
ARITHMETIC PROPERTIES OF CERTAIN LEVEL ONE MOCK

MODULAR FORMS

MATTHEW BOYLAN

Abstract. In recent work, Bringmann and Ono [4] show that Ramanujan’s f(q) mock
theta function is the holomorphic projection of a harmonic weak Maass form of weight
1/2. In this paper, we extend work of Ono in [13]. In particular, we study holomorphic
projections of certain integer weight harmonic weak Maass forms on SL2(Z) using Hecke
operators and the differential theta-operator.

1. Introduction and statement of results.

If k is an integer, we denote by Mk (respectively, Sk) the space of holomorphic modular
forms (respectively, cusp forms) of weight k on SL2(Z). Let z ∈ h, the complex upper half-
plane, and let q := e2πiz. For integers n ≥ 1 and j ≥ 0, define σj(n) :=

∑

d|n dj, and let Bj

denote the jth Bernoulli number. Then the Delta-function and the normalized Eisenstein
series for SL2(Z) of even weight k ≥ 2 are given by

∆(z) =
∞
∑

n=1

τ(n)qn = q
∞
∏

m=1

(1 − qm)24 ∈ S12,(1.1)

Ek(z) = 1 − 2k

Bk

∞
∑

n=1

σk−1(n)qn.(1.2)

If k ≥ 4, then Ek(z) ∈ Mk. We also set E0(z) := 1. If the dimension of Sk is one, then
k ∈ {12, 16, 18, 20, 22, 26}. We note that the corresponding weight k cusp forms,

(1.3) fk(z) :=

∞
∑

n=1

afk
(n)qn = ∆(z)Ek−12(z),

have integer coefficients.
In [13], Ono defined a harmonic weak Maass form related to the Delta-function and studied

its holomorphic projection. In this paper, we extend Ono’s work by defining harmonic weak
Maass forms related to the forms fk(z) and by studying their holomorphic projections.

We denote spaces of harmonic weak Maass forms of weight j on SL2(Z) by Hj . In Section 2,
we will use Poincaré series to define, as in [5] and [13], harmonic weak Maass forms Rfk

(z) ∈
H2−k connected to the forms fk(z) ∈ Sk. Such forms may be written Rfk

(z) = Mfk
(z) +

Nfk
(z), where Mfk

(z) is holomorphic on h and Nfk
(z) is not holomorphic on h. We will find

that the non-holomorphic contribution is a normalization of the period integral for fk(z),
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given by

(1.4) Nfk
(z) = i(k − 1)(2π)k−1ck

∫ i∞

−z

fk(−τ )

(−i(τ + z))2−k
dτ,

where

(1.5) ck :=
(k − 2)!

(4π)k−1‖fk(z)‖2
∈ R.

Here, ‖ · ‖ denotes the Petersson norm. We will also find that the function Mfk
(z), the

holomorphic projection of Rfk
(z), has coefficients c+

fk
(n), and is given by

(1.6) Mfk
(z) =

∞
∑

n=−1

c+
fk

(n)qn = (k − 1)!q−1 + (k − 1)!
2k

Bk
+ · · ·

See Theorem 2.1 for precise formulas for the coefficients c+
fk

(n) as series with summands in
terms of Kloosterman sums and values of modified Bessel functions of the first kind.

The theory of harmonic weak Maass forms and mock theta functions is of great current
interest. See, for example, the works [3], [4], [5], [6], [7], [8], [9], [13]. Let λ ∈ {1/2, 3/2}. In
[3] and [6], Bringmann, Ono, and Folsom define a mock theta function to be a function which
arises as the holomorphic projection of a harmonic weak Maass form of weight 2 − λ whose
non-holomorphic part is a period integral of a linear combination of weight λ theta-series.
This definition encompasses the mock theta functions of Ramanujan, of which

f(q) :=

∞
∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

is an important example. See [4] for its precise relation to Maass forms. In this sense, one
may view the functions Mfk

(z) as analogues of mock theta functions which we call mock
modular forms.

An important aspect of the study of mock modular forms concerns questions on the ratio-
nality (algebraicity) of their q-expansion coefficients. Mock modular forms arising from theta
functions, such as f(q), are known to have rational (algebraic) q-expansion coefficients. In
[8] and [9], the authors initiated a study of the algebraicity of coefficients of mock modular
forms M(z) =

∑

c+(n)qn which do not arise from theta functions. In [8], Bruinier and Ono
relate the algebraicity of the coefficients of certain weight 1/2 mock modular forms to the
vanishing of derivatives of quadratic twists of central critical values of weight two modular
L-functions. In [9], Bruinier, Ono, and Rhoades give conditions which guarantee the alge-
braicity of coefficients of integer weight mock modular forms. In the proof of their result,
they show that the coefficients c+(n) lie in the field Q(c+(1)). Part 1 of Corollary 1.3 below
recovers this result for the coefficients c+

fk
(n). However, the conditions in [9] guaranteeing

the algebraicity of mock modular form coefficients do not apply in the present setting. As
such, it is not known whether any c+

fk
(1) is algebraic.

In [13], Ono conjectures, for all positive integers n, that the mock Delta coefficients, c+
∆(n),

are irrational. This conjecture has the following consequence. If c+
∆(1) (or any coefficient

c+
∆(n)) is irrational, then Lehmer’s Conjecture on the non-vanishing of the tau function is

true. Similarly, as a consequence of the work in this paper, we observe that if c+
fk

(1) (or

any c+
fk

(n)) is irrational, then for all positive integers n, we have afk
(n) 6= 0, which is the

analogue of Lehmer’s conjecture for the forms fk. This is part 2 of Corollary 1.3 below.
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In this paper, we use the Hecke operators and theta-operator to create certain weakly
holomorphic modular forms which are modifications of the mock modular forms Mfk

(z). We
then give explicit formulas which allow us to prove results on rationality and congruence
properties of the coefficients of these weakly holomorphic forms. Our formulas also enable
us to prove results on the values of these functions in the upper half-plane.

To state our results, we require facts on weakly holomorphic modular forms on SL2(Z),
forms which are holomorphic on h, but which may have a pole at the cusp infinity. We
denote the space of such forms of integer weight k by M !

k and note that Mk ⊆ M !
k. For more

information on holomorphic and weakly holomorphic modular forms, see [12], for example.
An important example of a weakly holomorphic form is the elliptic modular invariant,

j(z) :=
E4(z)3

∆(z)
=

∞
∑

n=−1

c(n)qn = q−1 + 744 + 196884q + · · · ∈ M !
0.

We also require certain operators on q-expansions. If p is prime, then the pth Hecke
operator in level one and integer weight k acts by

(1.7)
∑

a(n)qn | Tk(p) :=
∑

(

a(pn) + pk−1a

(

n

p

))

qn,

where a
(

n
p

)

= 0 if p ∤ n. For integers m ≥ 1, one defines Hecke operators Tk(m) in terms of

the Hecke operators of prime index in (1.7). Furthermore, the Hecke operators preserve the
spaces Mk and M !

k. Next, we define the differential theta-operator

(1.8) θ :=
1

2πi
· d

dz
= q

d

dq

and observe that

θ
(

∑

a(n)qn
)

=
∑

na(n)qn.

Applying a normalization of the Hecke operators to j(z), we obtain an important sequence
of modular forms. We set j0(z) := 1,

j1(z) := j(z) − 744 = q−1 + 196884q + · · · ,

and for all m ≥ 1, we set

(1.9) jm(z) := m(j1(z) | T0(m)) = q−m +
∞
∑

n=1

cm(n)qn ∈ M !
0.

The forms jm(z) have integer coefficients and satisfy interesting properties. For example, let
τ ∈ h and define Hτ (z) :=

∑∞
m=0 jm(τ)qm. We will need the fact, proved in [2], that Hτ (z)

is a weight two meromorphic modular form on SL2(Z) and that

(1.10) Hτ (z) =

∞
∑

m=0

jm(τ)qm = −θ(j(z) − j(τ))

j(z) − j(τ)
=

E14(z)

∆(z)
· 1

j(z) − j(τ)
.
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To state our main result, we require further definitions. Let p be prime. The first function
we study in connection with Mfk

(z) is Lfk,p(z), defined by

Lfk ,p(z) : =
pk−1

(k − 1)!
(Mfk

(z) | T2−k(p) − p1−kafk
(p)Mfk

(z))

=
1

(k − 1)!

∞
∑

n=−p

(

pk−1c+
fk

(pn) − afk
(p)c+

fk
(n) + c+

fk

(

n

p

))

qn.(1.11)

We then define aLfk,p
(n) by

∑∞
n=−p aLfk,p

(n)qn := Lfk ,p(z). To study the functions Lfk,p(z),

we introduce auxiliary functions. For k ∈ {12, 16, 18, 20, 22, 26}, let Fk be any form in Mk−2

and define

(1.12) Fk(z) :=
∞
∑

n=0

aFk
(n)qn.

For all positive integers t, define

(1.13) AFk,t(z) :=
t
∑

m=0

aFk
(m)jt−m(z) + aFk

(0)
2k

Bk
σk−1(t)

with jn(z) as in (1.9).
The second function we study in connection with Mfk

(z) is

(1.14) θk−1(Mfk
(z)) = −(k − 1)!q−1 +

∞
∑

n=1

nk−1c+
fk

(n)qn.

Its study also requires the introduction of auxiliary functions. Let k be the least positive
residue of k modulo 12. We define Gk(z) by

(1.15) Gk(z) :=



















E
12−k

(z)

∆(z)
k−k
12

+1

if k 6≡ 10 (mod 12)

E14(z)

∆(z)
k−10

12
+2

if k ≡ 10 (mod 12).

We note that Gk(z) ∈ M !
−k ∩ Q((q)), and define aGk

(n) ∈ C and nk ∈ Z by

(1.16)
∞
∑

n=−nk

aGk
(n)qn := Gk(z) = q−nk + · · ·

For fixed k and integers t ≤ nk (with nk as in (1.16)), we define

(1.17) BGk,t(z) :=

nk
∑

n=t

aGk
(−n)jn−t(z)

with jn(z) as in (1.9).
Our main result gives exact formulas for Lfk ,p(z) and θk−1(Mfk

(z)).

Theorem 1.1. Let k ∈ {12, 16, 18, 20, 22, 26}, and let p be prime.
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(1) In the notation above ((1.3), (1.11), (1.12), (1.13)), we have

Lfk,p(z) =
AFk,p(z) − afk

(p)AFk,1(z)

Fk(z)
∈ M !

2−k.

(2) In the notation above ((1.6), (1.14), (1.16), (1.17)), we have

θk−1(Mfk
(z)) =

∑nk

m=1 mk−1c+
fk

(m)BGk ,m(z) − (k − 1)!BGk,−1(z)

Gk(z)
∈ M !

k.

Before proceeding, we illustrate Theorem 1.1 by applying it to f12(z) = ∆(z). Let p be
prime. With F12(z) = E10(z) in part 1 of the theorem, we find that

L∆,p(z) =
jp(z) − 264

∑p
m=1 σ9(m)jp−m(z) − 65520

691
σ11(p) − τ(p)

(

j1(z) − 247944
691

)

E10(z)
.

This is the main result in [13]. Using part 2 of the theorem, we obtain

(1.18) θ11(M∆(z)) = ∆(z)(c+
∆(1) − 11!(j2(z) + 24j1(z) + 324)).

On examining the right-hand sides in Theorem 1.1, we deduce properties of the forms
Lfk,p(z) and θk−1(Mfk

(z)). First, we find that the coefficients of Lfk,p(z) are integers.

Corollary 1.2. Let k ∈ {12, 16, 18, 20, 22, 26}, and let p be prime. Then for all integers n,
we have

aLfk,p
(n) =

1

(k − 1)!

(

pk−1c+
fk

(pn) − afk
(p)c+

fk
(n) + c+

fk

(

n

p

))

∈ Z.

A consequence of Corollary 1.2 is the following.

Corollary 1.3. Let k ∈ {12, 16, 18, 20, 22, 26}.
(1) For all integers n, we have c+

fk
(n) ∈ Q(c+

fk
(1)).

(2) If c+
fk

(1) (or any c+
fk

(n)) is irrational, then for all integers n, we have afk
(n) 6= 0.

As an example of part 1, for all primes p, Corollary 1.2 gives

(1.19) c+
fk

(p) =
(k − 1)! · aLfk,p

(1)

pk−1
+

afk
(p)

pk−1
· c+

fk
(1).

The general case follows by induction. As remarked above, the conclusion of part 2 of the
corollary is the analogue of Lehmer’s conjecture for the forms fk. It is proved in Section 3.

Theorem 1.1 and Corollary 1.2 permit us to apply well-known congruence properties for
coefficients of the Eisenstein series Ek(z) and the cusp forms fk(z) to obtain congruences for
Lfk,p(z).

Corollary 1.4. Let p be prime, and let τ(p) = af12
(p) as in (1.1).

(1) If k ∈ {12, 16, 18, 20, 22, 26}, then we have

Lfk,p(z) ≡











jp(z) (mod 24) if p = 2 or p ≡ 23 (mod 24)

jp(z) + 12j1(z) (mod 24) if p = 3 or p ≡ 11 (mod 24)

jp(z) − (p + 1)j1(z) (mod 24) if p ≥ 5.
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(2) If k ∈ {18, 22, 26}, then we have

Lfk,p(z) ≡











jp(z) − 2j1(z) (mod 5) if p ≡ 1 (mod 5)

jp(z) + (p + 1)(j1(z) + 2) (mod 5) if p ≡ 2, 3 (mod 5)

jp(z) (mod 5) if p ≡ 4 (mod 5).

(3) If k ∈ {20, 26}, then we have

Lfk ,p(z) ≡



















jp(z) − 2j1(z) (mod 7) if p ≡ 1 (mod 7)

jp(z) + 2(p + 1)(j1(z) + 1) (mod 7) if p ≡ 2, 4 (mod 7)

jp(z) + 3(p + 1) (mod 7) if p ≡ 3, 5 (mod 7)

jp(z) (mod 7) if p ≡ 6 (mod 7).

(4) If k ∈ {12, 22}, then we have

Lfk,p(z) ≡ jp(z) − τ(p)j1(z) + 2(p + 1 − τ(p)) (mod 11).

(5) We also have

Lf26,p(z) ≡ jp(z) − pτ(p)j1(z) − 2(p + 1 − pτ(p)) (mod 13)

Lf18,p(z) ≡ jp(z) − af18
(p)j1(z) + 7(p + 1 − af18

(p)) (mod 17)

Lf20,p(z) ≡ jp(z) − af20
(p)j1(z) + 5(p + 1 − af20

(p)) (mod 19).

Remark. In [13], Ono proved part 1 of Theorem 1.1 and Corollaries 1.2, 1.3, and 1.4 for
f12(z) = ∆(z) ∈ S12. We also remark that Guerzhoy has proved related congruences. See
Theorem 2 and Corollary 1 of [10].

Next, we study values of Lfk,p(z) and θk−1(Mfk
(z)) at points in the upper half-plane. If

g(z) is a function on h and τ ∈ h, then we define vτ (g(z)) to be the order of vanishing of g(z)
at τ . Recalling (1.2), (1.10), and (1.12), we define a meromorphic modular form on SL2(Z)
of weight k with coefficients bFk,τ(n) ∈ C by

∞
∑

n=0

bFk,τ (n)qn := Hτ (z)Fk(z) − aFk
(0)Ek(z).

Similarly, recalling (1.10) and (1.15), we define a meromorphic modular form on SL2(Z) of
weight 2 − k with coefficients βGk,τ (n) ∈ C by

∞
∑

n=−nk

βGk,τ(n)qn := Hτ (z)Gk(z).

Corollary 1.5. Let k ∈ {12, 16, 18, 20, 22, 26}, let τ ∈ h, and let p be prime.

(1) We have

Lfk ,p(τ) =
bFk ,τ(p) − afk

(p)bFk,τ (1)

Fk(τ)

and

θk−1(Mfk
(τ)) =

∑nk

m=1 mk−1c+
fk

(m)βGk,τ (−m) − (k − 1)!βGk,τ (1)

Gk(τ)
.
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(2) If ω = −1
2

+
√
−3
2

, then we have

vω(Lfk,p(z)) ≥
{

2 if k ≡ 0 (mod 6)

1 if k ≡ 4 (mod 6)

and

vω(θk−1(Mfk
(z))) ≥

{

2 if k ≡ 2 (mod 6)

1 if k ≡ 4 (mod 6).

(3) We have

vi(Lfk,p(z)) ≥ 1 if k ≡ 0 (mod 4)

and

vi(θ
k−1(Mfk

(z))) ≥ 1 if k ≡ 2 (mod 4).

Remark. Setting Fk(z) = Ek−2(z) in Theorem 1.1, part 2 of the corollary implies, for k ≡ 0, 4
(mod 6), that

afk
(p) =

jp(ω) − 2(k−2)
Bk−2

∑p
m=1 σk−3(m)jp−m(ω) + 2k

Bk
σk−1(p)

−744 − 2(k−2)
Bk−2

+ 2k
Bk

.

Similarly, part 3 of the corollary implies, for k ≡ 0 (mod 4), that

afk
(p) =

jp(i) − 2(k−2)
Bk−2

∑p
m=1 σk−3(m)jp−m(i) + 2k

Bk
σk−1(p)

984 − 2(k−2)
Bk−2

+ 2k
Bk

.

Guerzhoy proved these identities independently in [10] (Theorem 3).

Corollary 1.3 underscores the significance of the coefficients c+
fk

(1). Using Corollary 1.5,
we provide alternative expressions for these coefficients. Perhaps they might shed some light
on questions of rationality and algebraicity.

Corollary 1.6. The following are true.

(1) Set τ :=

{

ω if k ≡ 2, 4 (mod 6)

i if k ≡ 2 (mod 4).
. Let nk be as in (1.16). Then we have

c+
fk

(1) =
(k − 1)!BGk,−1(τ) −

∑nk

m=2 mk−1c+
fk

(m)BGk,m(τ)

BGk,1(τ)
.

(2) There is a τ ∈ h with vτ (θ
11(M∆(z)) ≥ 1. For such τ , we have

c+
∆(1) = 11!(j2(τ) + 24j1(τ) + 324).

Part 1 of the corollary follows from Theorem 1.1 and parts 2 and 3 of Corollary 1.5. Part 2
is proved in Section 3.

The plan for Sections 2 and 3 of the paper is as follows. In Section 2.1, we provide the
necessary background on harmonic weak Maass forms. In Section 2.2, we construct certain
Poincaré series and use them to define the functions Mfk

(z). In Section 3, we prove Theorem
1.1 and its corollaries.
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2. Harmonic weak Maass forms and Poincaré Series.

2.1. Harmonic weak Maass forms. We recall the definition of integer weight harmonic
weak Maass forms on SL2(Z). Let k ∈ Z, let x, y ∈ R, and let z = x + iy ∈ h. The weight k
hyperbolic Laplacian is defined by

∆k := −y2

(

∂2

∂x2
+

∂2

∂y2

)

+ iky

(

∂

∂x
+ i

∂

∂y

)

.

A harmonic weak Maass form of weight k on SL2(Z) is a smooth function f on h satisfying
the following properties.

(1) For all A =

(

a b
c d

)

∈ SL2(Z) and all z ∈ h, we have

f(Az) = (cz + d)kf(z).

(2) We have ∆kf = 0.
(3) There is a polynomial Pf =

∑

n≤0 c+
f (n)qn ∈ C[[q−1]] such that f(z)−Pf (z) = O(e−εy)

as y → ∞ for some ε > 0.

Using these conditions, one can show that harmonic weak Maass forms have q-expansions
of the form

(2.1) f(z) =

∞
∑

n=n0

c+
f (n)qn +

∞
∑

n=1

c−f (n)Γ(k − 1, 4πny)q−n,

where n0 ∈ Z and the incomplete Gamma function is given by

Γ(a, x) :=

∫ ∞

x

e−tta
dt

t
.

For more information on this and other special functions used in this section, see, for example,
[1]. We refer to the first (respectively, second) sum in (2.1) as the holomorphic (respectively,
non-holomorphic) projection of f(z). We also observe that M !

k ⊆ Hk and that the Hecke
operators preserve Hk.

2.2. Poincaré Series. We now construct Poincaré series as in [5]. Let k be an integer, let

z ∈ h, and let A =

(

a b
c d

)

∈ SL2(Z). For functions f : h → C, we define

(f |k A)(z) := (cz + d)−kf(Az).

Now, let m ∈ Z, and let ϕm : R+ → C be a function which satisfies ϕm(y) = O(yα) as y → 0
for some α ∈ R. If β ∈ R, we set e(β) := e2πiβ. In this notation, we define

ϕ∗
m(z) := ϕm(y)e(mx).

Noting that ϕ∗
m(z) is invariant under the action of Γ∞ :=

{

±
(

1 n
0 1

)

: n ∈ Z

}

, we define

the Poincaré series

P (m, k, ϕm; z) :=
∑

A∈Γ∞\SL2(Z)

(ϕ∗
m |k A)(z).

We will study specializations of this series.
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We first consider the Poincaré series P (1, k, 1; z). It is well-known that P (1, k, 1; z) ∈ Sk.
Since Sk has dimension one for k ∈ {12, 16, 18, 20, 22, 26}, the form P (1, k, 1; z) is a constant
multiple of fk(z). Moreover, we observe that

(2.2) P (1, k, 1; z) = ckfk(z),

with ck as in (1.5). These facts may be found, for example, in §3.3 of [11].
Next, we consider certain non-holomorphic Poincaré series. Let Mν,µ(z) be the M-Whittaker

function. For k ∈ Z and s ∈ C, define

Ms(y) := |y|− k
2 Mk

2
sgn(y),s− 1

2

(|y|),
and for integers m ≥ 1, set ϕ−m(z) := M1− k

2

(−4πmy). Then, for integers k > 2, we define

the Poincaré series Rfk
(z) := P (−1, 2 − k, ϕ−1; z). Recalling the definition (1.4) of Nfk

(z)
and using (2.2), we have

Nfk
(z) = i(k − 1)(2π)k−1ck

∫ i∞

−z

fk(−τ )

(−i(τ + z))2−k
dτ = i(k − 1)(2π)k−1

∫ i∞

z

P (1, k, 1,−τ)

(−i(τ + z))2−k
dτ.

We now define the series Mfk
(z) by

Mfk
(z) := Rfk

(z) − Nfk
(z).

We require further special functions. For j ∈ Z, we denote by Ij the Ij-Bessel function.
For m, n, c ∈ Z with c > 0, the Kloosterman sum K(m, n, c) is given by

(2.3) K(m, n, c) :=
∑

v∈(Z/cZ)∗

e

(

mv + nv

c

)

,

where v is v−1 (mod c). We now state the main theorem of this section. It is a special case
of Theorem 1.1 of [5]. It asserts that Mfk

(z) is a mock modular form for fk(z) and provides
formulas for its coefficients and the coefficients of Nfk

(z).

Theorem 2.1. Let k ∈ {12, 16, 18, 20, 22, 26}.
(1) In the notation above, we have Rfk

(z) = Mfk
(z) + Nfk

(z) ∈ H2−k.
(2) The function Mfk

(z) is holomorphic with q-series expansion

Mfk
(z) = (k − 1)!q−1 + (k − 1)!

2k

Bk
+

∞
∑

n=1

c+
fk

(n)qn,

where for integers n ≥ 1, we have

c+
fk

(n) = −2πikn− k−1

2

∞
∑

c=1

K(−1, n, c)

c
Ik−1

(

4π
√

n

c

)

.

(3) The function Nfk
(z) is non-holomorphic with q-series expansion

Nfk
(z) =

∞
∑

m=1

c−fk
(m)Γ(k − 1, 4πmy)q−m,

where for integers m ≥ 1, we have

c−fk
(m) = −(k − 1)ck

afk
(m)

mk−1
,

with afk
(m) ∈ Z as in (1.3) and ck ∈ R as in (1.5).
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Remark 1. The functions Mfk
(z) depend on the representation of fk(z) as a linear combina-

tion of Poincaré series P (m, k, 1; z) ∈ Sk. In this work, we choose the simplest representation,
given by (2.2).

Remark 2. We compute the constant term in the q-expansion of Mfk
(z) using (2.3) and facts

from elementary number theory. In [5], we find that the constant term is

c+
fk

(0) = −(2πi)k
∞
∑

c=1

K2−k(−1, 0, c)

ck
.

We compute that

K2−k(−1, 0, c) =
∑

v∈(Z/cZ)∗

e

(

−mv

c

)

=
∑

v∈(Z/cZ)∗

e
(mv

c

)

= µ(c),

where µ is the Möbius function. Thus, since k is even, we have
∞
∑

c=1

K2−k(−1, 0, c)

ck
=

∞
∑

c=1

µ(c)

ck
=

1

ζ(k)
= −2 · k!

(2πi)kBk
,

where ζ is the Riemann zeta-function.

Remark 3. We obtain the expansion for Nfk
(z) from (1.4) as in the proof of Theorem 1.1 of

[5].

3. Proofs of Theorem 1.1 and its corollaries.

We now turn to the proofs of Theorem 1.1 and its corollaries. The basic idea is as follows.
We use the Hecke operators and theta operator to eliminate Nfk

(z), the non-holomorphic
part of the harmonic weak Maass form Rfk

(z). This is where we use the fact that the forms
fk lie in 1-dimensional spaces. What remains is a modification of the mock modular form
Mfk

(z) which is a weakly holomorphic modular form with an explicit principal part. Since
SL2(Z) has genus one and only one cusp, one can express the weakly holomorphic modular
form explicitly in terms of certain polynomials in j (Faber polynomials).

To begin, we note that for all integers m and for k ∈ {12, 16, 18, 20, 22, 26}, the forms
fk(z) are normalized eigenforms for the Hecke operators Tk(m) since the dimension of Sk is
one. Therefore, for all primes p and for all integers n ≥ 1, from (1.7) we have

(3.1) afk
(pn) + pk−1afk

(

n

p

)

= afk
(p)afk

(n).

Next, we compute Nfk
(z) | T2−k(p). To do so, we recall the definitions of the U(p) and

V (p) operators on functions f : h → C:

f(z) | U(p) :=
1

p

p−1
∑

a=0

f

(

z + a

p

)

,(3.2)

f(z) | V (p) := f(pz).(3.3)

We also recall, for all integers j, that the Hecke operators Tj(p) may be written as

(3.4) f(z) | Tj(p) = f(z) | U(p) + pj−1f(z) | V (p).

We now state two important facts. Though the first was proved in [8] for half-integral
weights, (see Theorem 7.4), we provide a short proof in our setting.
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Proposition 3.1. Let p be prime, and let k ∈ {12, 16, 18, 20, 22, 26}. Then we have

Nfk
(z) | T2−k(p) = p1−kafk

(p)Nfk
(z),

with afk
(n) as in (1.3).

Proof. Using part 3 of Theorem 2.1, (3.1), (3.2), (3.3), and (3.4), we compute:

Nfk
(z) | T2−k(p) = Nfk

(z) | U2−k(p) + p1−kNfk
(z) | V2−k(p)

= −(k − 1)ck

( ∞
∑

n=1

afk
(pn)

(pn)k−1
Γ(k − 1, 4πny)q−n + p1−k

∞
∑

n=1

afk
(n)

nk−1
Γ(k − 1, 4πpny)q−pn

)

= −(k − 1)ckp
1−k

∞
∑

n=1

(

afk
(pn) + pk−1afk

(

n

p

))

Γ(k − 1, 4πny)

nk−1
q−n

= −(k − 1)ckp
1−kafk

(p)

∞
∑

n=1

afk
(n)

nk−1
Γ(k − 1, 4πny)q−n.

�

The second fact we require is a special case of a result of Bruinier, Ono, and Rhoades [9]
which follows from Bol’s identity relating the theta-operator and the Maass raising operator.

Theorem 3.2. If k ≥ 2 is an integer and f(z) ∈ H2−k has holomorphic projection M(z) =
∑

c+(n)qn, then we have

θk−1(f(z)) = θk−1(M(z)) =
∑

nk−1c+(n)qn ∈ M !
k.

Remark. We emphasize that in [9], the authors precisely compute the image of θk−1 on
spaces of harmonic weak Maass forms of weight 2− k < 0 on subgroups of type Γ0(N) with
nebentypus character.

3.1. Proof of Theorem 1.1. We may now prove Theorem 1.1. From part 1 of Theorem
2.1 and the fact that the Hecke operators preserve H2−k, we see that

Lfk ,p(z) :=
pk−1

(k − 1)!
(Rfk

(z) | T2−k(p) − p1−kafk
(p)Rfk

(z)) ∈ H2−k.

Then, by Proposition 3.1, part 2 of Theorem 2.1, and (1.7), we find that

Lfk ,p(z) =
pk−1

(k − 1)!
(Mfk

(z) | T2−k(p) − p1−kafk
(p)Mfk

(z))

= q−p − afk
(p)q−1 +

2k

Bk

(σk−1(p) − afk
(p))

+
1

(k − 1)!

∞
∑

n=1

(

pk−1c+
fk

(pn) − afk
(p)c+

fk
(n) + c+

fk

(

n

p

))

qn.(3.5)

Moreover, we observe that Lfk,p(z) ∈ M !
2−k is a weakly holomorphic modular form since it

is a harmonic weak Maass form whose holomorphic projection is zero.
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With Fk(z) =
∑∞

n=0 aFk
(n)qn ∈ Mk−2, we note that Lfk ,p(z)Fk(z) ∈ M !

0. Using (3.5), we
compute

Lfk ,p(z)Fk(z) =

p
∑

m=0

aFk
(m)qm−p + aFk

(0)
2k

Bk

σk−1(p)

− afk
(p)

(

aFk
(0)q−1 + aFk

(1) + aFk
(0)

2k

Bk

)

+ O(q).

If we define AFk,t(z) as in (1.13), we find that

Lfk,p(z)Fk(z) − (AFk,p(z) − afk
(p)AFk,1(z)) = O(q)

is a modular form of weight zero which is holomorphic on h and at infinity. Hence, it is
constant. This constant is zero, thus completing the proof of part 1 of Theorem 1.1.

Part 2 follows similarly. With Gk(z) ∈ M !
−k as in (1.15), we see from Theorem 3.2 that

θk−1(Mfk
(z))Gk(z) ∈ M !

0. Using (1.14) and (1.16), we compute

θk−1(Mfk
(z))Gk(z) = −(k − 1)!

nk
∑

n=−1

aGk
(−n)q−n−1 +

nk
∑

m=1

mk−1c+
fk

(m)

nk
∑

n=m

aGk
(−n)qm−n + O(q).

If we define BGk,t(z) as in (1.17), we find that

θk−1(Mfk
(z))Gk(z) −

(

nk
∑

m=1

mk−1c+
fk

(m)BGk,m(z) − (k − 1)!BGk,−1(z)

)

= O(q)

is a modular form of weight zero which is holomorphic on h and at infinity. The conclusion
follows.

3.2. Proof of Corollaries 1.2 and 1.3. To prove Corollary 1.2, it suffices to show that
Lfk,p(z) ∈ Z((q)). We consider cases.

When k ∈ {12, 16}, we apply Theorem 1.1 with Fk(z) = Ek−2(z) ∈ Mk−2 ∩ Z[[q]]. Here,

we note that 2(k−2)
Bk−2

∈ Z. Furthermore, we observe that B12 = − 691
2730

, B16 = −3617
510

, and that

for all primes p,

σ11(p) ≡ af12
(p) = τ(p) (mod 691)

σ15(p) ≡ af16
(p) (mod 3617).

These congruences may be found, for example, in [14]. Therefore, for k ∈ {12, 16}, we must
have

(3.6)
2k

Bk
(σk−1(p) − afk

(p)) ∈ Z.

Hence, from (1.2), (1.13), (3.6), and Theorem 1.1, we deduce that

(3.7) Lfk,p(z) =
AEk−2,p(z) − afk

(p)AEk−2,1(z)

Ek−2(z)

=
jp(z) − 2(k−2)

Bk−2

∑p
m=1 σk−3(m)jp−m(z) − afk

(p)
(

j1(z) − 2(k−2)
Bk−2

)

+ 2k
Bk

(σk−1(p) − afk
(p))

Ek−2(z)

has integer coefficients.
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When k ∈ {18, 20, 22}, we apply Theorem 1.1 with Fk(z) = ∆(z)Ek−14(z) ∈ Sk ∩ Z[[q]],
from which we obtain

Lfk ,p(z) =

∑p
m=1 aFk

(m)jp−m(z) − afk
(p)

∆(z)Ek−14(z)
∈ Z((q)).

Lastly, when k = 26, we apply Theorem 1.1 with F26(z) = ∆(z)2 ∈ S24 ∩ Z[[q], which gives

Lf26,p(z) =

∑p
m=2 aFk

(m)jp−m(z)

∆(z)2
∈ Z((q)).

To see part 2 of Corollary 1.3, we first remark that if afk
(p) 6= 0 for all primes p, then

afk
(n) 6= 0 for all n. Therefore, we suppose that c+

fk
(m) is irrational for some m and that

afk
(p) = 0 for some prime p. Corollary 1.2 implies that for all n,

1

(k − 1)!
·
(

pk−1c+
fk

(pn) + c+
fk

(

n

p

))

∈ Z.

Setting n = 1, we see that c+
fk

(p) ∈ Q. But then (1.19) shows that c+
fk

(1) ∈ Q. Part 1 of the

corollary now implies that c+
fk

(m) ∈ Q(c+
fk

(1)) must be rational, a contradiction.

3.3. Proof of Corollary 1.4. On applying Theorem 1.1 with Fk(z) = Ek−2(z) ∈ Mk−2,
we obtain Lfk,p(z) as in (3.7). We then use the von Staudt-Claussen congruences for the
denominators of Bernoulli numbers (see [12], Lemma 1.22, for example) and congruences for
the coefficients afk

(p) (see [14], Corollary to Theorem 4, for example) to prove Corollary 1.4.
To begin, we note that for all j ≥ 2 and even, we have 2j

Bj
≡ 0 (mod 24), so Ej(z) ≡ 1

(mod 24). Moreover, for k ∈ {12, 16, 18, 20, 22, 26}, we have fk(z) ≡ ∆(z) (mod 24). Part 1
of the corollary holds since for all primes p, we have

τ(p) = af12
(p) ≡











0 (mod 24) if p = 2

12 (mod 24) if p = 3

p + 1 (mod 24) if p ≥ 5.

Next, we note that if ℓ is prime and ℓ − 1 | k − 2, then we have 2(k−2)
Bk−2

≡ 0 (mod ℓ), so

Ek−2(z) ≡ 1 (mod ℓ). From (3.7), we see that if ℓ − 1 | k − 2, then

(3.8) Lfk ,p(z) ≡ jp(z) − afk
(p)j1(z) +

2k

Bk

(p + 1 − afk
(p)) (mod ℓ).

When ℓ ≥ 5, this is the case for pairs

(ℓ, k) ∈ {(5, 18), (5, 22), (5, 26), (7, 20), (7, 26), (11, 12), (11, 22), (13, 26), (17, 18), (19, 20)}.
The remaining parts of Corollary 1.4 are specializations of (3.8) using congruences for fk(z),
with θ as in (1.8), and congruences for τ(p) when p is prime. These congruences are:

fk(z) ≡



















θ∆(z) (mod 5) if k ∈ {18, 22, 26}
θ∆(z) (mod 7) if k ∈ {20, 26}
∆(z) (mod 11) if k ∈ {12, 22}
θ∆(z) (mod 13) if k = 26,

(3.9)

τ(p) ≡
{

p + p2 (mod 5)

p + p4 (mod 7).
(3.10)
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To prove the congruences for fk(z) modulo 5, 7, and 13, we note that θ∆(z) = ∆(z)E2(z)
and that if k ≡ k′ (mod ℓ − 1), then Kummer’s congruences for Bernoulli numbers imply
that Ek(z) ≡ Ek′(z) (mod ℓ).

For k ∈ {18, 22, 26}, (3.9) and (3.10) imply that

afk
(p) ≡ pτ(p) ≡ p(p + p2) ≡

(p

5

)

(p + 1) (mod 5),

where
( ·
·
)

is the Legendre symbol. Using that 2k
Bk

≡ 1 (mod 5), we obtain part 2 of the

corollary. For k ∈ {20, 26}, (3.9) and (3.10) imply that

afk
(p) ≡ pτ(p) ≡ p(p + p4) ≡ p2

(

1 +
(p

7

))

(mod 7).

Using the fact that 2k
Bk

≡ 3 (mod 7) gives part 3 of the corollary. For k ∈ {12, 22}, (3.9)

together with the fact that 2k
Bk

≡ 2 (mod 11) gives part 4 of the corollary. Part 5 of the
corollary is similar.

3.4. Proof of Corollaries 1.5 and 1.6. Recalling (1.2), (1.10), (1.12), and (1.13), for
n ≥ 1, we find that the nth coefficient of

∞
∑

n=0

bFk,τ (n)qn = Hτ (z)Fk(z) − aFk
(0)Ek(z)

is given by

bFk ,τ(n) =
n
∑

m=0

aFk
(m)jn−m(τ) + aFk

(0)
2k

Bk

σk−1(n) = AFk,n(z).

Similarly, from (1.10), (1.16), and (1.17), we find that the nth coefficient of

∞
∑

n=−nk

βGk,τ (n)qn = Hτ (z)Gk(z)

is given by

βGk,τ (n) =

n
∑

m=−nk

aGk
(m)jn−m(τ) =

nk
∑

m=−n

aGk
(−m)jm+n(τ) = BGk,−n(τ).

Theorem 1.1 now implies part 1 of Corollary 1.5.
Next, noting from (3.5) that

Lfk,p(z) = q−p + · · · ∈ M !
2−k,

we find that

Lfk,p(z)∆(z)p =
∆(z)p(AFk,p(z) − afk

(p)AFk,1(z))

Fk(z)
= 1 + · · · ∈ M12p+2−k.

Applying the valence formula for forms in M12p+2−k (see [12], Theorem 1.29), we see that

vω(Lfk ,p(z)) ≡ 2(k + 1) (mod 3),

vi(Lfk,p(z)) ≡ k

2
+ 1 (mod 2).
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Since these quantities are non-negative (Lfk,p
(z) is weakly holomorphic), we obtain parts 2

and 3 of the corollary. Similarly, observing from (1.14) that

θk−1(Mfk
(z))∆(z) = −(k − 1)! + · · · ∈ Mk+12,

we apply the valence formula for forms in Mk+12 to deduce parts 2 and 3 of the corollary for
the weakly holomorphic modular form θk−1(Mfk

(z)).
To obtain part 2 of Corollary 1.6, we first note that for all τ ∈ h we have vτ (∆(z)) = 0.

Then applying the valence formula to

θ11(M∆(z)) · ∆(z) = −11! + · · · ∈ M24

gives
1

2
· vi(θ

11(M∆(z)) +
1

3
· vω(θ11(M∆(z)) +

∑

P

vP (θ11(M∆(z)) = 2,

where the sum is over all P ∈ h inequivalent to i, ω in a fundamental domain. Since
θ11(M∆(z)) is weakly holomorphic, for all τ ∈ h, we have vτ (θ

11(M∆(z)) ≥ 0. Hence, for
some τ ∈ h, we must have vτ (θ

11(M∆(z)) ≥ 1. Since ∆(τ) 6= 0, (1.18) implies the result.
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