EXCEPTIONAL CONGRUENCES FOR THE COEFFICIENTS
OF CERTAIN ETA-PRODUCT NEWFORMS

MATTHEW BOYLAN

1. INTRODUCTION AND STATEMENT OF RESULTS

In this note, we prove congruences for certain kinds of partition functions. If r is a non-zero
integer, we define the functions p,.(n) by

(1) > pr(m)g" = [ —g¢")"

Letting pe (n) and p, (n) denote the number of r-colored partitions into an even (respectively,
odd) number of distinct parts, it is easy to see that

(2) pr(n) = pe,r(n) — po,r(n),
when r is a positive integer. Moreover, it is well-known that p_;(n) = p(n), the unrestricted
partition function.

The functions p,(n) have been studied extensively by Ramanujan [B-O], Newman [N1], Atkin
[A], and Serre [Sel]. These functions enjoy certain congruence properties. For example, the
coefficients of Ramanujan’s Delta-function, A(z) = Y77 | 7(n)q™, are given by 7(n) = pas(n—1)
when n > 1, and they satisfy the congruence

(3) p2a(n —1) =0o11(n) (mod 691),

where oy (n) = Z d*.
d|n

d>0

Here we prove congruences of a much different flavor for pi2(n) and the function v(n) which
we now define:

(4) > wn)g" = [[ (- g1 - )"
n=0 n=1

It follows that

(5) v(n) = ve(n) — vo(n),

where v.(n) and v,(n) are the number of 8-colored partitions into an even (respectively, odd)
number of distinct parts, where each of the parts of the last four colors are even.
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Theorem 1. If p is an odd prime, then

—1\2
v (pT) =0,p% 2p°, or 4p® (mod 11).

2
-1
P12 (%) =0,p%,2p°,0r 4p° (mod 19).

Remark: If for 1 <i <4 we let §(¢) denote the Dirichlet density of primes p for which

p—1 ’ ;3
v{=——) =ip° (mod 11),

2
then
3/8 if i=0
1/3 if i=1
6 5(i) =
(©6) (@) 1/4 if i=2
1/24if i =4.

The Dirichlet density of primes p for which

~1\?2
P12 (pT) =ip® (mod 19)

is also given by (6).

To study congruences like (3), Serre and Swinnerton-Dyer used modular Galois represen-
tations. If F(z) = > a(n)g" € Sk(To(N),x) is an eigenform for the action of the Hecke
operators and has £-adic integer coefficients, then by a theorem of Deligne [De], there is a rep-
resentation py r: Gal(Q/Q) — GLa(Z/), for each prime ¢, depending on F and unramified
outside N/, for which

Tr(pe,r (Froby)) = a(p)
and

det(pe,r (Frob,)) = x(p)p*
for all primes p t N£. The projectivization of pg r reduced modulo £ is denoted by gg, r.

If the image of py p in PGLo(FF;) is Ay, Sy, or As, following Swinnerton-Dyer, we say that ¢
is exceptional of type (iii) for F. In particular, when the image is Sy, we have

(7) a(p)? = 0, x(P)p* *, 2x(P)P* 1, or Ax(p)p* ! (mod £)

for primes p t N¢. Moreover, the Dirichlet density of primes p for which a(p)? = ix(p)p
(mod ¢) is given by (6). If we let L be the kernel field of the projectivization of j, g, then
a(p)? = 0,x(p)p*1,2x(p)p* 1, or 4x(p)p*~! (mod ¢) precisely when o(Frob,) = 2,3,4, or 1 in
Gal(L/Q) = S, respectively, where o(g) denotes the order of g € S;. Therefore, the density
result follows from the Chebotarev Density Theorem.

k—1

In the Serre and Swinnerton-Dyer theory of congruences for the coefficients of modular forms
on SLy(Z), exceptional congruences modulo £ for f(z) € Sy(To(1)) of types other than type (iii)
follow from congruences between two specific modular forms in certain spaces of modular forms
of weight no greater than k+ £+ 1 with coefficients reduced modulo £. Therefore, these types of
exceptional congruences may be simply verified by checking that the nth coefficients of the two
modular forms in question agree modulo £ for n < k+1—£2+1. It is particularly easy to explicitly
calculate many coefficients of the modular forms in these cases. Exceptional congruences of
type (iii) are also dictated by congruences between modular forms in spaces of forms with
coefficients reduced modulo £ but are much harder to verify since one of these modular forms
is always a weight one form whose explicit construction is difficult. To clarify, observe the
following example of a type (iii) congruence that Serre and Swinnerton-Dyer conjectured, but
did not prove [SwD, Corollary (ii4) to Theorem 4].
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Conjecture. (Serre and Swinnerton-Dyer) The prime 59 is exceptional of type (iii) for the
unique normalized eigenform Fsyp € S16(I'o(1)).

In 1983, Haberland gave a constructive proof of the conjecture in a series of three papers [H].
His methods relied heavily on Galois cohomology.

To prove Theorem 1, we exhibit all exceptional congruences of type (iii) for eta-product new-
forms. However, there are a variety of intervening techical questions. Although it is straight-
forward to eliminate all but finitely many primes £ as possible exceptional primes, it is harder
to verify that any given prime is indeed exceptional. In particular, there could be rogue primes
£ which appear to be exceptional based on limited numerical evidence. More precisely, we do
not benefit from the existence of effective forms of the Chebotarev Density Theorem since at
the outset we do not have a convenient restriction on the image of the corresponding Galois
representation.

Therefore, to prove an exceptional congruence of type (iii) modulo the prime £ for the co-
efficients of f(z) € My(To(N),x), we first explicitly construct the number field L (e.g., an
Sy-field if the congruence has form (7)) that seems to be dictating the alleged exceptional
congruence. The proof then follows in a purely computational way from recent works of Cre-
spo [Cpl], [Cp2], Quer [Q], and Bayer and Frey [B-F] which show how to explicitly construct
odd irreducible complex octahedral two-dimensional Galois representations and the correspond-
ing weight one Hecke newforms coming from the well-known theorems of Weil-Langlands and
Langlands-Tunnell [T]. The coefficients of the weight one newform constructed this way satisfy
an exceptional congruence of type (iii) modulo £, so to complete the proof, we employ standard
facts about modular forms to compare the well-known properties of the coefficients of the weight
one form to the coefficients of f(z). In particular, this strategy may also be applied to prove
the Serre and Swinnerton-Dyer example. I. Kiming and H. Verrill [K-V] have also proved the
Serre and Swinnerton-Dyer example as well as the exceptional congruences for the coefficients
of the modular forms F; and F3 below using methods somewhat different than ours. It should
also be noted that B. Gordon proved exceptional congruences of this type in unpublished notes
in the early 1990s. Consider the following eta-product newforms:

Fi(2) = n*(22)n"(42) € S4(To(8))

Fy(2) = 17 (22)n"° (42)n~*(82) € S4(To(128))
F3(2) = 1'*(22) € S6(T0(4))

Fy(z) = 172 (22)7°°(42)n~ "% (82) € S6(To(64)).

It is easy to verify that F» and Fy are x_;-twists of F; and F3, respectively.

Theorem 2.

(1) The prime 11 is exceptional of type (iii) for Fi and F.
(2) The prime 19 is exceptional of type (iii) for F3 and Fy.

Remark:

(1) By checking the complete list of eta-product newforms [Ma, Table I], it is straightforward
to use (7) to find that the only possible congruences of type (i4¢) are those given in
Theorem 2.

(2) There are congruences for the coefficients of eigenforms arising from odd irreducible
complex two-dimensional Galois representations for which Artin’s Conjecture is true.
In particular, we expect many congruences arising from tetrahedral, octahedral, and
icosahedral representations. In view of the works of Buhler, Frey, Taylor, and others,
one can find newforms of high weight possessing such congruences. However, checking
the list of eta-product newforms, and using (7) with 0,1, 2,4 replaced by 0,1,4 and by
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0,1,4, 3i2‘/5 in the tetrahedral and icosahedral cases respectively, we find that there are
no congruences for the coefficients of eta-product newforms arising from tetrahedral or
icosahedral representations.

Since the only proof of a congruence of type (¢i¢) is [H] (to the best of our knowledge), we
feel it is important to give a separate and elementary explanation of how any congruence of
type (ii1) may be proved. Moreover, it is interesting to see the Serre and Swinnerton-Dyer
theory applied to the eta-product newforms, yielding concrete and elegant number theoretic
statements in line with the earlier works cited above.

2. PRELIMINARIES.

In this section, we give the important preliminary facts regarding certain kinds of complex
two-dimensional Galois representations

p: Gal(Q/Q) — GL»(C),

and their connections to weight one newforms. Throughout we will denote by p’ the projec-
tivization of p. A representation p is octahedral if the image of p' in PGLy(C) is S4. We begin
by explicitly constructing p, an odd irreducible complex octahedral two-dimensional Galois
representation.

The projectivization p' is uniquely determined by its kernel field which we denote by K. The
Galois group of K is Sy, and K is the splitting field of some irreducible quartic polynomial g(z)
having roots {z1, 2,23, z4}. Hence, such a g(z) explicitly defines p’. Througout this section,
we will assume that K contains a quartic subfield with negative discriminant d which we may
take to be K1 = Q(z1) without loss of generality. We will also assume that the A4-subfield of K
is M = Q(v/—d). Later we will discuss how to choose g(z) so that K enjoys certain properties.

Before we can explicitly define p, it is necessary to determine whether K may be extended
to an Ss-extension K, where Sy is isomorphic to GLy(F3), the double cover of Sy in which
transpositions lift to involutions. Assuming the hypotheses on K and K given above, the
solvability of this embedding problem may be determined by a simple calculation.

Theorem 3. ([B-F, Proposition 1.2]) The field K may be extended to K if and only if the
local invariant ek p, is trivial in the Braouer group of Q, for each odd prime p which ramifies in
K. The invariants ek, may be calculated from the following table, where p;,p; and p} denote

factors of residue degree i in K1 and (d,p), = (%), where a = (—1)°dp(d)p—orde(d)g 45 the
Hilbert Symbol.

pOKl €K,p
pt (1) (=)=
pip} 1
pipipy 1
Pips -1
pipp? (~1)"7 (d,p)y
p3 (-1)"%

_ Assuming that the embedding problem is solvable, an explicit solution A € K for which
K = K(v/}) is given by a formula of Crespo.
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Theorem 4. ([Cpl, Theorem 5]) Let T be the matriz of the bilinear form TrKl(\/E)/M(X2)
with respect to the basis {1,z1, 23,23} for Ki(V/d)/M. Let P be a matriz in GLy(Q) satisfying

100 O
" |10 1 0 O
) PTP = 00 2 0}’
0 0 0 2d
and define
1 zy 12 23 10 0 0
__ 1 2o x% ;cg 01 0 0
9) v := det 1z 2l ad Ply o L 1 +1I] #0,
1 2y 2z 3 00 ﬁ —ﬁ

where I is the identity. Then all solutions of the embedding problem are given by K(\/r7) as
runs over Q* /Q*2.

The field K is the kernel field of an irreducible complex octahedral two-dimensional Galois
representation

(10) p: Gal(@/Q — Gal(K/Q) = S4 — GLy(Z[v=2]) C GL»(C),

where we have chosen one of the two faithful irreducible representations of Sy in GLy(C). If
we suppose that p is odd, then by the theorems of Weil-Langlands and Langlands-Tunnell
mentioned in the introduction, there exists a weight one Hecke newform G(z) = > ° | b(n)¢" €
S1(To(NV), x) which is the inverse Mellin transform of the Artin L-function L(s, p). Here N is
the Artin conductor of p, and x is the character det(p). (For background on Artin L-functions
and connections to weight one newforms, see [Me] or [Se2], for example.) One may compute
N directly from its algebraic definition. We verify numerically that N is the conductor of p
by checking that G(z) is an eigenform for the action of the Atkin-Lehner involution w(N) =
( ](\][ _01) with level IV as required by the Atkin-Lehner-Li-Miyake theory of newforms.

We note that the image of p consists of matrices whose entries are algebraic integers in
Z[v/-2]. For an arbitrary rational prime ¢, the reduction of p modulo a prime above £ in
Z[v/=2] has projective image Sy, so every prime £ is exceptional of type (iii) for G. It remains
to actually calculate the coefficients of G(z). We briefly describe the algorithm of Bayer and
Frey enabling ust to explicitly calculate the coefficients b(p) for primes pt N.

The field K uniquely determines p, an irreducible complex octahedral two-dimensional Galois
representation, as its kernel field. It will be useful to compute the Artin conductor of p and
the determinant character det(p) = e. Roughly speaking, the Artin conductor is a product
of the ramified primes in K, each prime p raised to a certain power depending on the higher
ramification groups of p in K.

By (10), the coeflicients b(p) for primes p f N are captured by the character table for the
chosen representation of Sy (see [Df, Chapter 28], for example). The factorization of p in K,
corresponds to a particular conjugacy class of Frob, in S4, denoted by m,. We denote the
conjugacy class of Frob, in Sy by 7p. This information is summarized in the table below, where
the lower index on the primes in K; indicates the residue degree, as before.

Since we know explicitly the factor A for which K = K (v/X) by Theorem 4, we can determine
the conjugacy class in Ss when the factorization types 1, 4, and 5 occur by using Propositions
5 and 6. In what follows, let A\* denote the action of s € S4 on A.
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Factorization type pOk, Tp Tp b(p)

1 pipipip!” | 14 | 14 2
24 -2

2 p2ps 24 4A 0

3 p1p1P2 2B | 2B 0

4 p1p3 3A 34 -1
6A 1

5 4 4A 8A V=2
8B /=2

Proposition 5. ([B-F, Proposition 2.4]) Suppose P is a prime in K above p. If 1, = 1A,
(resp. 3A) then b(p) = 2, (resp. —1) if and only if X is a square modulo B.
Proposition 6. ([B-F, Proposition 2.5]) Suppose p is an odd prime and pOk, = p,. Then
b(p) = V-2 if and only if

p=1 1 AG2D _2(1:2.3)
(11) Az :_§+T (mod p,).

3. THE PROOF OF THEOREM 2.

To prove Theorem 2, we will also need certain facts about modular forms modulo p when p >
5 is prime. Let My, ,(To(IV)) denote the F,-vector space of modular forms in My (To(N)) () Z[[g]]
with coefficients reduced modulo p, and suppose that F(z) = > a(n)gq™ € My(To(N)) N Z[[q]].
Then the action of the Ramanujan theta-operator is given by

(12) Op(F) := Z”a(”)qn (mod p) € Mitpt1,p(To(N)).
n=0

Propositions 7 and 8 are also useful tools for studying modular forms modulo p.

Proposition 7.

(1) If p is an odd prime and

Then Ap(z) € Mp_;l (Fo(p), (@)), and

Ap(2) =1 (mod p).

(2) [Sw-D] Suppose k > 4 is an even integer. Then the normalized Fisenstein series of
weight k with respect to SLa(Z) is given by

Ek(z) =1- %kk Z ak_l(n)q".

Furthermore, if p > 5 is prime, then

E, 1(2) =1 (mod p).
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Proof.

(1) See [G-H], [N2], [N3] for the first part. The second part follows from the Children’s
Binomial Theorem in characteristic p. (i.e., that 1 —z? = (1 — 2)? (mod p) when p is
a prime.)

(2) By the Von Staudt-Claussen Theorem, the power of a prime p dividing the denominator
of By, the kth Bernoulli number, is one if p— 1 | k and zero otherwise. The congruence
for E,_ follows.

If F is a number field with ring of algebraic integers Op, if g = > >, a(n)¢" € Op[[q]], and
if p is a prime ideal in Op, then

ordy(g) := { min{n : a(n) € p} if a(n) & p for some n

+o00 otherwise.

With this definition we can state Sturm’s Theorem on the congruence of modular forms.

Proposition 8. ([St, Theorem 1)) If f,g € My (To(N)) () Orllg]] and if

k 1
ordy(f —9) > — (1+—),
12 p
p|N

then ordy, (f — g) = +oo. i.e., f =g (mod p).

The constant on the right hand side of the inequality in Proposition 8 is called Sturm’s bound
for f —g.

To prove that a prime £ is exceptional of type (iii) for an eigenform F(z) = Y a(n)q" €
Sk(To(N),x), we first build a specific odd irreducible complex octahedral two-dimensional
Galois representation p : Gal(Q/Q) — GLy(C) with certain properties depending on F, as
described in Section 2.

In this general setting, we want to construct K so that it is isomorphic to the kernel field
L of po r if £ were exceptional of type (#ii) for F. The comments immediately following (7)
indicate that we can determine the splitting of primes in L from the coefficients a(p) modulo
£. Any irreducible quartic polynomial defining K must split completely modulo primes which
are known to split completely in L. The field K must also be unramified outside N/, which
restricts the values of the discriminants of the defining quartics. These requirements allow us
to quickly verify whether a given quartic is a good candidate for defining K.

Using the facts about modular forms modulo p stated at the beginning of this section, we
show that the weight one newform obtained from p is congruent modulo £ to a certain power
of the theta-operator acting on F', thus proving a nontrivial congruence for the coefficients of
F. Therefore, ¢ is exceptional of type (iii) for F.

Proof of Theorem 2. We show that 19 is exceptional of type (iii) for F3(z) = n'2(2z). We first
choose an appropriate irreducible quartic defining the Sy-field K. Our calculations are based
on

(13) g(x) = z* + 762 — 722z + 1444

with roots {z1,x2, 23,24} obtained from the arithmetic of the CM elliptic curve 361A [Cr] by
a formula of Bayer and Frey [Ba-F, p.401]. The discriminant of K1 = Q(z;) is —1932%, and
the A4-subfield is M = Q(v/—19). The prime factorization of 19 in K; is given by 19 = 4, so
ex,19 = 1, implying that K may be extended to an Sy-field K by Theorem 3.
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Next, we calculate

Y19 =T225x2 + 5132223 — 1368z 125 — 433222 + 1026232, — 410423, + 6498022
(14) — 2176832 + 342023 + 3610023 + 488433z, — 2249752

by Theorem 4. The S-field K (y/719) defines an irreducible complex two-dimensional Galois
representation p. Following the Bayer-Frey algorithm, we explicitly construct the coefficients
of the weight one Hecke newform H(z) coming from p. The other solutions K (,/r7) to this
embedding problem define the Galois representations p ® x.., where x, = (ﬂ) These represen-
tations determine the weight one modular forms H(z) ® x,. Hence, the weight one form that
seems to be dictating the exceptional congruence for the coefficients of F3(z) is H(z) or some
twist of H(z). In particular, the weight one newform we need is

(15) G(2) = H(2)®X—35 = Y _b(n)¢" = ¢+V=-2¢°+¢"+¢" ="+ € S (1‘0(22192), <E))

coming from the field K = K(y/—38719) having discriminant 2'8192!. The Artin conductor is
2219% and the determinant character is (5), so p is also odd.

As mentioned earlier, every prime p is exceptional of type (iii) for G. In particular, the prime
19 is exceptional of type (i) for G, so

(16) b(p)? =0,p°,2p°,0r 4p° (mod 19).

By Proposition 7,

(17) G(2) = G(2)E15(2)? A19(2) (mod 19)

and by (12),

(18) 024 (F3(2)) = f: n*a(n)q" (mod 19),
n=0

where G(2) E1(2)?A19(2) (mod 19) and 634(F3(2)) (mod 19) lie in the space Myg 19(I'0(2%219?))
whose Sturm bound is 8740. Using Propositions 5 and 6 to calculate the coefficients of G(z),
we verify that

(19) G(2) = 624(F3(2)) (mod 19)
by Proposition 8. In light of (16), this shows that 19 is exceptional of type (7i7) for F3, and
hence, for Fy, since Fy is a x—_1-twist of F3, proving part (2) of Theorem 2.

Table 2 contains data for the remaining case of Theorem 2 (when £ = 11) and for the example
of Serre and Swinnerton-Dyer. Here N is the conductor of p, and S is the Sturm bound for the
space My p(To(N)) in which the relevant congruence of modular forms is proved.

We observe that in each case,
(20) F(2) € Mugs (To(M)),

where M is the part of N prime to £ and that

£—3

(21) 6,° (F(2)) =G(2) (mod ) € My, ,(To(N)).
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A finite computation completes the proof of each exceptional congruence of type (iii).

14 F(z) g(x) N X S
11 n*(42)n*(22) z* — 162° + 302% + 30z — 74 23112 =) 2112
19 n'2(22) ot + 7622 — 722z + 1444 92192 =) | 8740
59 Fswp ot — a2 -T2 + 11z + 3 592 =) 2180
Remarks:
(1) We determine G(z), the appropriate twist of H(z) in the example above, so that G(z)

will satisfy (19). In particular, since the pth coefficients of such a G(z) (when p is
prime) are in the set {0, 41,42, +1/—2}, these pth coefficients must be determined by
the reduction of the pth coefficients of 6%,(F3(z)). We use this criteria to check which
twist H(z) ® x, for squarefree r | 38 is the correct one.

We note that the choice of g(z) in these examples is certainly not unique. By performing
a brute force search on quartic polynomials in the example above, we are immediately
led to g(z) = z* — 2® — 222 — 62 — 2, having roots x1, T2, T3, 4. In this case, we apply
the Bayer-Frey algorithmto K = K (1/387},), where

Yig =6x3x2 + 182322 — 51122 — 3322 + 42232,

— 10522 + 33129 + 3w9 — 1023 — 72?2 + 9521 + 190

to obtain the same weight one form G(z) as before.

The author notes that the Artin L-function constructed in connection with showing
that 11 is exceptional of type (¢i¢) for F} is also constructed by Bayer and Frey [B-F,
Example 3], but not in the context of exceptional congruences. In this case, g(z) is
obtained from the arithmetic of the CM elliptic curve 121B [Cr].

In Swinnerton-Dyer’s original discussion of the exceptional prime 59 for Fsyp, the co-
efficients 11 and 7 in our g(z) are interchanged, a typographical error.
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