi-1.

Using (5.1), Lemma 5.2, and Proposition 4.1, we see that

ge,j € M)\[,j (FO(K))a
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moreover it is clear that gy ; has integral coefficients. A straightforward argument shows that
ge; = fﬁ,j‘Uerl . hgfjj-
Therefore, we see by (4.2) that
Tr(gg’j|>\e,j Wg) = {fﬁ,] |Uga 1 hgljf} ‘)\ Wg + él {fE,J

Since the map f +— f ‘ng preserves the field of rationality of a modular form f € My(T'o(£)),
each of the three summands in (5.3) has rational coefficients. Moreover, we have

{fe,j|Uea>1 : hffjij} Ue = fo;

We will prove the following.

Uga 1 hzejj} |Ug. (5.3)

Uy (mod #9). (5.4)

Lemma 5.3. If¢ > 5 is prime and 5 > 1, then we have

A -
gy 5], We=00 (mod £).
Theorem 5.1 follows immediately from Lemma 5.3, (5.3), and (5.4). Indeed, defining

Gg,J .—f 2 -1 Trgg7]|)\ Wg EM/\eJ’
we see from these facts that G ; has rational, £-integral coefficients and that
Grj = fej|Us  (mod £).

Theorem 5.1 follows (since Gy ; has bounded den_omina,tors we may, if necessary, replace Gy ;
by N - Gy ; with a suitable integer N =1 (mod £7)). _
It remains only to prove Lemma 5.3. For the duration, let ¢ := exp (27i/2447), and define

1
o5 2= qV
We will consider power series in the ring (Z[(])[[ges]]- In view of the third part of Lemma 5.2,
it will suffice to show that, in this ring, we have

{ f,J

(2py¢ J+1)l

Upi- 1}\43 Wy =0 (mod #).

By (4.1) and (4.3) we have

. o @ +)e p pi-1_1 —
gpe]i { g,J|U£3 1}|£J 1W€ I e Z fe7J|U L (0 £J 1) ‘UT_I (2 01)

Pt ngj (mg_ l)

. S Z27

(5.5)
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where ., is some 24-th root of unity.

Fix m with 1 < m < £~ — 1, and write m = £"t with £{¢ and 0 < 7 < j — 2. Then there
are integers b, d for which bt + d¢7~""! = —1. Hence,

ml —1Y\ _ t d\ (et b
&0 ) \gTt b 0 4=t )
where the first matrix on the right is in SL9(Z). We conclude by (4.3) that
- ]_ r+1 r+1 b
n(%)zﬂm.gé . 'n<££j—7i—+1>’ (5.6)

biz
where ,, is a 24-th root of unity. It follows from (5.6) that if m > 1, then the term corre-
sponding to m in (5.5) is given by

(N[

O, pLZU‘_zj—r—1 029 _g27+2 0 (1 . qn)éj ( )
Tm = i 2 . qg, 24 . H = D) . 57
CE +1bﬁm J oot (1 _ C24£ +1bnqgj n)

Furthermore, applying (4.4) we find that the term corresponding to m = 0 in (5.5) is given by

prgti=si p¥ (2)
T — . 2 - — 58
0 v 14 H(ZJZ) 3 ( )

where 7 is a root of unity. Since £ > 5 and j > 1 we have

pg,‘fj—2j—7'—1 pg,‘fj—3j
J 5 > J 5 Z]

(5.9)

By (5.7), (5.8), and (5.9) we have T,, = 0 (mod #¢?) in (Z[(])[[gs]] for all m. This proves
Lemma 5.3, and with it Theorem 5.1. [J

Acknowledgements. The authors thank B. Berndt, H.H. Chan, and K. Ono for their valuable
comments and suggestions.
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