
CONGRUENCES FOR 2F1 HYPERGEOMETRIC

FUNCTIONS OVER FINITE FIELDS

Matthew Boylan

In a recent paper [O-P], K. Ono and D. Penniston established several families of congru-
ences for 3F2 hypergeometric functions over finite fields. In this note, we obtain congruences
for 2F1 hypergeometric functions over finite fields using similar methods. For example, if
p 6= 2, 3, 5, 7 is prime, then

(1) 2F1

(

φp, φp

εp
| −

81

175

)

p

≡ −φp(7)(1 + p−1) (mod 16),

where φp is the Legendre symbol modulo p and εp is the trivial character.

J. Greene [G1, G2] defined finite field hypergeometric functions and developed many of
their properties. In what follows, we denote by GF (p) the finite field with p elements, and
we extend all characters χ of GF (p)∗ to GF (p) by setting χ(0) := 0. Following Greene, the
first definition we give is the finite field analogue of the binomial coefficient, and the second
definition is the finite field analogue of the classical hypergeometric functions.

Definition 1. If A and B are characters of GF (p), then

(2)

(

A
B

)

:=
B(−1)

p
J(A,B) =

B(−1)

p

∑

x∈GF (p)

A(x)B(1 − x),

where J(χ, ψ) denotes the Jacobi sum if χ and ψ are characters of GF (p).

Definition 2. If A0, A1, ..., An, and B1, ..., Bn are characters of GF (p), then the hyperge-

ometric function n+1Fn

(

A0, A1, . . . , An

B1, . . . , Bn
| x

)

p

is defined by

(3) n+1Fn

(

A0, A1, . . . , An

B1, . . . , Bn
| x

)

p

:=
p

p− 1

∑

χ

(

A0χ
χ

) (

A1χ
B1χ

)

· · ·

(

Anχ
Bnχ

)

χ(x),

where the summation is over all characters χ of GF (p).

Here we are interested in the functions 2F1

(

φp, φp

εp
| λ

)

p

which we denote by 2F1(λ)p.

We also define the objects Gi, λi(s), Di(s), and Si as the entries given in the table below.
These objects parametrize our congruences for the functions 2F1(λ)p.
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i Gi λi(s) Di(s) Si

1 Z2 × Z2 r
s

s {0, r}

2 Z2 × Z2 − r−s
s

−s {0, r}

3 Z2 × Z2 s
r

r {0, r}

4 Z2 × Z2 r−s
r

−r {0, r}

5 Z2 × Z2 − s
r−s

r − s {0, r}

6 Z2 × Z2 r
r−s

−(r − s) {0, r}

7 Z2 × Z4 16s
(4s+1)2

1 {0,± 1
4
}

8 Z2 × Z4 (4s+1)2

(4s−1)2
−1 {0,± 1

4
}

9 Z2 × Z4 (4s+1)2

16s
s {0,± 1

4
}

10 Z2 × Z6 − (s−1)3(s−9)
128(s−3)

2(s− 3) {1,±3, 5, 9}

11 Z2 × Z6 (s−5)3(s+3)
128(s−3)

−2(s− 3) {1,±3, 5, 9}

12 Z2 × Z6 (s−1)3(s−9)
(s−5)3(s+3)

(s− 5)(s+ 3) {1,±3, 5, 9}

13 Z2 × Z6 128(s−3)
(s−5)3(s+3)

−(s− 5)(s+ 3) {1,±3, 5, 9}

14 Z2 × Z6 (s−5)3(s+3)
(s−1)3(s−9)

(s− 1)(s− 9) {1,±3, 5, 9}

15 Z2 × Z6 − 128(s−3)
(s−1)3(s−9)

−(s− 1)(s− 9) {1,±3, 5, 9}

16 Z2 × Z8 − (8s2+4s+1)2(8s2
−1)(8s2+8s+1)

(4s+1)4
1 {0,− 1

2
,− 1

4
}

17 Z2 × Z8 256(2s+1)4s4

(4s+1)4
−1 {0,− 1

2
,− 1

4
}

18 Z2 × Z8 (8s2+4s+1)2(8s2
−1)(8s2+8s+1)

256(2s+1)4s4 1 {0,− 1
2
,− 1

4
}

19 Z2 × Z8 (4s+1)4

256(2s+1)4s4 −1 {0,− 1
2 ,−

1
4}

20 Z2 × Z8 256(2s+1)4s4

(8s2+4s+1)2(8s2−1)(8s2+8s+1) (8s2 + 8s+ 1)(8s2 − 1) {0,− 1
2 ,−

1
4}

21 Z2 × Z8 − (4s+1)4

(8s2+4s+1)2(8s2−1)(8s2+8s+1)
−(8s2 + 8s+ 1)(8s2 − 1) {0,− 1

2
,− 1

4
}

Furthermore, we define ordp(n) to be the power of p dividing n if p is prime and n is any
nonzero integer. If α = a

b
∈ Q, then ordp(α) := ordp(a) − ordp(b).
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Theorem 1. For each i in the preceding table, suppose r ∈ Q \ {0}, s ∈ Q \ Si, and p ≥ 5
is a prime for which

ordp(λi(s)(λi(s) − 1)) = ordp(|Gi|) = 0.

Then

2F1(λi(s))p ≡ −φp(−Di(s))(1 + p−1) (mod |Gi|).

Remark. If we let i = 21 and s = 1
2 in Theorem 1 we obtain Example (1).

The Proof of Theorem 1.

We begin by recalling some basic facts about elliptic curves.

Let E = E/Q be the set of points (x, y) with x, y ∈ Q satisfying the Weierstrass equation

(4) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ Q. We define constants

b2 := a2
1 + 4a2

b4 := 2a4 + a1a3

b6 := a2
3 + 4a6

b8 := a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

Replacing y by 1
2
(y − a1x− a3) in (4) gives us

(5) y2 = 4x3 + b2x
2 + 2b4x+ b6.

Multiplying both sides of (5) by 16 and replacing y by y/4 and x by x/4 yields

(6) y2 = x3 + b2x
2 + 8b4x+ 16b6.

We also define the discriminant and j-invariant of E:

∆(E) := −b22b8 − 8b34 − 27b26 + 9b2b4b6

j(E) :=
(b22 − 24b4)

3

∆(E)
.

If ∆(E) 6= 0, then E is an elliptic curve. Mordell’s Theorem states that the points of an
elliptic curve including the point at infinity form a finitely generated abelian group.

We say that p is a prime of good reduction for E if ordp(∆(E)) = 0. In this case, we
can view the reduction of the elliptic curve E modulo p as an elliptic curve over GF (p). We
denote the reduction of E by Ep.

As in [O, Sec.3], we consider the family of elliptic curves

(7) 2E1(λ) : y2 = x(x− 1)(x− λ),
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where λ ∈ Q \ {0, 1} since

(8) ∆(2E1(λ)) = 16λ2(λ− 1)2.

Note that its 2-torsion points are {(0, 0), (1, 0), (λ, 0),∞}. Also, we observe that

j(2E1(λ)) =
256(λ2 − λ+ 1)3

λ2(λ− 1)2
.

If p is an odd prime such that ordp(λ(λ− 1)) = 0, then p is a prime of good reduction for

2E1(λ) and we define

(9) 2a1(p;λ) := p+ 1 − |2E1(λ)p|,

where |2E1(λ)p| denotes the number of GF (p)-points of 2E1(λ)p including the point at
infinity. Theorem 2 illustrates the significance of the elliptic curves 2E1(λ) in the study of
the functions 2F1(λ)p.

Theorem 2. [O, Thm.1] If λ ∈ Q\{0, 1} and p is an odd prime for which ordp(λ(λ−1)) = 0,
then

(10) 2F1(λ)p =
−φp(−1)2a1(p;λ)

p
.

The idea of a quadratic twist of an elliptic curve is particularly useful for our purposes.
If E is an elliptic curve with rational coefficients having equation

E : y2 = x3 + ax2 + bx+ c,

and if D is a squarefree integer, then the D-quadratic twist of E is defined as

E(D) : y2 = x3 + aDx2 + bD2x+ cD3.

Moreover, if p ≥ 5 is a prime of good reduction for E and E(D), then

(11) a(p) = φp(D)aD(p),

where a(p) = p+ 1 − |Ep| and aD(p) = p+ 1 − |E(D)p|. Proposition 3 states an important
property of elliptic curves which are twists of each other.

Proposition 3. [S, X. Corollary 5.4.1] If E1 and E2 are quadratic twists of each other, then

j(E1) = j(E2).

In particular, we are interested in the numbers 2a1(p;λ) (mod N) when a quadratic twist
of 2E1(λ) has torsion subgroup of size N .
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Proposition 4. Suppose that E/Q is an elliptic curve with torsion subgroup G which is a

D-quadratic twist of 2E1(λ). If p ≥ 5 is a prime for which E has good reduction and

ordp(λ(λ− 1)) = ordp(|G|) = 0,

then

2F1(λ)p ≡ −φp(−D)(1 + p−1) (mod |G|).

Proof. Notice that p is a prime of good reduction for 2E1(λ) since ordp(λ(λ − 1)) = 0.
Therefore,

p+ 1 − |Ep| = a(p)

= φp(D)2a1(p;λ).

Observing that the reduction map E → Ep is injective on the torsion subgroup of E since
ordp(|G|) = 0 [S, VII. Prop.3.1(b)], we also have that

|Ep| ≡ 0 (mod |G|).

Hence,

(12) (p+ 1)φp(D) ≡ 2a1(p;λ) (mod |G|).

Substituting (12) in (10) proves the Proposition.

Proof of Theorem 1. We prove Theorem 1 for i = 13. The proofs of the other cases are very
similar. In this case, G13 = Z2×Z6. Any elliptic curve E/Q with torsion subgroup Z2×Z6
may be written [Ku, Table 3]:

(13) E : y2 + (1 − c)xy − by = x3 − bx2,

where

c :=
10 − 2s

(s2 − 9)
,

b := c+ c2,

and s ∈ Q \ S13 since

(14) ∆(E) =
64(s− 1)6(s− 5)6(s− 9)2

(s− 3)10(s+ 3)10
.

We also calculate that

j(E) =
(s2 − 6s+ 21)3(s6 − 18s5 + 75s4 + 180s3 − 825s2 − 2178s+ 6861)3

64(s− 9)2(s− 5)9(s− 1)6(s− 3)2(s+ 3)2
.
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Setting j(E) = j(2E1(λ)) and solving for λ gives six solutions: {λ10(s), ..., λ15(s)}. Choosing
the solution

λ13(s) =
128(s− 3)

(s+ 3)(s− 5)3
,

we find that

(15) ∆(2E1(λ13(s))) =
262144(s− 1)6(s− 3)2(s− 9)2

(s+ 3)4(s− 5)12
.

Thus, if s 6∈ S13, then 2E1(λ13(s)) is an elliptic curve. Furthermore, by comparing (14) and
(15) we see that the primes of bad reduction for E which are greater than or equal to 5 are
also primes of bad reduction for 2E1(λ13(s)). Rewriting the curve (13) in the form (6) we
obtain

E : y2 =

(

x+
8(s− 5)

(s− 3)(s+ 3)

) (

x+
s3 − 7s2 + 11s− 5

s3 − 3s2 − 9s+ 27

) (

x+
8(s− 1)2

s3 + 3s2 − 9s− 27

)

.

Letting x→ x− 8(s−5)
(s−3)(s+3) transforms this into

E : y2 = x(x− t13(s))(x− λ13(s)t13(s))

= x3 − (1 + λ13(s))t13(s)x
2 + λ13(s)t13(s)

2x,(16)

where

t13(s) := −
(s− 5)3

(s+ 3)(s− 3)2
.

Equation (16) shows that E is the t13(s) quadratic twist of 2E1(λ13(s)). We then define
D13(s) to be the squarefree part of t13(s):

D13(s) = −(s+ 3)(s− 5),

and apply Proposition 4 to obtain

2F1

(

128(s− 3)

(s+ 3)(s− 5)3

)

p

≡ −φp((s+ 3)(s− 5))(1 + p−1) (mod 12).

The remaining cases of Theorem 1 follow by repeating this argument for all possible torsion
subgroups containing Z2×Z2 (since any twist of 2E1(λ) must have full 2-torsion.) Kubert’s
table gives a parametrization of all curves having such torsion subgroups.
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